

Multirobot Systems

Lecture Persistent coverage

Master Program in Robotics, Graphics and Computer Vision Departamento de Informática e Ingeniería de Sistemas Universidad de Zaragoza

Departamento de Informática e Ingeniería de Sistemas Universidad Zaragoza

Index

Introduction

- Static coverage
- Dynamic coverage
- Persistent coverage
- **Problem formulation**
 - Persistent coverage
 - The enviroment
 - The agents
 - The goal
- Coverage action control
- Motion control
- Bibliography

What is coverage?

- Coverage of an area refers to the goal of collecting data or performing some action at each point in a domain of interest
- Some applications:
 - Cleaning
 - Pool cleaner
 - Lawn mower
 - Snow-blower

[http://roboticpoolcleanersingapore.com]

[Husqvarna Automower]

[Roomba robot]

雪の取り込み風景(除雪ロボット前部)

One agent vs multiple agents
 One combine harvester is fine

Two are faster

[www.deere.com]

Departamento de Informática e Ingeniería de Sistemas

Universidad Zaragoza

Static coverage

- A set of agents is deployed to cover an area
- □ Static problem, also known as deployment
- Examples:
 - Surveillance / Monitoring:
 - Art gallery problem

Placing four guards at the given points will guard the entire museum.

Static coverage

- A set of agents is deployed to cover an area
- Static problem, also known as deployment
- Examples:
 - WiFi coverage

- Static coverage (Bibliography)
 - Breitenmoser, A., Schwager, M., Metzger, J.-C., Siegwart, R., Rus, D., Voronoi coverage of non-convex environments with a group of networked robots. ICRA, 2010
- Gusrialdi, A., Hirche, S., Hatanaka, T., Fujita, M., Voronoi based coverage control with anisotropic sensors. ACC 2008
- Popa, D. O., Helm, C., Stephanou, H. E., Sanderson, A. C., Robotic deployment of sensor networks using potential fields. ICRA, 2004
- Cassandras, C. G., Li, W., Sensor networks and cooperative control. European Journal of Control 11 (4-5), 436-463, 2005

Dynamic coverage

- If the number of agents is not enough to cover the area in one go, a dynamic approach is required
- Path planning
- Multiple agents coordination

[Roomba robot]

[https://dronelife.com]

Dynamic coverage (Bibliography)

- Arkin, E. M., Fekete, S. P., Mitchell, J. S. B., Approximation algorithms for lawn mowing and milling. Computational Geometry: Theory and Applications 17 (1-2), 2000, 25-50.
- Choset, H., 2001. Coverage for robotics a survey of recent results. Annals of Mathematic and Artificial Intelligence 31 (1-4), 113-126.

Persistent coverage

- □ The achieved coverage degrades (or decays) with time
 - Lawn mowing: The lawn grows
 - Snow removal: The snow continues falling
 - Surveillance: Thieves can appear at any time
 - Cleaning: The room gets dirty because there are people around
- To keep some level of coverage the agents' actions have to be maintained in time

- Distributed persistent coverage (Bibliography)
- F. Pasqualetti, J. W. Durham, and F. Bullo. Cooperative patrolling via weighted tours: Performance analysis and distributed algorithms. IEEE Trans. on Robotics, 28(5):1181–1188, 2012
- D. Portugal and R. P. Rocha. Distributed multi-robot patrol: A scalable and fault-tolerant framework. Robotics and Autonomous Systems, 61(12):1572–1587, 2013

- Distributed persistent coverage (Bibliography)
- Hokayem, P., Stipanovic, D., Spong, M., On persistent coverage control. IEEE Conference on Decision and Control, 2007
- I. I. Hussein and D. M. Stipanovic, "Effective coverage control for mobile sensor networks with guaranteed collision avoidance," IEEE Trans. on Control Systems Technology, vol. 15, no. 4, pp. 642-657, 2007

Problem formulation of the persistent coverage task

- The agents:
- □ Let us consider a team of N agents $A = \{A_1, ..., A_N\}$
- \Box The coverage action of each agent is performed in domain Ω_i

The agents:

- \Box The agents move in a domain D_p
- **D** Position of the agent *i*: $p_i(t) = [p_{ix}, p_{iy}]^T$
- □ Mobile agents are holonomic: $\dot{p}_i = u_i$ with u_i the input motion

The environment:

