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LAB: Multi-robot rendezvous and deployment 
In this LAB session, we are implementing multi-robot rendezvous and deployment strategies 
for a multi-robot team. In the next figure, you can see an example of a 2D rendezvous 
(consensus on x- and y- variables, so that robots converge to a common point in space), and 
of a deployment strategy to place robots on a line (consensus on y- coordinate, and 
deployment on the x- coordinate, with robot-to-robot separation of 2 meters). In particular, 
these strategies will follow a gossip like communication scheme.  
 
 
 
 
 
 
 
 
 
 
 
 
PREVIOUS WORK: 
- Read carefully this document 
- Choose the number of robots and the communication graph you will use 
- Write down the gossip update rule for the rendezvous strategy on x- and y- coordinates 
- Write down the gossip update rule for the deployment on a line strategy on x- and y- 

coordinates for a robot-to-robot separation of 1 meter. 
- Make a decision on the setup you will use 
- Make a decision on the data structures you will use for the message exchange and for the 

distributed implementation 
 

SETUP AND ROBOT MODEL: 

In this laboratory session, you have freedom to choose the programming and simulation setup. 
We suggest you to start with your own implementation in python from scratch (you can also 
use Colab if you want). Every robot will have its 2D position (x- and y- coordinates) and will be 
able to freely move in the environment without any restrictions. This means that, after an 
update of its position, we will assume that the robot can “jump” or “teleport” to this new position 
(a single-integrator robot model). After that, we give you some examples of simulation setups 
that you can use if you want alternatively. Some of these setups are optional developments 
that will require you to address more complex robot models. In any case, feel free to start with 
a different setup if you think that it is more convenient to you. 
 
DISTRIBUTED IMPLEMENTATION: 

In the previous COLAB exercise, we implemented a centralized global method for testing 
consensus algorithms. Here, instead, we will make a distributed implementation. This 
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means that every robot will run a different instance of the same code, customized depending 
on the robot’s local state and local data (position, neighbors, robot identifier, etc.)  You can 
make the distributed implementation using separated concurrent processes, threads, ROS 
nodes, etc. However, a classical and simpler single program with a for loop that traverses 
the different robots can make the trick; in this case, just make sure that the robots do not use 
more information than the one that is available to it (neighborhood data, no use of global 
information).  
 
Robots will exchange data with other robots by sending and receiving messages. Here, you 
will need to implement the mechanisms to simulate the exchange of data between robots. 
Probably one of the easiest ways to implement this is to have a global queue of messages in 
which robots post their messages. In this case, make sure a robot only reads the messages 
directed to itself (no use of global data or messages directed to other robots). Depending on 
the setup that you use, you may already have access to structures for sending/receiving 
messages and services between processes or nodes. 
 
Recall that we are using a symmetric (undirected communication) gossip update scheme. 
This means that, if a robot i requests an update to robot j, both robots i and j should update 
their positions as a result. 
 
Besides, you will need to implement additional processes or code in charge of compiling the 
robot states (positions, ids, etc.) and plotting them to see the results of the different 
simulations. 
 
GENERAL DESCRIPTION: CONSENSUS-BASED MULTI-ROBOT RENDEZVOUS 

This section gives you the general idea of what you should develop.  

We are implementing a rendezvous system in 2D (consensus on x- and y- variables, gossip 
like). Robots will exchange data with a neighbor randomly selected, and will average their 
states. As the number of iterations increases, the robot positions will asymptotically converge 
towards a common value (i.e., they will achieve rendezvous). 

We are creating our robot nodes (rendezvous_robot). Each robot will need: 
- Its local x,y coordinates (stored and maintained by the robot) 
- Its list of robot neighbors (according to the network topology) 
- Store a local Tlocal (update period associated to each robot) 
- Offer and request a service gossip_update. Robots will send / receive requests from 

other robots (their neighbors) to make a gossip update and get the new value for their 
x,y coordinates. Depending on your implementation, you may need a tiebreak 
mechanism to avoid deadlocks. If this is the case, you can for instance assume that a 
robot i can send only requests to robots j with j>i. Otherwise, it just waits for the other 
robot j to send its requests to i. 

- Either after a state update or periodically, robots will publish their most recent x,y 
positions in a global data structure, e.g., the queue_position_plot. A separate 
process or program or node will print in a figure the evolution of these robot positions, 
for visualization purposes. You should include different graphical information to 
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visualize the simulation and, additionally, to observe the evolution of the state of the 
mission along time. 

Every rendezvous_robot will run the same code, which will consist of: 
- The initialization: each node will be started with arguments to customize it (robot 

identifier, initial x and y coordinates, update period, list of neighbors..) 
- A loop, executed periodically (according to the period Tlocal), in which the robot will 

randomly select a neighbor, will request a gossip update, and will update its state.  

