



# Robot Swarms are "popular" They are mind boggling...





### ... although quite scary, too



(From Hated in the Nation, 2016.)



## Despite they aren't "that new"...



In fact, the colony is the real organism, not the individual. —Daniel Suarez, Kill Decision (2012)



But it was one thing to release a population of virtual agents inside a computer's memory to solve a problem. It was another thing to set real agents free in the real world. —Michael Crichton, Prey (2002)



The flying swarm is immediately sent into the 'cloud-brain' formation and its collective memory reawakens. —Stanisław Lem, The Invincible (1964)



# ... they don't exist yet (fortunately)

**Theory barrier:** A useful complex and powerful behavior of a large number of robots is wanted to emerge\* from the local and little informed behaviors of the simple and expendable individuals.

\* in a robust, flexible, adaptable, scalable, provable way

**Practice barrier:** Very many simple, and small, robots are required, but they need to be versatile and autonomous.



# In others' words:

"Swarm robotics has **several possible applications**, including: exploration, surveillance, search and rescue, humanitarian demining, intrusion tracking, cleaning, inspection and transportation of large objects.

Despite their **potential to be robust, scalable and flexible**, up to now, swarm robotics systems **have never been used to tackle a real-world application** and are still confined to the world of academic research.

At the current state of development of the swarm robotics field, the focus is mostly on **obtaining desired collective behaviors and understanding their properties**. In order to avoid the problems that arise in real-world applications, researchers usually tackle a simplified testbed application."

M. Brambilla et al. Swarm robotics: a review from the swarm engineering perspective.



## Well, in fact they do exist, but...







Moving robots then edge-follow until they enter the desired shape, as determined by a collectively constructed coordinate system.







## So, why do we think it possible?











# Swarm Robotics

#### Multi-Robot Systems

- <u>H. Hamann (2018). Swarm robotics: A formal approach. Springer</u>
- <u>M. Brambilla, E. Ferrante, M. Birattari, M. Dorigo (2013). Swarm robotics: a</u> review from the swarm engineering perspective. Swarm Intell 7:1–41
- M. Dorigo, M. Birattari, M.Brambilla (2014). Swarm robotics. Scholarpedia, 9(1), 1463
- <u>A. Kolling, P. Walker, N. Chakraborty, K. Sycara, M. Lewis (2016), Human</u> Interaction With Robot Swarms: A Survey, IEEE THMS 46(1): 9-26
- J. Sánchez-García et al. (2018), A survey on unmanned aerial and aquatic vehicle multi-hop networks: Wireless communications, evaluation tools and applications, Computer Communications 119: 43-65
- <u>S. Chung, A. A. Paranjape, P. Dames, S. Shen and V. Kumar (2018), A Survey</u> on Aerial Swarm Robotics, IEEE TRO 34(4), 837-855



- What is a swarm?
  Swarming *behavior*
- How big is a swarm?
  10 << N << 10<sup>23</sup> ?





- What is a swarm?
- How big is a swarm?
- What is swarm robotics?

(The study of how to get) A large number of relatively simple physically embodied agents (to) exhibit a desired collective behavior that emerges from the local interactions among agents and between the agents and the environment



### (Excuse me, you said environment?) Stigmetry

Indirect coordination through "something" in the environment:

- Objects, e.g., cleansing
- Trails (involuntary), e.g., chase
- Pheromones (on purpose), e.g., guidance, even area measurement:  $2L^2/(n\pi)$  is a good estimate, where *n* is the number of intersections of two arbitrary paths of length *L*

- What is a swarm?
- How big is a swarm?
- What is swarm robotics?
- Why swarm robotics?
  - Robustness (and <u>Resilience</u>)
  - Flexibility and Adaptability
  - Scalability



- What is a swarm?
- How big is a swarm?
- What is swarm robotics?
- Why swarm robotics?
- What is not swarm robotics?





- What is a swarm?
- How big is a swarm?
- What is swarm robotics?
- Why swarm robotics?
- What is not swarm robotics?
- Homo or hetero?







# Methods

- Design
- Analysis
- Simulation
- Experimentation



# Methods: Design

Intuition is still the main ingredient.

#### Behavior-based design:

Individual behavior of each robot implemented and improved (trial-error) until desired collective behavior obtained (bottom-up)

- Probabilistic finite state machines
- Virtual physics

#### Automatic design:

- Evolutionary
- Reinforcement learning





# Methods: Analysis

#### **Microscopic models and simulations**

- Level of detail (points, point-masses, physics, sensors, ...)
- Scalability? How to simulate very many robots in RT?

#### Macroscopic models and equations

- Rate and differential equations. The micro-macro link. Langevin & Fokker-Plank [Hamann]
- Classical control and Lyapunov's stability theory

Other mathematical frameworks (multidisciplinary) From logic, multi-physics, populations, social, ...



