Problemas de Espacios Vectoriales

Natalia Boal María Luisa Sein-Echaluce Universidad de Zaragoza

1. ¿Cuáles de los siguientes subconjuntos de \mathbb{R}^n son subespacios vectoriales?

$$S_1 = \{(x, y, z)/2x - y = 0, z + y = 0\},\$$

$$S_2 = \{(x, y, z)/y = 3\},\$$

$$S_3 = \{(x, y, z)/x = z + y\},\$$

$$S_4 = \{(x,y)/x < 0\},\$$

$$S_5 = \{(x, y, z)/x = y = 0\},\$$

$$S_6 = \{(x, y, z)/y = x - 1\},\$$

$$S_7 = \{(x, y, z, t)/y \in \mathbb{Z}\},\$$

$$S_8 = \{(x, y, z, t)/x + y = 1\}.$$

2. Halla un sistema generador del subespacio de ${\rm I\!R}^3$:

$$S = \{(x, y, z) / x = a + 2b + 3c, y = a - b, z = -b - c, a, b, c \in \mathbb{R} \}.$$

Estudia si $(5, -1, -1) \in S$ y $(0, 0, -1) \in S$.

- 3. ¿Cuáles de los siguientes conjuntos de vectores de \mathbb{R}^3 son linealmente dependientes? Para aquellos que lo sean, expresa un vector como una combinación lineal del resto.
 - (a) $\{(1, -2, -1), (3, 3, 6)\},\$
 - (b) $\{(4,2,1),(2,6,-5),(1,-2,3)\},\$
 - (c) $\{(1,1,0),(0,2,3),(1,2,3),(-3,6,6)\},\$
 - (d) $\{(1,2,3),(1,1,1),(1,0,1)\}.$
- 4. Indica si los siguientes conjuntos de vectores son linealmente independientes o no:
 - (a) $\mathbf{v_1} \mathbf{v_2}, \mathbf{v_2} \mathbf{v_3}, \mathbf{v_3} \mathbf{v_4}, \mathbf{v_4} \mathbf{v_5}$, siendo $\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}, \mathbf{v_4}, \mathbf{v_5}$ vectores linealmente independientes.
 - (b) $\mathbf{u} + \mathbf{v}, \mathbf{v} + \mathbf{w}, \mathbf{w} + \mathbf{u}$, siendo $\mathbf{u}, \mathbf{v}, \mathbf{w}$ linealmente independientes.
- 5. Determina una base para los siguientes subespacios de \mathbb{R}^3

$$S_1 = \{(x, y, z)/x = y - z\},\$$

$$S_2 = \{(x, y, z)/y = 2z\},\$$

$$S_3 = \{(x, y, z)/y = 0\}$$

$$S_4 = \mathbb{R} < (1,2,2), (3,2,1), (1,1,0), (1,-1,1) > .$$

6. Determina una base para los siguientes subespacios de $\mathbb{R}_2[x]$

$$S_1 = \{ a_0 + a_1 x + a_2 x^2 / a_0 = a_1 - a_2 \},$$

$$S_2 = \{ a_0 + a_1 x + a_2 x^2 / a_1 = a_3 \},$$

$$S_3 = \{ a_0 + a_1 x + a_2 x^2 / a_2 = 0 \}.$$

- 7. En cada uno de los siguientes casos determina una base de S subespacio de V:
 - (a) $V = \mathbb{R}^5$ y $S = \mathbb{R} < \{(1, -1, 0, 2, 0), (0, 0, -1, 0, 1), (1, -1, 1, 1, 0), (0, 0, 1, 1, 1)\} > .$
 - (b) $V = P_3[x]$ y $S = \mathbb{R} < \{(x^2 1), (3x^2 + 1), x^3, (2x^3 + 4x^2)\} > .$
 - (c) $V = \mathcal{M}_2(\mathbb{R})$ y $S = \mathbb{R} < \{A_1, A_2, A_3, A_4\} >$, donde

$$A_1 = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \quad A_2 = \begin{pmatrix} -1 & 2 \\ 0 & -1 \end{pmatrix}, \quad A_3 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad A_4 = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}.$$

