Ejercicios resueltos

5.3-1 El 2% de los DVDs de una determinada marca son defectuosos. Si se venden en lotes de 25 unidades, calcular la probabilidad de que haya como máximo dos defectuosos.

Solución

Es una distribución binomial con \(n = 25, \ p = 0,02, \ q = 1 - p = 0,98 \).

\[X \text{ es B}(25, \ 0,02), \text{ por lo que:} \]

\[
p(X \leq 2) = p(X = 0) + p(X = 1) + p(X = 2) = \]

\[
= \left(\begin{array}{c}
25 \\
0
\end{array}\right) 0,02^0 \cdot 0,98^{25} + \left(\begin{array}{c}
25 \\
1
\end{array}\right) 0,02^1 \cdot 0,98^{24} + \left(\begin{array}{c}
25 \\
2
\end{array}\right) 0,02^2 \cdot 0,98^{23} = \]

\[
= 1 \cdot 1 \cdot 0,6035 + 25 \cdot 0,02 \cdot 0,6158 + \frac{25 \cdot 24}{2} 0,0004 \cdot 0,6283 = \]

\[
= 0,6035 + 0,3079 + 0,0754 = 0,9868
\]

5.3-2 Una prueba tipo test consta de 10 preguntas con cuatro opciones cada una, de las que sólo una es correcta. Si se contesta totalmente al azar.

a) ¿Cuál es la probabilidad de aprobar la prueba?

b) ¿Cuál es la probabilidad de no acertar ninguna pregunta?

c) ¿Cuántas preguntas cabe esperar que se contesten correctamente?

Solución

Es una distribución binomial con \(n = 10, \ p = 0,25, \ q = 1 - p = 0,75 \).

\[X \text{ es B}(10, \ 0,25), \text{ por lo que:} \]

\[p(X \geq 5) = p(X = 5) + p(X = 6) + p(X = 7) + \]

\[+ p(X = 8) + p(X = 9) + p(X = 10) \]
\[
p(X \geq 5) = \binom{10}{5} 0,25^5 \cdot 0,75^5 + \binom{10}{6} 0,25^6 \cdot 0,75^4 + \\
+ \binom{10}{7} 0,25^7 \cdot 0,75^3 + \binom{10}{8} 0,25^8 \cdot 0,75^2 + \\
+ \binom{10}{9} 0,25^9 \cdot 0,75^1 + \binom{10}{10} 0,25^{10} \cdot 0,75^0 = \\
\]
\[
= \frac{10 \cdot 9 \cdot 8 \cdot 7 \cdot 6}{5 \cdot 4 \cdot 3 \cdot 2} \cdot 0,0009 \cdot 0,2373 + \\
+ \frac{10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5}{6 \cdot 5 \cdot 4 \cdot 3 \cdot 2} \cdot 0,0002 \cdot 0,3164 + \\
+ \frac{10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4}{7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2} \cdot 0,00006 \cdot 0,4218 + \\
+ \frac{10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3}{8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2} \cdot 0,000001 \cdot 0,5625 + \\
+ \frac{10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2}{9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2} \cdot 0,00000038 \cdot 0,75 + \\
+ \frac{10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2}{10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2} \cdot 0,000000095 \cdot 1 = \\
= 252 \cdot 0,0009 \cdot 0,2373 + 210 \cdot 0,0002 \cdot 0,3164 + \\
+ 120 \cdot 0,00006 \cdot 0,4218 + 45 \cdot 0,00001 \cdot 0,5625 + \\
+ 10 \cdot 0,0000038 \cdot 0,75 + 0,00000095 \cdot 1 = \\
= 0,0538 + 0,0133 + 0,003 + 0,0002 + 0,0000285 + \\
+ 0,00000095 = 0,0703
\]

b) \[p(X = 0) = \binom{10}{0} \cdot 0,25^0 \cdot 0,75^{10} = 0,0563\]

c) \[\mu = n \cdot p = 10 \cdot 0,25 = 2,5\]
5.3-3 Un tirador acierta en el 95% de las veces. Si realiza 7 lanzamientos, ¿cuál es la probabilidad de que falle alguno?

Solución

Es una distribución binomial con \(n = 7, p = 0,95, q = 1 - p = 0,05 \).

\(X \) es \(B(7, 0,95) \)

Hay que calcular \(p(X<7) \), se calcula más rápido aplicando el suceso contrario:

\[
\begin{align*}
 p(X < 7) &= 1 - p(X = 7) = 1 - \binom{7}{7}
 \cdot 0,95^7 \cdot 0,05^0 \\
 &= 1 - 0,6983 = 0,3017
\end{align*}
\]

5.3-4 Utilizando la tabla de la distribución normal \(N(0,1) \) que nos indica la probabilidad de la cola que se muestra en el dibujo (a partir de ahora siempre utilizaremos esta tabla), calcular las probabilidades que se piden:

a) \(p(X \geq 0,57) \)

b) \(p(X \leq -0,24) \)

c) \(p(0,36 \leq X \leq 1,18) \)

d) \(p(-0,75 \leq X \leq 0,23) \)

Solución

Aplicamos los valores de las tablas, que nos dan los valores de \(p(X\leq a) \) con \(a \geq 0 \).