# Methods: Simulation

#### Many options:

- Matlab
- C++, **Python**
- ROS, ROS+Gazebo
- Some "serious" (academic) ad-hoc simulator

### The scalability problem. Three options:

- Time scale
- High-performant code (low level Sw eng + Hw accel)
- Distributed simulation

### Is it possible to "prove by simulation"?



### Methods: Experimentation





## Some Scenarios

- Aggregation
- Clustering
- Pattern and Chain Formation
- Self-Assembly
- Coordinated Motion (or Flocking)
- Collective Transport
- Decision-Making (e.g., Division of Labor)
- Decision-Making (e.g., Path Selection)



### Aggregation

Group all robots in a region Very useful building block, and very common in nature: unity makes strength PFSM approach: when a robot finds others it decides whether to join or leave; probabilities (join large groups, leave small groups that don't grow) and anti-agents (e.g., leave large groups) have diverse effects



## O. Soysal, E. Sahin (2005)





### H. Hamann et al. (2012)







### Clustering

Put objects together in a region Another very common and useful building block, e.g., foraging and construction applications PFSM approach: if you don't have an object, pick one; if you have an object, leave it near another; probabilities (don't pick when object near others, leave better near many) and anti-agents have diverse effects

### J. Werfel, K. Petersen, R. Nagpal (2014)















### **Pattern and Chain Formation**

Robots deploy in a regular fashion, e.g., connecting two points (chain)

(Even mineral) Nature often favors regularity, and it is useful for many missions (area coverage, bucket brigades, foraging, navigation infrastructure) Virtual physics approach: different choices of attraction/repulsion forces to peers and obstacles;

Voronoi and Delaunay lattices



### S Nouyan, A Campo, M Dorigo (2008)







### A. Becker et al (2013)





### Self-Assembly

Robots physically connect each other for diverse purposes, such as easier navigation Most common in nature: Symbiogenesis (and yes, army ants) PFSM approach: when challenge detected switch to self-assembly mode, possibly signalling to peers suitable docking points; collective decision that the assembly is completed to switch to next challenge (move together, dis-assembly, etc)



## R. O'Grady et al (2010)







## **Coordinated Motion (or Flocking)**

Robots move in a flexible formation (while doing something else, such as exploring)

- Saves energy and increases safety and precision when going from one place to another, so all social animals (and robot swarms) do it
- Virtual physics approach: keep distances and align movements, by means of steering forces or lattices; destination? leaders?


### Collective Transport

Move together a large object **Cooperation** is mandatory A silly PSFM approach: when object found, attach to it, and try (for a while) pull, push, change orientation, re-attach, until object moves Combine ideas from aggregation, clustering and coordinated motion, with more or less (local) sensors







Decision-Making (e.g., Division of Labor)

Robots distribute themselves over different tasks, to maximize performance

Inherently collective decision-making, frequent in foraging and construction missions

PFSM approach: probabilities can be different among (better or worse suited) robots, and in response to the state of oneself, the peers, and the environment



# The Call of Duty M.J.B. Krieger, J.B. Billeter (2000)





# Divide et Impera (or not) <u>G. Pini et al (2011)</u>



Universidad Zaragoza

# Decision-Making (e.g., Path Selection)

Robots "measure" the quality of different paths, and they end up selecting collectively the best one.

#### Diversity of mechanisms:

- Pheromones
- Majority opinion
- Commitment and cross-inhibition



## Some Scenarios

- Aggregation
- Clustering
- Pattern and Chain Formation
- Self-Assembly
- Coordinated Motion (or Flocking)
- Collective Transport
- Decision-Making (e.g., Division of Labor)
- Decision-Making (e.g., Path Selection)



### Human-Swarm Interaction

Cognitive complexity, or "effort":

O(1 robot) = human effort to operate one robot $O(N \text{ robots}) = N \cdot O(1 \text{ robot}) + \text{overhead}(N, \text{Space})$ Goal for O(swarm of N robots) = O(1)

Human-swarm (proximal or remote) interaction :

Changing parameters

Control through environmental influence (stigmetry)

Control through proxy agents (avatars, leaders)

Levels of automation







# With feet on the ground (not quite exactly, though): What is expected to happen "soon"?



### **Aerial Swarm Robotics**





### **Agricultural Applications**





### **Aquatic Swarm Robotics**



K. Satheesh Keerthi, B. Mahapatra, V. Girijan Menon (2020), Into the World of Underwater Swarm Robotics: Architecture, Communication, Applications and Challenges, Recent Advances in Computer Science and Communications 13(2)



## Marine Environmental Monitoring



Duarte, M. et al. (2016). Application of swarm robotics systems to marine environmental monitoring. In OCEANS 2016



Universidad Zaragoza





### What Comes Next?

#### Coordinated Motion (virtual physics) Boids (steering forces) Voronoids (lattices)

Lab sessions

