

Previamente... Módulo 4 - Tarea 2

3. ÍNDICE TÉRMICO

Hay nuevos iconos activados como la calculadora ráster.

Además, para las imágenes térmicas es importante crear un índice térmico que genera una ortofoto en la que el pixel, en vez de un valor RGB presenta un dato numérico de la temperatura, el dato radiométrico. Cuando activas la herramienta del raster calculator deberás introducir la siguiente fórmula en la línea de expresión:

vinua Paette					
lands:	Operators:				
81	+		sqrt	sin	asin
	*	1	log	006	acos
	0	^	exp	tan	atan
expression:	_				
1428/log(17096.453/	((0.046542165*()	81-342))+1	())-273.15		~
Enable transform				🥩 Expr	ression valid

1428/ ln (17096.453/(0.046642166*(B1-342)+1))-273.15

Debes también asignar colores a las clases en la "Palette tab"

Raster Calculator		×
Formula Palate		
Preset:	Heat 🔻	
0		•
0.25		×
0.5		20
0.75		
1		
Interpolate colors		
OK	Cancel Apply	

Añade nuevas clases con el botón de añadir verde y modifica los colores y valores. De 15 a 35.5 usando un salto de 3.5.

Preset:	Custom	•
15		^ 😳
18.5		8
22		2
25.5		8
29		
32		
25.5		~

El resultado ya tiene un aspecto diferente.

Con los colores blancos y rosas puedes ver zonas con una temperatura más elevada.

Exporta el ortomosaico térmico como TIFF.

Pero es muy importante seleccionar "raster transformation" con "Indez value"

Module 4 – Tas THERMA	k3 L INDEX			144	H	
AZ			1	-		
E	Export Orthomosaic				×	2
1.1	Projection					No.
	WGS 84 (EPSG::4326)				•	Kat
	Raster					
	Pixel size (deg):	1.42887e-06			x	
	Metres	1.009992-05			٦,	
	O Max. dimension (pix):	4096				
	Split in blocks (pix):	1024	x	1024		
	Raster transform:	Index color			-	2.5
	Region	None Index value in				28
	Setup boundaries:	Index color	d .	12 272440	⊐_x	3-4
	Reset	45.210504		45,212128	Y	
	Total size (pix):	1548	×	1608		
	Write KML file	Write World	file		_	
	Compression					
	TIFF compression:	17//			-	\$ 10 M
	1916 quality:	90				Sec.
	ar u o opensy.	30				Sec. 1

Una vez guardado puedes cargar la capa en QGIS. Para una visualización apropiada deberías guardar la capa de nuevo en QGIS como un archivo "thermic_index"

Con la herramienta de identificar puedes consultar la temperatura en cada punto de la zona.

Cambia la simbología a "singleband presudocolor" y modifica las clases para tener los intervalos 0 - 10 - 15 - 20 - 25 - 30 - 35 - 40

El resultado solo visualiza las diferentes clases y puedes ver las zonas de más temperatura del mismo modo que hiciste en Agisoft Photoscan.