- 8. Determina todos los valores de a para los cuales $\{(a^2,0,4),(0,a,3),(1,0,1)\}$ es una base de \mathbb{R}^3 .
- 9. Sean $V = \mathbb{R}_2[x]$ y $p(x) = a_2x^2 + a_1x + a_0$ con $a_2 \neq 0$. Demuestra que $\{p(x), p'(x), p''(x)\}$ forman base de $\mathbb{R}_2[x]$.
- 10. Halla las coordenadas del polinomio $p(x) = 5x^4 + 6x^3 4x + 2 \in \mathbb{R}_4[x]$ respecto de la base $B = \{1, (x-1), (x-1)^2, (x-1)^3, (x-1)^4\}.$
- 11. En el espacio vectorial real $V={\rm I\!R}^4$ se consideran los subconjuntos

$$S = \{(x_1, x_2, x_3, x_4) / x_1 + x_2 + x_3 + x_4 = 0\},\$$

$$T = \{(x_1, x_2, x_3, x_4) / x_1 = x_2 = x_3 = x_4\}.$$

- (a) Comprueba que S y T son subespacios de V.
- (b) Determina una base de S y una de T.
- (c) Comprueba que S y T son subespacios suplementarios respecto de V.
- 12. En el espacio vectorial \mathbb{R}^3 se consideran los subespacios

$$S = \{(x, y, z) / x + y = 0\},\$$

$$T = \{(a, 2a, -a) / a \in \mathbb{R}\}.$$

Prueba que $\mathbb{R}^3 = S \oplus T$.

13. Dado el espacio vectorial \mathbb{R}^3 y los subespacios

$$S_1 = \{(x, y, z)/x = 0\},\$$

 $S_2 = \{(x, y, z)/z = 0\},\$
 $S_3 = \{(x, y, z)/y = 2x = 0\}.$

- (a) Comprueba que $S_2 + S_3 \neq S_2 \cup S_3$.
- (b) Comprueba que la suma $S_1 + S_2$ no es directa.

- (c) Prueba que $\mathbb{R}^3 = S_2 \oplus S_3$
- 14. Sea $V = \mathbb{R}^3$ y se consideran los subespacios vectoriales:

$$S = \mathbb{R} < \{(1,2,1), (1,3,2)\} >, \quad T = \mathbb{R} < \{(1,1,0), (3,8,5), (5,10,5)\} >.$$

- (a) Halla bases de S y de T.
- (b) Estudia si S = T.
- 15. Dados los subespacios de \mathbb{R}^4

(a)
$$S = \mathbb{R} \{ (1, -1, 0, 0), (0, 1, 1, 0), (2, -1, 1, 0), (3, -3, 0, 0) \} > .$$

(b)
$$S = \{(x, y, z, t) : x + y + z + t = 0, x - y + z - t = 0\}$$

Halla un subespacio suplementario de cada S respecto de \mathbb{R}^4 .

16. En el espacio vectorial \mathbb{R}^3 se consideran los subespacios

$$S_1 = \{(x, y, z)/x + y + z = 0\},\$$

 $S_2 = \{(x, y, z)/y = 2x, z = 3x\}.$

Prueba que $\mathbb{R}^3 = S_1 \oplus S_2$.

17. En \mathbb{R}^3 se considera el subespacio

$$S = \{(x_1, x_2, x_3) / x_1 + x_2 - x_3 = 0, x_1 - x_2 + x_3 = 0\}.$$

- (a) Halla un subespacio T suplementario de S respecto de \mathbb{R}^3 .
- (b) Teniendo en cuenta que $\mathbb{R}^3 = S \oplus T$, descompón el vector $\mathbf{v} = (2, 1, 2)$ como suma de un vector de S y otro de T.
- 18. Sean

$$S = \mathbb{R}\langle (1,1,1), (1,0,1)\rangle, \qquad T = \mathbb{R}\langle (2,1,0), (3,1,0)\rangle.$$

Da las ecuaciones que definen los espacios S y T. Da una base de $S \cap T$. Da base y ecuaciones de un suplementario de $S \cap T$. Da una base de S + T.

