Capítulo IV. Matrices, espacios vectoriales y sistemas lineales

Tema 11. Matrices

1. Efectúa los siguientes productos de matriz por vector:

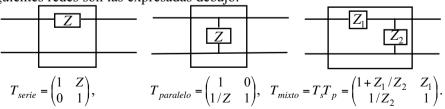
$$\begin{pmatrix} 2 & 0 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \qquad \begin{pmatrix} 4 & 0 & 1 \\ 0 & 1 & 0 \\ 4 & 0 & 1 \end{pmatrix} \begin{pmatrix} 3 \\ 4 \\ 5 \end{pmatrix}, \qquad \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 5 \\ -2 \\ 3 \end{pmatrix}, \qquad \begin{pmatrix} 2i & 1+i \\ -3 & i \end{pmatrix} \begin{pmatrix} 6 \\ 2+3i \end{pmatrix}.$$

- 2. Calcula AB y BA, siendo $A = \begin{pmatrix} 1 & -2 \end{pmatrix}$ y $B = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$.
- 3. Calcula las potencias A^2 , A^3 , B^2 , B^3 , C^2 y C^3 , siendo:

$$A = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} y \qquad C = AB = \begin{pmatrix} \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} \end{pmatrix}.$$

4. Considera una red con cuatro polos (cuadripolo). Hay dos terminales o polos de entrada de una corriente de intensidad i_1 con una diferencia de potencial v_1 y el otro par de terminales de salida de una corriente i_2 y diferencia de potencial v_2

El potencial e intensidad de entrada se expresan en función del potencial e intensidad de salida mediante $\vec{u}_1 = \binom{v_1}{i_1} = T\binom{v_2}{i_2} = T\vec{u}_2$, donde T se llama *matriz de transmisión*. Comprueba que la matriz de transmisión de las siguientes redes son las expresadas debajo:



5. Considera la matriz $G = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}$. Calcula G^2 y G^3 , ¿puedes proponer una fórmula para G^n ?

6. La primera fila de AB es una combinación lineal de todas las filas de B. En esta combinación, ¿cuáles son los coeficientes y cuál es la primera fila de

$$AB \text{ si } A = \begin{pmatrix} 2 & 1 & 4 \\ 0 & -1 & 1 \end{pmatrix} \text{ y } B = \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 0 \end{pmatrix}$$
?

- 7. ¿Es verdadera alguna de las siguientes afirmaciones?
 - a) Si la primera y la tercera columnas de B son iguales, también lo son la primera y la tercera columnas de AB.
 - b) Si la primera y la tercera filas de B son iguales, también lo son la primera y la tercera filas de AB.
 - c) Si la primera y la tercera filas de A son iguales, también lo son la primera y la tercera filas de AB.
- 8. Explica por qué las matrices cuadradas de orden n verifican, en general:
 - a) $(AB)^2 \neq A^2B^2$;
- b) $(A \pm B)^2 \neq A^2 \pm 2AB + B^2$;
- c) $A^2 B^2 \neq (A + B)(A B)$.
- 9. ¿Qué le sucede a una matriz A de tamaño 3×3 si la premultiplicamos por

$$E_{31} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 4 & 0 & 1 \end{pmatrix} \text{ o por } E_{23} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 5 \\ 0 & 0 & 1 \end{pmatrix}?$$

¿Qué sucede si postmultiplicamos para formar AE_{31} ?

- 10. Considera la matriz $E = \begin{pmatrix} 1 & 0 \\ 6 & 1 \end{pmatrix}$. Calcula E^2 , E^8 y, en general, E^n . ¿Cuál es la «inversa» de E?
- 11. ¿Qué le sucede a una matriz A de tamaño 2×2 si la premultiplicamos por $D = \begin{pmatrix} 3 & 0 \\ 0 & 2 \end{pmatrix}$?, ¿y si postmultiplicamos para formar AD? ¿Cuál es la «inversa» de D?
- 12. Considera las matrices de permutación $P = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$ y $Q = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$ ¿Que acción realizan sobre una matriz A las multiplicaciones PA y PA?, ¿PA in PA is multiplicaciones PA y PA? ¿PA is multiplicaciones PA y PA? ¿PA is multiplicaciones PA y PA?

- Usa la eliminación gaussiana para encontrar la matriz escalonada U de las matrices: $A = \begin{pmatrix} 2 & 1 \\ 8 & 7 \end{pmatrix}, B = \begin{pmatrix} 2 & -3 & 0 \\ 4 & -5 & 1 \\ 2 & -1 & -3 \end{pmatrix}$.
 - Resuelve además los sistemas: (a) $\begin{cases} 2x + y = 0 \\ 8x + 7y = 1 \end{cases}$, (b) $\begin{cases} 2u 3v = 3 \\ 4u 5v + w = 7 \\ 2u v 3w = 0 \end{cases}$
- Calcula la matriz U asociada a la matriz $A = \begin{pmatrix} 1 & 2 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 2 & 0 & 1 \end{pmatrix}$. Indica un conjunto de variables libres (parámetros) y otro de variables básicas para el sistema Ax = 0, ¿cuáles son las soluciones?
- Resuelve por eliminación gaussiana, realizando los cambios de fila que sean necesarios, los siguientes sistemas:
- (a) $\begin{cases} v+w=1 \\ u+v=2, \\ u+w=3 \end{cases}$ (b) $\begin{cases} u+4v+2w=-2 \\ -2u-8v+3w=32 \\ v+w=1 \end{cases}$ (c) Cuáles son los valores de a y b que conducen a intercambio de filas y
 - 6 ¿Cuáles son los valores de a y b que conducen a intercambio de fila cuáles son los que hacen la matriz $A = \begin{pmatrix} 1 & 2 & 2 \\ a & 8 & 3 \\ 0 & b & 3 \end{pmatrix}$ singular?
- 17 Usa el método de Gauss-Jordan para hallar las inversas de las matrices:

$$A = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}, \qquad B = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix} \quad \mathbf{y} \qquad C = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}.$$

18 Encontrar las inversas de las matrices

a) Diagonales:
$$A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
, $B = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 2 & 0 \\ 0 & 3 & 0 & 0 \\ 4 & 0 & 0 & 0 \end{pmatrix}$,

- b) Triangulares: $C = \begin{pmatrix} 1 & 0 & 0 & 0 \\ -\frac{1}{2} & 1 & 0 & 0 \\ 0 & -\frac{2}{3} & 1 & 0 \\ 0^{-} & 0 & -\frac{3}{4} & 1 \end{pmatrix}$, $D = \begin{pmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$,
- c) Sabiendo que la inversa de la matriz $F = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ es $F^{-1} = \frac{1}{ad bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$, siempre que $ad bc \neq 0$, calcula la inversa de $G = \begin{pmatrix} a & b & 0 & 0 \\ c & d & 0 & 0 \\ 0 & 0 & a & b \\ 0 & 0 & c & d \end{pmatrix}$.
- 19. Comprueba que si una matriz S es simétrica, entonces su cuadrado S^2 también es una matriz simétrica.
- 20. Averigua si es verdad que las matrices $A \cdot A^t$ y $A^t \cdot A$ son siempre simétricas (sea o no cuadrada la matriz A).
- 21. Suponiendo que A es una matriz cuadrada, en general, no es cierta la igualdad $AA^t = A^t A$.

Demuestra que las matrices simétricas y las matrices antisimétricas sí que verifican la igualdad $AA^t = A^t A$.

Averigua si la verifican o no las matrices: $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ y $B = \begin{pmatrix} a & b \\ -b & a \end{pmatrix}$.