 \Box The goal is to reach a desired coverage level for all points in domain D_x

- The environment:
- Evolution of the coverage level

$$\frac{\partial \Lambda}{\partial t} = A \cdot \Lambda + B \cdot \alpha$$

 $\Box \quad \text{Error coverage (Domain } D_x)$

$$e_{D_x} = \int_{D_x} \Phi \cdot (\Lambda^* - \Lambda)^2 dx$$

 $\Lambda(x,t) \in \mathbb{R}^+: \text{ Coverage Level} \\ \alpha(x,t) \in \mathbb{R}^+: \text{ Coverage action} \\ A \in \mathbb{R}: \text{ state gain } A < 0 \\ B \in \mathbb{R}: \text{ input gain } B > 0 \end{cases}$

 $D_x \subset \mathbb{R}^2$: Coverage Domain $\Lambda^*(x) \in \mathbb{R}^+$: Coverage Objective $\Phi(x) \in (0,1]$: Coverage Priority

- Coverage priority $\Phi \in (0, 1]$ is the priority to cover each point
 - Example: watering the garden

The goal:

- □ The aim of our problem is to minimize the coverage error of the domain by reaching the desired coverage level $\Lambda^*(x)$ all over the domain
 - No more, no less:
 - There are applications that require a particular coverage level, and higher coverage leads to a waste of energy, as for example cleaning, or to bad results as painting.

[Y. Tang, W. Chen 2015]

The goal:

1542

Coverage action

- **Developed in domain** Ω_i of each agent
- \Box We consider circular actuators with range R_i
- Coverage function:

 $\begin{cases} \alpha_i \ge 0 & if \quad r < R_i \quad (x \in \Omega_i) \\ \alpha_i = 0 & if \quad r \ge R_i \quad (x \notin \Omega_i) \end{cases}$

 σ_i = Shape of the coverage action

 $\int_{\Omega_i} \sigma_i dx = 1$: Normalization of the shape of the coverage action

Variable coverage power control

Adaptive and efficient action

Tries to reduce the error over the actuator area with an action α_i proportional *C* to the weighted error $\sigma_i \cdot (\Lambda^* - \Lambda)$ of the coverage domain of each agent Ω_i

$$\alpha_i = K \cdot \sigma_i$$

Weighted error in the agent domain

Variable coverage power control Evolution of the error with time:

$$\frac{de_{D_x}}{dt} = -2 \cdot \left[\int_{D_x} A \cdot \Phi \cdot \Lambda \cdot (\Lambda^* - \Lambda) dx + \int_{D_x} B \cdot \alpha_i \cdot \Phi \cdot (\Lambda^* - \Lambda) dx \right]$$
$$= -2 \cdot \left[\int_{D_x} A \cdot \Phi \cdot \Lambda \cdot (\Lambda^* - \Lambda) dx + K \cdot \left(\int_{\Omega_i} B \cdot \sigma_i \cdot \Phi \cdot (\Lambda^* - \Lambda) dx \right) \right]$$
$$= \left[-2 \cdot \left[\int_{D_x} A \cdot \Phi \cdot \Lambda \cdot (\Lambda^* - \Lambda) dx + C \cdot \left(\int_{\Omega_i} B \cdot \sigma_i \cdot \Phi \cdot (\Lambda^* - \Lambda) dx \right)^{2 \cdot q} \right]$$

- The coverage decays / vanishes and makes the error grow throughout the domain
- The design of the coverage action guarantees that in the actuator domain of agents error decreases

Variable coverage power control

Coverage with variable agent's power

Variable coverage power control

Error of the domain

Average coverage power

Variable coverage power control

Boxplot along time of the coverage level

Agent's paths

- Variable coverage range control
 Range of the actuator: R_i
 - □ Taking the second derivative over time of the error

$$\frac{\partial^2 e_{D_x}}{\partial t^2} = -2 \left[\int_{D_x} A \cdot \Phi \cdot \frac{\partial \Lambda}{\partial t} \cdot (\Lambda^* - 2 \cdot \Lambda) dx \right]^{2 \cdot q - 1} + 2 \cdot q \cdot C \cdot \left(\int_{\Omega_i} B \cdot \Phi \cdot \sigma_i \cdot (\Lambda^* - \Lambda) dx \right)^{2 \cdot q - 1} \cdot \int_{\Omega_i} B \cdot \Phi \cdot \left(\frac{\partial \sigma_i}{\partial R} \cdot \frac{\partial R}{\partial t} \cdot (\Lambda^* - \Lambda) - \sigma_i \cdot \frac{\partial \Lambda}{\partial t} \right) dx \right]$$