DEPLOYMENT ON A LINE: 
 
This strategy is very similar as the previous one. The only difference here is that you need to 
modify the update rules so that you can establish the desired line formation.  
 
You can define the formation as you want, but an easy approach is to make robots agree on 
the average plus a fixed value bx, by, that establishes the goal formation. For instance, you 
consider a line with robots sorted according to their identifiers, and separated by 1 unit in x 
and by 0 units in the y coordinate. Thus, robots can make decisions based on the identifier of 
their neighbors relative to their own id to compute bx_ij. For by_ij, it will be always zero (so it 
will be like in the rendezvous case). 

LAB RESULTS (MANDATORY): 

- Implement and submit your solutions to the multi-robot rendezvous and deployment 
strategy previously commented 

- Perform different experiments (e.g., varying the number of robots, graph topologies, 
number of neighbors, etc.) and comment the results 

- Include clear graphical information supporting your comments 

In addition to the mandatory tasks, next you can find a list of possible optional developments 
for this LAB activity. Note that in order to achieve the highest grade in this LAB, you are not 
expected to develop all the optional developments but a subset of them according to your 
preferences. 

LAB (OPTIONAL): SETUPS AND ROBOT MODELS 

Up to now, we have assumed that robots can “teleport” or “jump” to the new positions 
immediately. You can use other simulation / programming setups that consider that these 
positions are goals, and that make robots to navigate to them (go-to-goal low level 
controllers). Some examples include: 

- SmallWorld2D (used in this course on the part about robot swarms; 2D agents with 
differential-drive motion) 

- ROS Turtlesim (http://wiki.ros.org/turtlesim; 2D agents with differential-drive motion) 
- ROS and Gazebo (draft files for differential-drive ground robots can be provided via 

moodle) 
- Other simulators, e.g., flightmare 

(https://flightmare.readthedocs.io/en/latest/index.html;  3D quadrotor robots) 

http://wiki.ros.org/turtlesim
https://flightmare.readthedocs.io/en/latest/index.html
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Note that the last two simulators are more powerful but also they may be computationally 
demanding. We encourage you to use these setups only if you already have them installed 
and have worked previously with them. Otherwise, the time spent in installation / configuration 
/ learning to use them may be prohibitive. 

In these setups, it may be interesting to compare the behavior of the rendezvous / deployment 
strategies in two different cases: a) When robots agree on their “goals”; b) When robots agree 
on their “current positions”. What do you observe in each case? What happened with the 
assumption on the update rule keeping the average of the initial states? 

Note that, in addition to the x- and y- coordinates, in several of these simulation environments, 
every robot will also have an orientation as part of its state, or an additional z- coordinate (3D 
case). This may require you to adapt your algorithms accordingly. 

LAB (OPTIONAL): IMPROVED TRAJECTORIES FOR REACHING THE FORMATION 

Would you say that the trajectories followed by your robots could be improved? (Make them 
shorter, avoid them from crossing or from crashing)? You can improve them by borrowing 
some simple ideas, e.g., exchange of goals, generation of collision free motions, from here: 
https://ieeexplore.ieee.org/abstract/document/9000788  

In order to see the full potential, you should use different formations and check that the results 
are satisfactory. 

LAB (OPTIONAL): DEFINITION OF THE FORMATION 

Up to now, you were deciding the formation to be achieved by the robots at the beginning. In 
this optional, you can develop other methods to define this formation. They can be based on 
pictures, based on the available space and obstacles in the environment, based on human-
robot interaction methods, etc. 

LAB (OPTIONAL): DYNAMIC AVERAGE 

Up to now, we have implemented a gossip-like static consensus method. In this optional, we 
suggest you to implement instead a formation control method based on static consensus, but 
with the classical neighbor-based synchronous update rule. Then, you can implement a 
dynamic average consensus (also synchronous) to make the robots to track a formation 
whose centroid changes with time. In this case, what are the benefits / drawbacks of using 
static consensus vs. dynamic consensus? What happens with the final accuracy? You can try 
different motions of the centroid in order to see the results.  

LAB (OPTIONAL): PLATOONING 

You can implement a platooning based on consensus in which there is a leader robot and a 
set of followers. A first version of the platooning can be obtained as an immediate extension 
of the deployment strategy. However, here we are interested in the follower robots to actually 
follow the leader, like if they were in a highway, so that their trajectories and orientations mimic 
the ones from the leader. This requires that you introduce the robot orientations in your model 
and your algorithms. What are the challenges here? Make sure you experiment with different 
motions and speeds of the leader robot. 

https://ieeexplore.ieee.org/abstract/document/9000788

