Creative commons Attribution Non-Commercial Share Alike 3.0

Multirobot Systems

Lecture Multirobot collision avoidance

Master Program in Robotics, Graphics and Computer Vision Departamento de Informática e Ingeniería de Sistemas Universidad de Zaragoza

Departamento de Informática e Ingeniería de Sistemas Universidad Zaragoza

Index

- Introduction
- State of the art
- Problem definition
- Velocity obstacle method (VO)
- Reciprocal velocity obstacle method (RVO)
- Hybrid reciprocal velocity obstacle method (HRVO)
- Bibliography

- Real-time collision avoidance of mobile robots
- They should sense their environment and react independently without communication or explicit coordination, as humans do

[Darpa challenge]

- Multirobot motion planning
- Global planning: Trajectory from initial to final location
- Local planning: Collision avoidance up to a short time horizon
- Dynamic motion planning for a point in the plane, with bounded velocity and arbitrary many obstacles, is intractable (NP-hard)

Applications:

- Autonomous cars
- Computer games
- Traffic engineering
- Crowd simulation

Warehouses with Kiva robots to deliver stacks of products

- Applications:
- Autonomous cars
- Computer games
- Traffic engineering
- Crowd simulation
- Shibuya pedestrian crossing (Tokyo)
- Around a million of people per day, 47 seconds to cross the street

State of the art

- Collision avoidance approaches:
 - Dynamic motion planning
 - Local collision avoidance

Some papers:

- D. Fox, W. Burgard and S. Thrun, "The dynamic window approach to collision avoidance," in IEEE Robotics & Automation Magazine, vol. 4, no. 1, pp. 23-33, March 1997
- L. Pallottino, V. G. Scordio, A. Bicchi and E. Frazzoli, "Decentralized cooperative policy for conflict resolution in multivehicle systems," in IEEE Transactions on Robotics, vol. 23, no. 6, pp. 1170-1183, Dec. 2007, doi: 10.1109/TRO.2007.909810.
- P. Fiorini, Z. Shiller, "Motion planning in dynamic environments using velocity obstacles," The International Journal of Robotics Research. 1998;17(7):760-772.
- J.L. Blanco, J. González and J.A. Fernández-Madrigal, "Extending obstacle avoidance methods through multiple parameter-space transformations," in Autonomous Robots, 24, 29-48 (2008). https://doi.org/10.1007/s10514-007-9062-7
- □ J. Snape, J. P. van den Berg, S. J. Guy, D. Manocha. "The hybrid reciprocal velocity obstacle," IEEE Transactions Robotics 27(4). 696-706 (2011)
- M. Rufli, J. Alonso-Mora and R. Siegwart, "Reciprocal collision avoidance with motion continuity constraints," in IEEE Transactions on Robotics, vol. 29, no. 4, pp. 899-912, Aug. 2013, doi: 10.1109/TRO.2013.2258733.
- L. Wang, A. D. Ames and M. Egerstedt, "Safety barrier certificates for collisions-free multirobot systems," in IEEE Transactions on Robotics, vol. 33, no. 3, pp. 661-674, Jun. 2017

Problem definition

- Setup: Navigation in an environment with dynamic obstacles
 - Disc-shaped robots in the plane with fixed radius and a current velocity
 - Known to the robot and may be measured by the others.
- Dynamic and static obstacles
 - We assume they can be identified by each robot
- Each robot has a goal location and a preferred speed
 - unknown to the other robots
- No communications. No coordination
- May assume the others use the same strategy for collision avoidance

Problem:

Each robot computes a new velocity at each time step to move toward its goal without collisions with any other robots

partamento de

iversidad Zaragoza

Problem definition

Given robots A and B moving in the plane, will they collide in ΔT ?

Minkowski addition

Let -A denote shape A reflected in its reference point: $-A = \{ -a / a \in A \}$

Minkowski addition

- Minkowski difference is related to image erosion
- There is no collision if the reference point is outside the area $-A \oplus B$

Departamento de Informática e Ingeniería de Sistemas Universidad Zaragoza

...

