{ "cells": [ { "cell_type": "markdown", "metadata": { "id": "Og8we7iGfPKt" }, "source": [ "## Análisis diferencial del campo fluido\n", "\n", "Asignatura: Mecánica de Fluidos\n", "\n", "Departamento: Ciencia y Tecnología de Materiales y Fluidos\n", "\n", "Centro: Escuela Universitaria Politécnica de Teruel\n", "\n", "Profesor: Adrián Navas Montilla" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Divergencia de la velocidad\n", "\n", "Vamos a comenzar con un ejemplo. Supongamos que tenemos un pistón que desliza longitudinalmente por un conducto recto en el que hay un gas. Al desplazar el pistón de izquierda a derecha rápidamente, se genera un campo de velocidad que involucra velocidades mayores en la zona cercana al pistón y menores en la zona más alejada. Entre ambas zonas existirá un **gradiente longitudinal de velocidad**. \n", "\n", "En la animación se muestra el movimiento del pistón, el campo de velocidades y la evolución de un volumen fluido (en verde). El mapa de colores indica la magnitud de la velocidad (azul, más velocidad; blanco, menos velocidad). La longitud de los vectores también nos indica la magnitud de la velocidad. Además, vemos que la velocidad está orientada en el eje $x$. \n", "\n", "Dicho volumen fluido se desplaza y se deforma debido a las características particulares de este flujo. En concreto, se observa que **se comprime**, debido al gradiente longitudinal de velocidad existente. Esto está relacionado con una **divergencia negativa** del campo de velocidades como veremos a continuación.\n", "\n" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "tags": [ "hide-cell" ] }, "outputs": [], "source": [ "import math\n", "import numpy as np # Librería para poder trabajar con matrices y vectores\n", "import matplotlib.pyplot as plt # Librería para poder dibujar gráficas\n", "from myst_nb import glue\n", "from scipy.interpolate import Rbf\n", "from matplotlib import animation\n", "from IPython.display import HTML\n", "\n", "nq=2 #separacion entre vectores en quiver plot\n", "Nx=40\n", "Ny=8\n", "Lx=8.0\n", "Ly=2.0\n", "xp = np.linspace(0, Lx, Nx)\n", "yp = np.linspace(0, Ly, Ny)\n", "X, Y = np.meshgrid(xp, yp)\n", "\n", "def velU(x,t):\n", " return (1.0-1.0/(1.0+np.exp(-3*(x-(3.0+1.5*t)))))+0.5\n", "\n", "t=0.0\n", "U = velU(X,t)\n", "V = np.zeros(np.shape(X))\n", "\n", "ypos=1.0\n", "XP=[0,ypos]\n", "\n", "fig, (ax) = plt.subplots(figsize=(10, 3))\n", "\n", "nframes=120 #frames de la animacion\n", "tf=3 #tiempo total\n", "dt=tf/nframes #paso de tiempo\n", "\n", "xp1=4.0\n", "xp2=5.0\n", "\n", "def