Problemas de Matrices y Sistemas Lineales

Natalia Boal María Luisa Sein-Echaluce Universidad de Zaragoza

- 1. Demuestra que si una matriz $A \in \mathcal{M}_n(K)$ es idempotente $(A^2 = A)$, entonces la matriz $B = I_n A$ también es idempotente.
- 2. Demuestra que si una matriz $A \in \mathcal{M}_n(K)$ es idempotente entonces AB = BA = O.
- 3. Demuestra que si A es regular (o invertible) y simétrica, también lo es A^{-1} .
- 4. Sea $A \in \mathcal{M}_n(K)$ idempotente. Prueba que si $B = 2A I_n$ entonces $B^2 = I_n$.
- 5. Sea $A \in \mathcal{M}_{m \times n}(K)$. Demuestra que las matrices (AA^t) y (A^tA) son siempre simétricas.
- 6. Sea la matriz $A \in \mathcal{M}_n(K)$ invertible y que verifica la relación $A^2 A I_n = O$. Calcular la inversa de A.
- 7. Dada $A \in \mathcal{M}_n(K)$. Prueba que si $(I_n A)(I_n + A) = O$. entonces A es $involutiva(A^2 = I_n)$.
- 8. Razona si las siguientes afirmaciones son verdaderas o falsas:
 - (a) La suma de matrices triangulares es una matriz triangular.
 - (b) Sean $A, B \in M_n(K)$, entonces
 - AA^t es simétrica.
 - $(A+B)^2 = A^2 + AB + B^2$.
 - $(A+B)(A-B) = A^2 B^2$
 - $\operatorname{rang}(A + B) = \operatorname{rang} A + \operatorname{rang} B$.
 - Si A y B son invertibles entonces A + B también es regular.
 - Si AX = BX para todo $X \in M_{n \times 1}(K)$ se cumple A = B.
 - Si $AC_1 = AC_2$ entonces $C_1 = C_2$.

9. Calcula el rango de las siguientes matrices y en el caso de ser invertibles calcula su inversa.

a)
$$A = \begin{pmatrix} 1 & -1 & -2 \\ 0 & 1 & 1 \\ 2 & 0 & 1 \end{pmatrix}$$

b) $A = \begin{pmatrix} 2 & 4 & -3 \\ 1 & 2 & -1 \\ 1 & 0 & 1 \end{pmatrix}$
c) $A = \begin{pmatrix} 1 & -2 & 0 \\ 2 & -4 & 1 \\ 0 & 2 & 1 \end{pmatrix}$
d) $A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 2 \\ 3 & 3 & 1 \end{pmatrix}$
e) $A = \begin{pmatrix} 1 & 2 & 3 & 6 \\ 2 & 4 & 2 & 8 \\ 3 & 3 & 1 & 7 \\ 0 & 2 & 3 & 5 \end{pmatrix}$
f) $A = \begin{pmatrix} 0 & -1 & 2 & 2 \\ -1 & 1 & -1 & -2 \\ 1 & 3 & -3 & -4 \\ 1 & 1 & 6 & 1 \end{pmatrix}$

10. Discute los siguientes sistemas de ecuaciones lineales.

a)
$$\begin{pmatrix} 8 & 5 & 1 \\ 1 & -2 & 1 \\ 4 & 4 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 10 \\ 4 \\ 2 \end{pmatrix}$$

b) $\begin{pmatrix} 6 & -6 & 2 \\ -1 & 8 & -5 \\ 3 & 0 & -1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 6 \\ -10 \\ 4 \end{pmatrix}$
c) $\begin{pmatrix} 1 & 3 & 7 \\ 1 & -4 & -1 \\ 1 & 0 & -3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 11 \\ -4 \\ -2 \end{pmatrix}$
d) $\begin{pmatrix} 1 & -1 & 1 \\ 5 & 2 & -1 \\ -3 & -4 & 3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 3 \\ 5 \\ -1 \end{pmatrix}$

11. Halla la factorización LU (si existe) de las siguientes matrices A. En caso de no existir tal factorización razona si es posible encontrar una reordenación B = PA de las filas de A tal que B sí admita factorización LU.

a)
$$A = \begin{pmatrix} 1 & 2 & 0 \\ -2 & -4 & 2 \\ 0 & 1 & 1 \end{pmatrix}$$

b) $A = \begin{pmatrix} 5 & 2 & 1 \\ 5 & -6 & 2 \\ -4 & 2 & 1 \end{pmatrix}$
c) $A = \begin{pmatrix} 2 & 4 & -2 & 0 \\ -1 & -1 & 2 & 3 \\ 4 & 5 & -2 & -9 \\ 0 & 1 & 3 & 4 \end{pmatrix}$
d) $A = \begin{pmatrix} 3 & 1 & 0 & 0 \\ -1 & 2 & 0 & 0 \\ 0 & 1 & 1 & 3 \\ 0 & 0 & 0 & 1 \end{pmatrix}$

12. Resuelve los siguientes sistemas de ecuaciones lineales aplicando el método de eliminación de Gauss y utilizando la factorización LU de la matriz de coeficientes A (o es su caso la matriz reordenada). Compara los dos procedimientos de resolución.

a)
$$\begin{pmatrix} 1 & 2 & 0 \\ -2 & -4 & 2 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$

b)
$$\begin{pmatrix} 5 & 2 & 1 \\ 5 & -6 & 2 \\ -4 & 2 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 4 \\ 13 \\ -5 \end{pmatrix}$$

c)
$$\begin{pmatrix} 3 & 1 & 0 & 0 \\ -1 & 2 & 0 & 0 \\ 0 & 1 & 1 & 3 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 4 \\ 1 \\ 1 \\ 0 \end{pmatrix}$$