Multirobot Systems

Given robots *A* and *B* moving in the plane, will they collide in ΔT ? \Box Locate *A* at the origin of coordinates ($p_A - p_A = 0$) and *B* at ($p_B - p_A$)

Multirobot Systems

Given robots *A* and *B* moving in the plane, will they collide in ΔT ? Minkowski difference of coordinates (radius $r_A + r_B$)

Be VB $A \oplus B$ B VB p_y V_A V_{y}^{\prime} V_A $\blacktriangleright V_X$ p_x

Multirobot Systems

Given robots A and B moving in the plane, will they collide in ∆T?
□ Denote the velocity obstacle for robot A induced by dynamic obstacle B with VO_{A/B}

- Given robots A and B moving in the plane, will they collide in ΔT ?
 - □ Velocity obstacle $VO_{A/B}$ is the set of velocities of *A* that will result in collision with *B* in some time, assuming constant velocities

- Given robots A and B moving in the plane, will they collide in ΔT ?
 - □ Equivalence: if v_A lies in $VO_{A/B}(v_B)$ the relative velocity v_A - v_B lies in the velocity obstacle of *B* to *A*, assuming *B* does not move, i.e. $VO_{A/B}(v_B=0)$

Let us denote $\lambda(p, v)$ a ray from pwith direction v: $\lambda(p, v) = \{p + t v / t \ge 0\}$

$$VO_{A/B}(v_B) = \{v_A / \lambda(p_A, v_A - v_B) \cap (-A \oplus B) \neq 0\}$$

Therefore, if $v_A \in VO_{A/B}(v_B)$ => A and B will collide at some time Otherwise, if $v_A \notin VO_{A/B}(v_B)$ => A and B will never collide

- Given robots A and B moving in the plane, will they collide in ΔT ?
 - □ In each step, choose a velocity v_A outside any of the velocity obstacles *VO* induced by the moving obstacles

- Any strategy that selects velocities outside all VO will do Given a preferred velocity or a goal position, choose from all the free collision velocities the closest to them and the robot will reach safely
 - the goal

Drawbacks

- In multirobot settings, the robots react when they perceive each other, adapting their motion. This should be taken into account
- This may lead to undesired oscillations
- There is also the problem of "reciprocal dances". Although they may be common in natural human motion, they are undesirable for multi-robot navigation

Oscillation problem of velocity obstacle method

Oscillation problem of velocity obstacle method

Oscillation problem of velocity obstacle method

Oscillation problem of velocity obstacle method

Oscillation problem of velocity obstacle method

Oscillation problem of velocity obstacle method

Departamento de Informática e Ingeniería de Sistemas Universidad Zaragoza

Oscillation problem of velocity obstacle method

□ And history repeats itself...

- The idea of the reciprocal velocity obstacle method (RVO) is:
- Instead of choosing a new velocity for each agent that is outside the other agent's velocity obstacle,
- we choose a new velocity that is the average of its current velocity and a velocity that lies outside the other agent's velocity obstacle.
- $\square RVO_{A/B}(v_B, v_A) = \{ v \text{ such that } (2v v_A) \in VO_{A/B} \}$

Let us check the oscillation problem

Let us check the oscillation problem

Let us check the oscillation problem

Let us check the oscillation problem

Motion result:

However, rather that choosing the velocities closest to their current velocities, usually the robots are required to

□ follow a velocity closest to their preferred velocities,

A third robot may also cause to choose a v on the conflicting side

□ Therefore, the "reciprocal dances" still may happen

Hybrid reciprocal velocity obstacle method

HRVO

- □ We introduce the **Center Line** of $RVO_{A/B}$, **CL**:
- □ If v_A is to the right of *CL* of $RVO_{A/B}$ (so v_B is to the right of *CL* of $RVO_{B/A}$) we want *A* to choose v_{A-new} to the right of *CL* of $RVO_{A/B}$
- □ The $RVO_{A/B}$ is enlarged on the left side => $HRVO_{A/B}$
- □ If v_A is to the left of *CL* perform mirror procedure
- This greatly reduces the possibility of oscillations

Hybrid reciprocal velocity obstacle method

Examples

Bibliography

- Paolo Fiorini, Zvi Shiller. Motion Planning in Dynamic Environments Using Velocity Obstacles. Int. J. Robotics Res. 17(7). 760-772 (1998)
- Jur P. van den Berg, Ming C. Lin, Dinesh Manocha. Reciprocal Velocity Obstacles for real-time multi-agent navigation. ICRA 2008. 1928-1935
- Jamie Snape, Jur P. van den Berg, Stephen J. Guy, Dinesh Manocha. Independent navigation of multiple mobile robots with hybrid reciprocal velocity obstacles. IROS 2009. 5917-5922
- Jamie Snape, Jur P. van den Berg, Stephen J. Guy, Dinesh Manocha. The Hybrid Reciprocal Velocity Obstacle. IEEE Trans. Robotics 27(4). 696-706 (2011)