update_plot(num):\n", " global xp1,xp2\n", " t = dt*num\n", " xnew = velU(-100,0)*t\n", " \n", " ax.clear()\n", "\n", " U = velU(X,t)\n", " ax.contourf(X,Y,U,256,cmap=\"Blues\")\n", " Q = ax.quiver(X[1:Ny-1,4:Nx-1:nq], Y[1:Ny-1,4:Nx-1:nq], U[1:Ny-1,4:Nx-1:nq], V[1:Ny-1,4:Nx-1:nq],alpha=0.4,scale=30,width=0.004)\n", "\n", " pt1, = ax.plot([], [], '.',color=\"tab:orange\", ms=20,markeredgecolor=\"k\")\n", " ax.set_xlabel(\"x\")\n", " ax.set_ylabel(\"y\")\n", " ax.set_ylim([-0.15*Ly, 1.15*Ly])\n", " ax.set_xlim([0, Lx])\n", " ax.plot([0,Lx],[0, 0], 'k-',linewidth=1.5)\n", " ax.plot([0,Lx],[Ly, Ly], 'k-',linewidth=1.5)\n", " rect1 = plt.Rectangle((0, 0), Lx/12+0.205*Lx/4+xnew, Ly, color='white')\n", " ax.add_patch(rect1)\n", " rect2 = plt.Rectangle((Lx/12+xnew, 0.03*Ly), 0.2*Lx/4, 0.95*Ly, color='gray')\n", " ax.add_patch(rect2)\n", " rect3 = plt.Rectangle((0, 1-0.1*Ly), Lx/12+xnew, 0.2*Ly, color='gray')\n", " ax.add_patch(rect3)\n", " interpx = Rbf(X, Y, U)\n", " xp1 = xp1 + interpx(xp1,1.0)*dt\n", " xp2 = xp2 + interpx(xp2,1.0)*dt\n", " rect4 = plt.Rectangle((xp1, 1-0.2*Ly), xp2-xp1, 0.4*Ly, color='tab:green',alpha=0.6)\n", " ax.add_patch(rect4)\n", " ax.set_title(\"Campo de velocidades\")\n", "\n", " return\n", "\n", "plt.close()\n", "\n", "anim_div = animation.FuncAnimation(fig, update_plot, frames=nframes, interval=60, blit=False) " ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "text/html": [ "" ], "text/plain": [ "" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "HTML(anim_div.to_html5_video()) " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Vamos a analizar lo que ocurre en un instante de tiempo concreto, para el cual el campo de velocidades viene dado por la siguiente expresión:\n", "\n", "$$ u= 1.5-\\frac{1}{1+\\exp{(-3(x-3))}},\\quad v=w=0 $$\n", "\n", "En la siguiente figura se muestra el sistema conducto-pistón y se representa este campo de velocidad para este instante de tiempo." ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "tags": [ "hide-cell" ] }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsgAAAGoCAYAAABbtxOxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAACUIElEQVR4nOzdd5wcd334/9d7tu9eb3tbT5YtuRcZuUEAYxtMMZjYNEMglFBtWkhC+SZxHGryIyQQQqiBQAADxjY2uGDcm2zJslxk9X46nU6n673s5/fHzO7t3u01aYtOfj/9WO/uzOzMe2c/un3vZ94zHzHGoJRSSimllLJZ5Q5AKaWUUkqpY4kmyEoppZRSSmXRBFkppZRSSqksmiArpZRSSimVRRNkpZRSSimlsmiCrJRSSimlVBZNkJVS6hghIheLSGuJt7lMRIyIuI9yPQMisnyWee8VkUeOcL0l3ydKKaUJslLquCAi7xSRdU6idkBE7hSRPyt3XC8WxpgKY8zOcsehlFKFoAmyUmrJE5G/Bv4D+AoQBpLAd4AryxiWUkqpJUoTZKXUkiYi1cA/A9caY242xgwaY8aNMbcbY/7WWeZ8EXlcRHqc3uVvi4g3ax1GRD4mIttEpF9EvigiJzqv6RORX6eXTx/yF5EviEiniOwWkXdlxyMiPxWRQyKyR0T+XkTy/q0VkYCI/EREukXkBeC8afOjIvJbZ127ROQTs6znQhFpFxFX1rQ/F5FnnceWiHxORHaIyGHn/dTNsq6oiNwmIl0isl1EPpg1z+W87x3OfnpKRBJZ+/Ak53G9s44+EXkSOHHaNr4pIvuc+U+JyMsLsU+cz3mds96DIvKNfO9RKaXmowmyUmqpuwjwA7fMscwk8GmgwVn+UuBj05Z5LfAS4ELg74DvA+8CEsAZwDVZyzY764oBfwl8X0ROdub9J1ANLAdeCbwHeN8scV2PnTyeCFzurAuwk1rgduAZZzuXAp8Skcunr8QYswYYBC7JmvxO4BfO408Ab3biiQLdwH/NEtMvgVZnubcAXxGRS515f+3sh9cDVcD7gaE86/gvYASIOMu8f9r8tcA5QJ0T429ExO/MO5p98k3gm8aYKuf1v57lPSql1NyMMXrTm970tmRv2Els+yJf8ynglqznBnhZ1vOngM9mPf834D+cxxcDE0Aoa/6vgX8AXMAocFrWvA8DD8wSx07gtVnPPwS0Oo8vAPZOW/7zwI9nWdeXgP9xHldiJ8wtzvNNwKVZy0aAccANLHPevxv7x8AkUJm17FeBnziPtwBXzrJ9A5zk7INx4JSseV8BHpnj8+gGzj7afQI8BNwANJS7XepNb3pb2jftQVZKLXWHgYa5rsIgIitF5PdOGUIfdsLWMG2xg1mPh/M8r8h63m2MGcx6vge7x7UB8DrPs+fFZgktCuybtmxaCxB1ykJ6RKQH+AJ2jXU+vwCuEhEfcBWw3hiTXl8LcEvWejZhJ8LT1xUFuowx/bPEnwB2zLL9tEbsZHu294WIfEZENolIrxNPNVOfx9Hskw8AK4HNIrJWRK6YJ1allMpLE2Sl1FL3OPbh/DfPscx/A5uBFcY+/P4FQI5im7UiEsp6ngTagE7s3tOWafP2z7KeA9hJZ/ayafuAXcaYmqxbpTHm9flWZIx5ATuZfB255RXpdb1u2rr8xpjpcbUBdSJSOUv8+5hWT5zHIewe9rzvy6k3/izwNqDWGFMD9DL1eRzxPjHGbDPGXAM0Af8C3DTtc1JKqQXRBFkptaQZY3qBfwT+S0TeLCJBEfGIyOtE5F+dxSqBPmBARE4BPlqATd8gIl4n4bsC+I0xZhK73OLLIlIpIi3Ydbv/N8s6fg18XkRqRSQOfDxr3pNAn4h81jlxzSUiZ4jIeflXBdhJ8SeAVwC/yZr+XSemFgARaRSRGVf4MMbsAx4DvioifhE5C7tX9ufOIj8EvigiK8R2lojUT1vHJHAz8E/OZ3EaWXXE2J/FBHYi7RaRf8SuZz7qfSIifyEijcaYFNDjvGZyjv2llFJ5aYKslFryjDHfwE5E/x478doHXAfc6izyN9i9qv3AD4BfHeUm27HrZtuwk8ePGGM2O/M+jl3/uxN4BDtp/Z9Z1nMDdq/vLuCPwM+y3tMk8Ebsk9l2YfdO/xC7HGE2v8Sukb7PGNOZNf2bwG3AH0WkH1iDXc+bzzXYdclt2Cc+Xm+MuceZ9w3sBPaP2D84fgQE8qzjOuySlHbgJ8CPs+bdDdwJbHXe+wi5JRVHs09eC2wUkQHnPb/DGDMyy/tUSqlZiTGm3DEopdSSISIXA/9njImXORSllFJFoj3ISimllFJKZdEEWSmllFJKqSxaYqGUUkoppVQW7UFWSimllFIqy6wX1j9WNTQ0mGXLlpU7DKWUUkoptcQ89dRTncaYxvmWW3IJ8rJly1i3bl25w1BKKaWUUkuMiOyZfyktsVBKKaWUUiqHJshKKaWUUkpl0QRZKaWUUkqpLJogK6WUUkoplUUTZKWUUkoppbJogqyUUkoppVQWTZCVUkoppZTKogmyUkoppZRSWTRBVkoppZRSKosmyEoppZRSSmXRBFkppZRSSqksmiArpZRSSimVRRNkpZRSSimlshQtQRaRhIjcLyKbRGSjiHwyzzIiIt8Ske0i8qyInFuseJRSSimllFoIdxHXPQF8xhizXkQqgadE5B5jzAtZy7wOWOHcLgD+27lXSimllFKqLIqWIBtjDgAHnMf9IrIJiAHZCfKVwE+NMQZYIyI1IhJxXpvXli1buPjii4sVtlJKKaWUepErZg9yhogsA1YBT0ybFQP2ZT1vdablJMgi8iHgQwBen69ocSrb2Pgka57ZOXOGSOmDWbA8sS043DkWnPc9S56HkmeRfPFJ9gKzLCu56xWQPNuUqQdZs6ZeK5L7munLZ89PPxbJfTx93sznkjV9ahv2eqbiEed16bea/Tx7vZJZD1nzBEumppNejtztZq87HUlm3elp03bj1POsPTxzt+a8/6m1Zc/M/5rc101beBHrmH0N870gT6xHaq5/MoVYv1JKlVnRE2QRqQB+C3zKGNM3fXael5gZE4z5PvB9gNWrV5sHHnig0GGqaQKrrps5UQpYsr6YZHsh2823vnyvW8hyOZmTNXN6vmnZ09P3VtbyMstjAMs1+/z0c7Eyy4lzw0lgZa5pln1vWRYIWJY173SXy3LmCS6XfT//zco8dmXfi33vdglul5V5blmCe9qybsvCbYHLee6xBFf6uUhmntedfi7OPOz1pmMWwS0yNS0zz05909Ms53UCmVjTybrlZN2WSCbpTk8T0tPS+3rqd81C5001nawfFdlNbPoPhuwfO9ObY3aSna95T1tu+jJz5OxZk3InzvXPd95/2Yv5p1/gdPuY/o2vlCqJgGdhfwiKmiCLiAc7Of65MebmPIu0Aoms53GgrZgxHcu+/vWvMzg4WNYYQqEQf/M3f1PWGJRSSimlyqmYV7EQ4EfAJmPMN2ZZ7DbgPc7VLC4EeueqPz7elTs5PlZiUEoppZQqp2L2IL8MeDfwnIhscKZ9AUgCGGO+C9wBvB7YDgwB7ytiPEoppZRSSs2rmFexeIR5qs2cq1dcW6wYlFJKKaWUWiwdSU8ppZRSSqksmiArpZRSSimVRRNkpZRSSimlsmiCrJRSSimlVBZNkJVSSimllMqiCbJSSimllFJZNEFWxxyTmih3CJjUJMakyhvD5HjZYjAmhZkcL+k2J8ZGS7at8bExJicnS7a9tJGRkZJvUyml1OJpgqzySo32YUzpEwgAM9zJZPc2UoPtmPEh7MtllzwKUp2bmOzZRWr4cHmS9tQEqf1rmezcQmqgo6QJq4jF4M619G9bw0jHLiZHiz/C4nDvYTY9cDutG9fR19FGarJ4+9xguO8PN/PkI/exd+c2RkaGi7atbK1793Dbzb9m3ZOPc6BtP6lU6X8AjY2N8cTjj7Fv796y/EhIO3z4MDu2b2d0tHQ/jPJpbW2lvb29TH9npuzYvp2+vr6yxjA+Ps72bdvK/kOuu7ubvWVunwD79++no6Oj7G1j544d9Pb2ljWGiYkJtm3dWva20dPTw969e5mYKP53cjFH0lNLWKp/H4ggniDiqUS8lYjbX5JtS6DBTkqHO2G4E7Hc4K1EvFWItwIRV/FjsNyIv5bU8CHMaI89zVuB+KoRXw3iCRQ/Bk8ACdSRGuzADHZC1zbEX4MVqscKNSDeYFG37wufxPDup5gc7GKkbRPuQAW+mjD+uma8lXVgFfZzqGyMcnjnRg7v20F36048bjfVjWHqmmPUhWO4g4Xb516vj8QJJ7H9hWdpb93LM+uE+vpGIrEEkXiS2tq6gm0r2/KTVrDx2afZsmkjWzdtxOP1EY3FiCWSxGIJAoHi/xvzer1MTE7wp3vuwu12E4vFSSSSxBNJgsHitqlsNTU1/PGuO3nowfsJh5tJJFtIJJPU1NSULAYAv9/P7265Gb/fTyKZJJFIEovH8Xq9JY1jaGiI3/zqRqprakgkkiRbWgiHw1hW6fqxPB4PO3fu4KEHH6ApHM7EUVtbW7IYACorK7nzD79nfHycWNxun4lkadsngM/n43e33EwgECCRTJJMthCNxfB4PCWNY3h4mJt+/auytg23282ePbszbSOZbClr2xgbGyMai5F0/m4Uo21ogqxmZwxmbBAzNgiD7Yg7YCfK3kpwBxCxB0pMjfbC+MAiVz7nIIuI5cak7B5Tk5qEkR7MSI+TtIecZLkScU19iaWGOmByLHslCwxl2nLO+5rea5zZFwMHEJfXTpb9NeCtQJx1GGMwvbvtF1iStb70Y2vqrae3K1ZmmznzsTL7IBPDSA+p0V5M107wBrFCDfYtUJ3zwyE1Okiqdx9iCYIgloCAJZb9uQmIiP0H1nmcvlmu7NcIYPeeTI4MMHxwkJGOXbg8Hny1YQJ1zfhrw1heX95dO9TZxljPQVyW4HLWa1mCJYLLAkuyn8vUfgBSkxP0duyn/1Abe59bR1VtHfWRGE3RGNW19Xm3N5sdm59jZMhuoy7s9zk5MZazTNfhTroPd/LCc08TClXQHIsTiydpao7gdh39n0pjDGvXPIrH6wWnQ358bIw9u3exZ/cuLBEam5qIxZMkksX74hkYGMBy2t7ExAR79+xm757dADQ0NJJoaSGRbKG+fnH7eLG6urqoraujbX8r7e0HaG8/wNon11BZWUWypYVksoXm5kjRk4ChoSFCFRUMDgywbetWtm3dimVZNEcimSSgsrKyqDEAmffZ29NDb08Pzz/3LD6fj3giQTLZQjyRKHrSPjQ0RGVlFcYYDra3c7C9nXVrn6SyqiqTmEUixf9Ment7qauvZ39rK3t272bP7t0ANDQ2Zj6TYrdPsBPTispKBvr72bplC1u3bMGyrJzErKKiouhxWJb9d7ucbWN4eJiKCvvfQcfBg3QcPMi6tU9SUVmZ2RfRaLTobaOnp4f6hgb27d3L3j172LtnD2C3jXQbbWhoKMi2pNyHDhZr9erVZt26deUOoyhuuOGGcocAwPXXX48n8aqZM7KSF7HcdoIaaMKMHCY13Lm4jcjcCfK0hWef4/bbPbrBRlI9OzATQ1lz8/xDzbeqGbHILPNk5jQREAvxVWFVxMDtY/Lghtzlcpa3cl+bnpZZRqa9TqbunT88ImJHIvYygiAuD1aoHlf9CVjeIGa4i4m2Z3OSX3tTzvLp10o6cZbMc8tJ7NOPRcjcTyXSWdMsF77qeiqjJxFsiOCy7Ne5LKFvzyb6W7dkpgmCJXYcLnEeO/eWZdn3Tjwu5y1bznu0E2pwWYI/ECQcS3LCqWfg9/ud5Z3tiuAWmZomwtoH7qbncAekt+/sg/SnkY4tvV+tzEchuN1umiNxTj/rbGrq6jOvlfRn4Twma7355mHgxp/9aFprSi+Q+Tgzc6sqK1m2/ETOOOtsvB5vznI5zServeb7ZzV9ufYDbdx15++nxTFTMBRi2QnLOfucVQT8ub33c/3znfdftrPA0+uf4un1T825qNfrI5FIsurcl1BdXT3fmueVL+47/vB7DrS1zfm6mtpaTjppBWeceSYuV3GOYP3oB9+fc75lWYSbmzn9jDNpaWkpSgzt7e384fbb5lzG6/USTyQ4Z9W5RfsR9/T69ax/au7v+WAoxAknLOecVavw+4tz5OWuO+9gf2vrnMvU1tWxcuXJnHb66UVLDn/8ox/OWY5VirbR0dHB7b+7dc5lPB5Ppm3U1RXnKNwzGzawbu2Tcy4TDIVYtuwEVp17bt62EfDIU8aY1fNtS3uQ1aKIuJxyh0rEU4FYLsrxE0tcPsRnl13gDmYSwNIGYSfGdtlFNeL2lf6kOnEhoXpcoQasUD3iLuVhYcFTWUegrplAfQRvqKroW/T4/DREYjRG4jSEm+3e2CKxXC7CzVGi8SSRWIKKUKho28oWDFUQT9iH+iPRaMETMpfLRTAYZGhoKO/8QDCYKbmIxeO43cX5mvD7AwQCQYaHZ8bh9niIxeK0JJeRSCaLlgABVFVV0XnoEOPjM2v8q6qrMz2WxT6kXd/QwOHOmR0NIpJzSLuYJShut5uq6mr68tS7ut1uYvF4prcwEChemVkwGCQYCjE0OPPch2AwaJfCJFuIxWJFa58AlZVVeL1exsbGZsyrqa3N7ItwOFzU76D6hgY6Dx2aUQtd6rZRXVNDb09P3nnpthFPJIpaCjNX2wgEAiRbWkgkkgUphdEEWc1LXF47IfZV501GJRjGFWxa5Ern/mOS6tmBmcw6eUcEcQfthNRbibhmHtK3ak6E7HQ9X4lF3i62WUosRntJ9e3NneXyIP4ae194K5FpdbgiFq7mc52A8vQQT38Mdi3vLPPNQAepnl258bn9SKgBCdVjBWqwLFdOLzGABOrwnnix3WOcVUphOc9nTrcy010upwxjcpTBrQ/n7FNxufHVNOGvbcZf24Tb57dLJGZJHKqTp1C37BTcLnu96VIKyxLcTi9zeprbsujYup6e/bnvN1BVQ104TkNzlKq6enweC1e6JGOBzn/laxAxdk+006vceaCVpx57IGc5fyBAJJYkGk/Q2BzB6/E4vcBH/+UnIrz9L97HIw/cy/7W3HZlHx5sIZ6065/TRwmK8Z3bFA6z6tzVPPrIQ5lpdXX1JJJ2WUN9Y0NJfnCeetpp7N27h/2tdoJcUVGZ+XJrjkRwuVwF2e/zOf+CC9m1cydgf0bNkUjmUG0heq0X6oILL+KO398O2L202QlHMX8gZGtoaOCkk1Zkem9DFRWZfREtwo+12Zx8yins3LkjkwTVNzTkHD4vVYfIeeefz66dOwByym4SySRVVcXvEEi74MKL+P1tvwOmevDtH7Glaxt1dXWsWLEy03tbrraxYuXKnLZRV1+f+UwaGxsL2jY0QVZ52XW+lbl1vrPU9Ep2je2CNzD78qnRXszkqNNb7ZwY55mZjM4bx1EkyMYYzOBB+6k76NQbVyOe4Kz7Yerl6driBSbIs8w3gOnfb0/2VyHBBiTUgOWryKkjzh9DbiIs6VrjrER41unO49H2XWAMLn8Qb20z/pow3qp6XG6XkxTP/5mLZTnrFKeEQjKvnX6bGB2me/9uXJaLyoYm6sNx6pojBEIVdtmENfv7nY9lWdhvdSpB3rb5OQBqauuJJpJEY0lq6+ozJR/FyM16e7rZ37oXt9tNJBojnmghlrB744qVEE+XSqV4/rlnM73EyWQLoeze8RIdjDl06BDjY2O8ZPX5ZTnZJ237tm2ZE7Bi8Tg+X/56+mLbsX0bp59xJsmWFpqbm0t6Alba+Pg4HR0Hecnq80i2tBTtMPl8Ojs7cblcvPRlf0ayZVr7LKGdO3bktI1Sn7iZtn1b+dvGxMQEBw+2c+5LVpesBjyfw4cPA/DSl/1Z0WvAtQb5GHIs1SAHVl03c8ZCT3pbiLkS5JEexOWZ6q1eyHYXkvgudDkRzMQoZnzArm92eXJfm6+OOHt6pmf46HqQzfgwZnwYCdYhbl9muUxvcU5N8CzT5ugpnqsHGQwTXfvw1TTiCVbOmtRO3azM4+wa5EzvsEtwz9aD7NyPdB9CUhNUN4bxer14LLvu2JWuK3Yee93p5+LMY94aZHveVII8OjTIoYP7iUQTBIOhTKzp2uF0gmxl6oinph1pDbIgtO7bjdsp3XC7XZCuB4ecBHl6D7JMq1Vm+ry5mve05Sady+elD03