19. Se consideran en ${\rm I\!R}^4$ los subespacios S_1, S_2 engendrados por las familias:

$$A_1 = \{(1, 1, 1, 1), (1, -1, 1, -1)\},\$$

$$A_2 = \{(1, 1, 0, 1), (1, 2, -1, 2), (3, 5, -2, 5)\},\$$

respectivamente. Encuentra $S_1 + S_2$ y $S_1 \cap S_2$. ¿Son S_1 y S_2 suplementarios respecto de \mathbb{R}^4 ?

20. Sea $V = \mathcal{M}_2(\mathbb{R})$ y

$$S = \left\{ \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) / c = d \right\},\,$$

$$T = \left\{ \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) / a = b = 0, c = -d \right\}.$$

- (a) Comprueba que $S, T \leq V$.
- (b) Halla una base de cada uno de estos subespacios.
- (c) Calcula $S \cap T$, S + T y justifica si se cumple que $V = S \oplus T$.
- (d) Halla una base de V que contenga a las bases ya determinadas en el apartado (b).
- (e) Comprueba que $B = \{A_1, A_2, A_3, A_4\}$ es base de V con

$$A_1 = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \quad A_2 = \begin{pmatrix} -1 & 2 \\ 0 & 0 \end{pmatrix}, \quad A_3 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad A_4 = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}.$$

(f) Calcula las coordenadas (respecto de la base B) de la matriz

$$A = \left(\begin{array}{cc} -2 & 4\\ 3 & 1 \end{array}\right).$$

21. Sea $V = \mathbb{R}_4[x]$ el espacio vectorial de los polinomios de grado menor o igual que cuatro de coeficientes reales. Sean

$$B_1 = \{ x, (x^2 + 1), (2x^4 + x^3), (x^3 - x^2 + x), (x^2 + x) \}, B_2 = \{ (2x^4 + 1), (x^3 - 1), (x^3 + 2x), x^2, (x^3 - x^2) \}$$

dos bases de V.

- (a) Halla la matriz del cambio de cada una de las base de B_1 a B_2 .
- (b) Determina las coordenadas del polinomio $p(x) = x^4 + x^3 + x^2 + x + 1$ respecto de las bases B_1 y B_2 .
- 22. Sea V un espacio vectorial sobre \mathbb{K} tal que $\dim V = 6$ y S_1, S_2 subespacios de V distintos tal que $\dim S_1 = \dim S_2 = 4$. Halla las posibles dimensiones de $S_1 \cap S_2$.
- 23. Sea $\{u, v, w\}$ una familia ligada de vectores de V (espacio vectorial sobre \mathbb{K}). Razona si son ciertas o falsas las siguientes afirmaciones:
 - (a) Se verifica que $v \in \mathbb{K} < \{u, w\} > .$
 - (b) Alguno de los tres es combinación lineal de los otros dos.
 - (c) dim $\mathbb{K} < \{u, v, w\} >= 2$.
- 24. Sean $S = \mathbb{K} < \{v_1, v_2\} > y$ $T = \mathbb{K} < \{u_1\} >$ subespacios vectoriales de V. Razona si son ciertas o falsas las siguientes afirmaciones:
 - (a) Se verifica que $S + T = \mathbb{K} < \{v_1, v_2, u_1\} > .$
 - (b) $A = \{v_1, v_2, u_1\}$ es base de S + T.
 - (c) Además, $S \oplus T$.
 - (d) $\dim V \geq 3$.
- 25. Sea V en espacio vectorial tal que $\dim V = n$ y sean S, T subespacios de V. Justifica si son ciertas o falsas las siguientes afirmaciones:
 - (a) Sean S y $T \leq V$ (cualesquiera) tal que $\dim S = \dim T$ entonces S = T.
 - (b) Sean S y $T \leq V$ (cualesquiera) tal que $\dim S = \dim T = r$ entonces $\dim V \geq 2r$.
 - (c) Si dim $V = \dim(S + T)$ entonces $S \oplus T$.
 - (d) Sean $\{v_1, \ldots, v_r\}$ sistema generador de S y de T, entonces $S \cap T \neq \{0_V\}$.