a) \(p(X \geq 0,57) = 1 - p(X \leq 0,57) = 1 - 0,7157 = 0,2843 \)

b) \(p(X \leq -0,24) = p(X \geq 0,24) = 1 - p(X \leq 0,24) = 1 - 0,5948 =0,4052 \)

c) \(p(0,36 \leq X \leq 1,18) = p(X \leq 1,18) - p(X \leq 0,36) = 0,8810 - 0,6406 = 0,2404 \)

d) \(p(-0,75 \leq X \leq 0,23) = p(X \leq 0,23) - p(X \leq -0,75) = p(X \leq 0,23) - p(X \geq 0,75) = p(X \leq 0,23) - [1 - p(X \leq 0,75)] = 0,5910 - (1 - 0,7734) = 0,5910 - 0,2266 = 0,3644 \)
5.3-5 Una empresa conservera enlata alimentos y el peso neto de las latas sigue una distribución normal $N(400,10)$, calcula:

a) La probabilidad de que una lata pese menos de 380 gramos.

b) La probabilidad de que una lata pese entre 385 y 410 gramos.

Solución

Será necesario tipificar la variable para poder utilizar las tablas:

a)
\[
p(X \leq 380) = p\left(\frac{X - 400}{10} \leq \frac{380 - 400}{10} \right) = p(Z \leq -2) =
\]
\[
= p(Z \geq 2) = 1 - p(Z \leq 2) = 1 - 0.9772 = 0.0228
\]

b)
\[
p(385 \leq X \leq 410) = p\left(\frac{385 - 400}{10} \leq \frac{X - 400}{10} \leq \frac{410 - 400}{10} \right) =
\]
\[
= p(-1.5 \leq Z \leq 1) = p(Z \leq 1) - p(Z \leq -1.5) =
\]
\[
= p(Z \leq 1) - p(Z \geq 1.5) =
\]
\[
= p(Z \leq 1) - [1 - p(Z \leq 1.5)] =
\]
\[
= 0.8413 - (1 - 0.9332) = 0.7745
\]

5.3-6 Para estimar la estancia media de los pacientes en una clínica veterinaria se toma una muestra de 100 individuos, obteniendo una media de 5,2 días y una desviación típica de 4. Calcular un intervalo de confianza del 95% para la estancia media.

Solución

Recordamos que las medias muestrales se distribuyen según $N\left(\mu, \frac{\sigma}{\sqrt{n}} \right)$. Queremos además que la zona coloreada de verde continúa un 95% de probabilidad, por lo que entre las dos “colas” naranjas debe haber una probabilidad del 0,05, esto es, 0,025 cada una.
Así, el valor $z_{\alpha \over 2}$ es el que acumule, según la tabla que nosotros utilizamos, una probabilidad de 0,975. Consultando la tabla $z_{\alpha \over 2} = 1,96$.

Sustituyendo en la fórmula de los intervalos de confianza:

$$\left(\bar{x} - z_{\alpha \over 2} \cdot \frac{\sigma}{\sqrt{n}} ; \bar{x} + z_{\alpha \over 2} \cdot \frac{\sigma}{\sqrt{n}} \right) =$$

$$= \left(5,2 - 1,96 \cdot \frac{4}{\sqrt{100}} ; 5,2 + 1,96 \cdot \frac{4}{\sqrt{100}} \right) =$$

$$= (5,2 - 1,96 \cdot 0,4 ; 5,2 + 1,96 \cdot 0,4) =$$

$$= (5,2 - 0,784 ; 5,2 + 0,784) = (4,416 ; 5,984)$$

5.3-7 Se quiere estimar la media de la estatura de una población con desviación típica 12. Para ello se toma una muestra de 16 individuos obteniendo una media de 174 cm.

a) Calcula un intervalo de confianza al 98% para la estatura media.

b) Calcula el tamaño de la muestra necesario para estimar la media con un error de 5 cm. y un nivel de confianza del 99%.

Solución

a) Para un nivel de confianza del 98%, le corresponde $z_{\alpha \over 2} = 2,33$

Sustituyendo en el intervalo:

$$\left(\bar{x} - z_{\alpha \over 2} \cdot \frac{\sigma}{\sqrt{n}} ; \bar{x} + z_{\alpha \over 2} \cdot \frac{\sigma}{\sqrt{n}} \right) =$$

$$= \left(174 - 2,33 \cdot \frac{12}{\sqrt{16}} ; 174 + 2,33 \cdot \frac{12}{\sqrt{16}} \right) =$$

$$= (174 - 2,33 \cdot 3 ; 174 + 2,33 \cdot 3) = (174 - 6,99 ; 174 + 6,99) =$$

$$= (167,01 ; 180,99)$$
b) El error máximo admisible lo da la fórmula

\[E = \pm z_{\frac{\alpha}{2}} \cdot \frac{\sigma}{\sqrt{n}} \]

Para un nivel de confianza del 99% le corresponde \(z_{\frac{\alpha}{2}} = 2.58 \)

Así:

\[
5 = 2.58 \cdot \frac{12}{\sqrt{n}} \Rightarrow \sqrt{n} = \frac{2.58 \cdot 12}{5} = 6.192
\]

\[n = 6.192^2 = 38.34 \]

Luego se necesita una muestra, como mínimo, de 39 individuos.