Design a range control that makes the second of the addend always negative

$$\frac{\partial R}{\partial t} = k_i^R \int_{\Omega_i} B \cdot \Phi \cdot \sigma_i \cdot (\Lambda^* - \Lambda) dx \cdot \int_{\Omega_i} B \cdot \Phi \cdot \frac{\partial \sigma_i}{\partial R} \cdot (\Lambda^* - \Lambda) dx,$$

The idea is to make the second derivative of the error as low as possible to reduce the coverage error

Variable coverage range control

Coverage with variable agent's power and range

Motion action control

□ The objective of the motion control law is to keep decreasing the error

Motion action control

Local control law based on gradient of the error with respect to agent position:

$$\begin{split} u_i^{loc}(t) &= \frac{\partial}{\partial p_i} \left(\frac{\partial e_{D_x}}{\partial t} \right) = -4 \cdot q \cdot C \cdot \left(\int_{\Omega_i} B \cdot \sigma_i \cdot \Phi \cdot (\Lambda^* - \Lambda) dx \right)^{2 \cdot q - 1} \\ &\int_{\Omega_i} B \cdot \Phi \cdot \frac{\partial \sigma_i}{\partial r} \cdot \frac{p_i - x}{\|p_i - x\|} \cdot (\Lambda^* - \Lambda) dx \end{split}$$

However, a local control law is known to get stuck in local minima

Motion action control

Global control law to avoid local minima tries to reach global targets

0.9 0.8

0.7 0.6

0.5 0.4 0.3 0.2 0.1

20

40

 k_i^G

$$u_i^{glo} = k_i^G \cdot \frac{p_i - p_i^{obj}}{\|p_i - p_i^{obj}\|}$$
$$k_i^G = tanh\left(\frac{2 \cdot d_i^{obj}}{R}\right)$$

- Selection of global objectives
 - Hierarchical grid of the domain
 - Blob analysis of the domain 100

80

100

60

 $\|p_i - p_i^{obj}\|$

Multirobot Systems

Motion action control

- Combination of local control law and global control law
- □ Based on the coverage error of the actuator domain Ω_i we introduce a normalized local error

$$\varsigma_{\Omega_i} = \int_{\Omega_i} \Phi \cdot \sigma_i \cdot \frac{(\Lambda^* - \Lambda)}{\Lambda^*} dx \qquad \qquad \varsigma_{\Omega_i}(t) \in (-\infty, 1]$$

Indicates that agent's neighborhood is satisfactorily covered when it is negative or 0

$$u_{i}^{cov} = (\varsigma_{\Omega_{i}}^{+})^{\beta} \cdot \hat{u}_{i}^{loc} + (1 - (\varsigma_{\Omega_{i}}^{+})^{\beta}) \cdot u_{i}^{glo} \qquad \varsigma_{\Omega_{i}}^{+} = \max(0, \varsigma_{\Omega_{i}})$$

$$High \ local \ error agents \ obeys \ global \ control \ law$$

$$\downarrow \downarrow$$

Motion action control

□ Finally, the velocity control law

$$u_i = k_i \cdot (1 - \varsigma_{\Omega_i}^+) \cdot u_i^{cov}$$

> Bounded by the motion gain k_i

 \square Based on the coverage error of the actuator domain Ω_i

High error: slow down and develop coverage carefully

Example

Example

Departamento de Informática e Ingeniería de Sistemas 111 m

Universidad Zaragoza

Multirobot Systems

Bibliography

- Some additional topics
 - Anisotropic sensors
 - Purely distributed algorithms
 - Collision avoidance

Bibliography

- C. Franco, G. López-Nicolás, C. Sagüés, S. Llorente. Persistent coverage control with variable coverage action in multi-robot environment. IEEE Conference on Decision and Control, 2013
- C. Franco, G. López-Nicolás, C. Sagüés, S. Llorente. Adaptive action for multi-agent persistent coverage. Asian Journal of Control, vol. 18, no. 2, pp. 419-432, 2016
- C. Franco, D. M. Stipanovic, G. López-Nicolás, C. Sagüés, S. Llorente. Persistent coverage control for a team of agents with collision avoidance. European Journal of Control, vol. 22, pp. 30-45, 2015