PeEm+dUybWIgaZGPMvD94Ct2DXI5KLKXUsUVrkNWSZflryh0C4vbZSWkhfxQsNgZvCPFVluVbXcTC17gMl6t0266oD2eS4GILhCpYduLJ9smJJZRILitVB+2silmzuRhlOW9AKaUWSAcKUUoppZRSKosmyEoppZRSSmXRBFkppZRSSqksmiArpZRSSimVpWgJsoj8j4h0iMjzs8y/WER6RWSDc/vHYsWilFJKKaXUQhXzdOafAN8GfjrHMg8bY64oYgxKKaWUUkotStESZGPMQyKyrFjrV0otzHu23svVux4D4O/+7EPsrI3z6t1r+fCzt09dQc657u5fv/YzdNSEef3mB3nnM3/IXI83fRnev3v7P9FXWcMb1t/FG9fflXld+jq/n//IvzHhD3DFQzfxyvX3Tc1z5n/pCz8E4HV/+F9WPf1QznV/J7x+fvhP3wfgkl/+FyueWZNzjeCR6lp+/8XvAHDhf/8rzRvXT8UHDIcjrPnyfwJw1r/+IzVbNzqvtZcZOuFENt3wDQBW/sOnCe7ZMXVNYWDotDPZ9w9fA2DZpz6Ip70t5wp7wy85n4OfPzauVa4UwI9+AL+60X787e/AypPhD7+Hb/57nmV/AokE/ObX8IPvzZz/i19BQwP87H/hZ3m6tW69HYJB+N5/w29vmjn/j/fa9//+DbjzD7nzAgH43e/tx1/9Mtx/X+78unq48df243/4f/DEmtz5sRj82Inpb/4ann0md/6KFfBf37UfX/sR2LYtd/5ZZ8PX7X/6vO89sH9/7vwLLoQvfnnme1IvbuWuQb5IRJ4RkTtF5PTZFhKRD4nIOhFZd+jQoVLGp8rAjPVjUuPljWFyDDM2QDkH0jHjw5jR/qOO4eqdj3JG1+7FbdsYzMQ4lPD9T06MMzLQV5JtTUyMMz42VvLPt+NgOwP9/SXd5nRLbXAoNbtf3TgzWVRKFUZRR9JzepB/b4w5I8+8KiBljBkQkdcD3zTGrJhvnTqSXvFdf/31+FZchXgrwRPKGjq5RCPpDXeRGmxD3AF7qGtfNeIOLH59RznUdOrwJjAp8FUjvio7DstVupH0TIpU23oQCwnWQ6gRCdZhudyLGknvtru/CCL8+euvX/BIeiLC8N6nSQ0cwlPVgK8mjK82jMcfLNpIehODfexc80cCoQpqwjHqm2NU1zfidrsKPpIexvDgXbcyMTZGOBIjEksQidrDDBdzJL2DB/Zz3z13Ul1TSzyRJBZP0hQOzxw5r4gj6U1MjPPHu+6gsbGJRDLP0LUlGkmvo6ODLZs3kUy2EI3F8Hg88273aOWLe+uWLQwMDJBsaaGhoaGg21uMdWvXEgqFFjW08msute/TvbdHa3x8nCeeWEMsGivr0MqdnZ1s37atrEMrgz3Ec7ptlGvYbYCn1q0jGAyWddjtiYkJnlizhmg0Wta2cfjwYbZt3XpUbeOYH0nPGNOX9fgOEfmOiDQYYzrLFZOakhrphpFu+xC6p8JJVKsQa+aXWKGJvxYZPoSZGMZMDMPQIcTlsWPwVoKnYippL1YMIkioiVT/fhjpwox02YmqpwLx1zhJu6+4MVhupCpKqncfZuAgDB0CsTCBWqxQPRKqRzzz/HA4Cv7wCgb7DjLe28Fk/yGGW5/HE6rGV9uMv64Zb0UNC0iHFr69yhqqw3H6O1o5tHsrXXu24vF6qWlqpi4cp745gsvvL8i2LMti5Wln8cyTj9K6Zydt+3ZhiUVDU5hINEE0nqCyujrnNYkPvQuA1h/84oi32xyN0djUzKGOdvp6unnhuWfxB/xE4wni8QTRWPG/eDweD4lkC0+te5KNG5/D5/USiydIJFuIxxP4/MVt12lNTU2seexRtm3dgmVZNEeiJJMtJFtaqKioKEkMAPFEgl/f+EueXv8UwVCIRDJpJ+3RaElHHWxoaODeP93DY48+Ql19fWZfNDQ0lGzUQY/Hg8tycd+9f3I+k0gmjsrKypLEAPa+ePihB9n4/HN4vV7iiQTJZAvxRAKfr/Dt8x1vs+/TZR5p0ViMX9/4S55at5ZQRQXJZAuJZJJoNIrL5Sp4HLNpaGzkT3+8m8cefYT6hgYSiWTJ24bb7cbtds9oG4lkkqqqqpLEAFBfX88jB9tz2kYikSSeSOAv0PdDWtkSZBFpBg4aY4yInI9d7nG4XPGoWRhjlzyM9cPggaleXW9lplc3NXQIM9K9uPXO82/apCZyn0+OY4a7YNhJVL0VU3E4Sftk7x6YGM7axhzdaXMFk1lm2tGV9L4YH4D+VsTtzyTLdk+70+t7aGPuakWmnohkrd+5t6y55+fEkMIMd5Ea7oLD20j5KrFCDfbNX5X5Y5ka7mHy4CawhK81rkQsYWTHo3bPMeJ0Xts9rkBmOk4vbLr3c3oIE0N9TA73M3xgG26fH39tM/66MIHaMOT58dTXuo3B9l24LHBZFgKZ9btk6rEl9nwmc0trJifG6D6wj54DreyxoLq+kaZonIZInKppCexcnn78Qfp6Dmd6gu2eydzP1xhD58F2Ojva2bhhLRXV1URjCaLxJA2NYdzdXQveXj7GGG67+deMj47mTB8ZGWHn9m3s2r4Ny2XR3BwhnkiSSLRQWVX4pKTr8GH27d2TeT42NsaunTvYtXMHIkK4udlOlhNJampqCr79tJ07djAxYf87T6VStO1vpW1/K2sef5Ta2jqSLS0kk8tobGwsahKwedMmvF4vw8PDDA0OsmXTJrZs2oTb7SYai2WSgGAwWLQYAHbt2pl53HX4MF2HD7Ph6fUEg0ESySSJRJJYPJ6TtH/uC4WNoaenh54e+2+5/Znsp23/ftY8/hg1tbWZfRF2jnoUy57duzOlQGNjY+zcsYOdO6baZzqOQrXPrlkyj61btmTaxuDAAJte2MimFzbidruJxeOZOAKB4nVUAJl/m8YYDnd2crizM7dtJFuIxWJF/UHX29tLt/M3sKxtY88eUqkUMLNtNIXDmR90hWgbRdubIvJL4GKgQURagesBD4Ax5rvAW4CPisgEMAy8w2hx3DFvqle3A/FVYwWbwUxiUmOLW9HR/AMyKcxoH2a0D8TCCjYhwUZIjU+LI1+JxUJikTnmZYUxMYIZPAiDBxFvBVZVC7h9mMnR3NfmK8PInp6ycpPinNfJ3DGMDZAaGyTVswdXqAFX4wrEG7Q/k4kRELi/0kkwxofJqhMAEVJODYAlgnHKMowlGHBKMCT/PgNS46MMH9rDSOdeBgIV1JxwJsGGSO4yE+NMjAxiLCHlJOGW2Al5ykmM0wnypGVhyVRlSj79XYcY6ulk3+ZniLScyElnnLOgXuXRkWGGBwcgK0EWmfskjIG+Xrb197Ft80YaG8OcMDGO2310R1AGB+auPzapFAfa9nOgrY2n163llNNO56xzVuH1FK5XeXR0lI6Og/m3bwztBw7QfuAAT619khUrT+bc1ecR8Bc+AejtnUrGpuvu7qK7u4tnNmwgHk9w4UUvpXoRP4gWo739AMPDwzOmT0xMsHfPHvbu2YPH4+Gss8/hzLPOKlrP4c4dO/JOHxoaYsvmzWzZvJnKqiouuPAiWlpaALjk0sLGMDIyQtv0M9gcPd3d9HR38+wzG4jGYlx40Uupra0tbACOrq4uurtm/iDNbp/r1j7JipNPZvXq8wrec5g2V9vYs3s3e3bvxuv1cs6qczn9jDOKVgqya+fOvOcOzNU2Cm10dJT9ra1552W3jUg0yoUXvbRoJSk93d10HZ75i8YYw8H2dg62t7Nu7ZOsPPlkVp93/lG1jWJexeKaeeZ/G/sycGqpSJcYZHpu7eZjLC/iWWzvyjwJ8uQoxkzmf6XLg3ircmukRRC3f1oyucAe5FkT5JSdZM4Sv3grEX/1VLmFWBhjEG9F7noX0oOcmWZl9TxbkJq0f5DkDcFCgnW40j3IHv/Uay23HZslnNXfgVjCc1XhaTXLOPsut245uwc5NdLLjJ50hztUg782TKC+GV9lXaY3OpvLF8BfVY/lElyWhcUsPcgWuMTCjA0zPjKYf3seL7XhCE2xOPVNEQJ+P665suksFdU1ObXEIoJJTdI3S9eRWBYN4WZi8SSRWJzKymrcPzz6P1eNTc0MDQ4wODiQd77fH8iUO0SiMbzewpc0BYJBEsmWnF7kNK/PRzxdbpFIFLXco7GxicbGJg4d6siZ7nK5iERjJBJJWlqWFb3m8oQTltPb28vQYG67C1VUZA5ll+KQ+ulnnMnG55+bMb2hsTHnkHq2ZzbY92efU5gYgsEgJyxfzq6dO3OmW5aV05te7BKYpnCYpnCYjoO5P+R8Pl9OuUWxy5FOOGE53d3dM9pGRWVlTrlFsWukTzv9DDY+/9yMJHmutlFowWCQ5SeeOOOHnGVZRKLRzP4odilOY1MT4eZmDra350z3er2ZIy2FKsUpW4mFWhoytb+eSvDmr/21AnUQWOSvxbl6RU2KVNeW3MU9QScxr7IT4Tysyvi0bRz5SXoAqcEOzMSBrMXc4Kuyyyq8Vc4Je9NPXhJc9ac4AaWT4iM7SQ+xSPXswfRPJcji8iJOQiyBmswJe9MPaVn+alyJlyCW8K9HeJJeariHoR1rspJuF97qRvy1zc4Je4HMiXmzqYycQE1s+YJO0nNbFvuefignQfYFK6lrjlHXHKemvgGP25U5SW8xzjj3wpyT9CwRdm/bxAtZCbLP57NP2IsniURieHzezEl6hSAiXPbaN3DX7bfmJMg1tXVOSUWSBqecIPvydYVWU1NDbU1tJkGurq4hnrDrbpvCYSxXaU6IisXjPLHmcQACgeBU7W/WoeLi7YXcOB5/7FHA/vJNJxz19fVF33a29PYWU9rxt5+x7wt1kl5VVVVm3wcCgZzPJN9JlMUSiUQyPbfVNTWZzyQcDpf0hL1INMrwIw8D5By+L1bP+WwaGhowxpS87CdbRUVFpg34/f5M24jF4yVvGyMjdsdVVXV15jMpRtvQBFnlZQWbnDrjrGS0yCfGpZnhLgwm00tsXz2itE3VmBRmqMOpubavYIE35FwpokT7YXKMVP8BxBtCgg1IqBFx6ozTV6woppH2bVgeP96aJny1zfiqG3C53fMmxUdqqOcwA4cPUlnXRE04Sn1znFBlpXOlCruXuVAmJyfZvuk5KqtraHZOymtoDDsJseQt8xh42cVHvc9b9+2ht7ebaCyRuYpFRaXdG+dUvRTd2NgY3T3dnH/BRSSSLVSX8ASbbJ2dnZywfDmJZGlPNpoRx6FD/NnLX1GSWtK5jIyM8OrLX1vykwOzjY+PU1FRyRuvfHPRa7/n0t3dzWmnnU6ypaUkJ4C96pL807sOH+blr3gliWSyaGUcCzE8PFz2tjExMUEwGOKKN11JU1NTWdvGySefQrKlpWhlV2lFvcxbMehl3orv+uuvJ7DqupkzSnSZNzMxDC4fi7q83EJ6hhe6nAhmchxI5V5ebnrP7/T1Ffoyb5PjTlmL357uLDfrJd3yTTvCy7yBgdEBvJU1s1zWrfCXeZscHsDn9+Pz+XBZgscS5+Q+Kfhl3sZHR0hNjlNZWY1AJlY7SS3eZd56e7qoqKjE4/E4H/NUD3V2glzMy7xNX2bGS/KtowiXeVuIUlzmbSkr9GXelHoxOOYv86bUbOa95nEpYnCV7pDRrDE4dc1l2bZYWMHi/jqfzheqwl2it+vzB7Ck9O2sprauBEUDSimljpYmyEoptQAt774KgL3/d0uZI1FKFdKVV9j36eGwlQJNkJU67n3p3HdgHW/HlsvAGpnlaiJKlckNXyx3BMeHPFdyU0oTZKWOd2ubVpZtqFalVPFc9NJyR6DU8Uu/NZU6zp3XsZXzDm6Zf0Gl1JLy+GP2TSlVeNqDrNRx7u/X35i5ioVS6vhx/T/Y93oVC6UKTxNkpZRagL5LX1v0a08rpUrvdW8odwTqWKQJslJKLcDhj3ySrMsRK6WOE5/+63JHoI5FWoOsjjmp4cOkRnowqYmyxWAmRkkNtGPGh8oXw9gAqd59mLHB+Rcu9LZNiuEDWxjvO4QxqZJss/9QG517tzE2XPz3Ozw4wObnnqa7q5NSDpa0e+cOtm/dwvBQ+drV+Pg4AwMD8y9YgjiOBalUadr3fI6FOI6FGEDjmO5YiONYiAFKG8eS60E+ePDgMTPi3PFssnubPcyztxLcwZIOKykuH5N9u+3H7qA91LSvCnH5SheD20dqrJ/U0EHE8tgx+KvBWzk1wl+xeUKYw9tI9e61h7wONSChegjUIuIq6qbT73Fgx1ostxtfdRO+2jC+mjCWrzifQ6C6nu2PPE775qcJVtVQH45RF4lRWVtf8CHQAqEKujo72P7Cs/gDQSKxOJFYgnBzDI8n/yAxJ7z1dQDsvumuI95uXUMDf7j1Jowx1Dc0Ek+0EE8kqKtvOOJ1Lpbb7eb3t92KiJBIttCSbKGhDMMK9/f386c/3k08kSCZbCESjeJyFbdd57N50yZ27txBMtlCsqWFmpqakscA8PBDDzI5OUkikSzb0MapVIrbb/sdDQ2NJJLJsg1t3N3dzUMPPkAikSTZ0lL0Ya9nG5Fwy+bN7Nq1MxNHsYc2ns2jjzzM2NgYyWRL2dqGMYbbfncrdfX1JJMtZWsbvb293H/fvZnPpJjDXi+5oaaj0aj58Ic/XO4wjmvXX389nsSrMs/FcoGnwk5SPZX28ywmNQGL7WWcpz2n+vZiJkdzFhaXF/FW2Um7J5T7jyJreOiswPNsN9+GZw41DWDG+0n1788NWix7P/iq7ZvbO2N7ZnLMWe0RDDVN9nzBDHeR6t2LMx608zI3VrAOCdVjhRqw3N4ZQ01jUsjkGGIJZ/TswxKL5+uTcw81zdRQ0yJAaoKhnWsQDJblDJssgreyDn9tM/76ZryhqjmHmjYT40hqfMZQ0yIzh5p2WxaHd71A74HdzvDQ9lv2+vzUNkVpiMSoC0cI+L2LHmp6fHgIQyoz1LQl0NPZwTNPPmrvdUvseS6LpuYY0VicSDxBKFSRGWr6xLdNJchHOtT0QH8f69euYX/r3nSrBoFgMEQikSSWSNAcidpDUWc110IPNb1r104euO9PmfX5AwEnMWshGpv5I6FYQ03fd++f2L1rJwAut5tYLJ5JAgKBQEmGmp6YmOA3v7qRIadXv7KqKpMsNzc3l+wSiZ2dnfzulpszz5vC4UwctbW1eV/zzAb7/uxzChfHxuefZ41zaQy32000Fst8JsFgsHAbmsef7vkje3bvBiAQCJBIJu3ELE/7PFqzJciTk5P8+sZfZtpGdU1NJjELh8MlaxtdXV3c8tubMs8X0jaKYdMLL/DYo48A5W0b9937J3bttP9u+P3+TNuIxeMLahsLHWpaE2Q1w/QEOcP5dhFPKNO7LC4fqcF2UsOdi9vIon7x5fvWtzLJsngrEJeHye7tmInsQ9f5EuSFxCKzzJMZ08QTRPw1drLsrcCYFJMHN+Qul5PIZ8WUL2m2M9ys+TJ1n06QRTJJFyJY/mqsUAOuUAPir0CcxHqi7dlMwpz+MSFOIijOa9NJtWVnv07SLJntpBPj7AQ5nfhZluD2B/HXNROoi+CvacTlduUkvX17NtHfuiUzTbCTU7GmElVx7i3Lsu8zCa/9li1xklcLXJZFXThMQ3OcpmicUEXFghLktQ/cTc/hDkhv39kH6U8jHVt6v1rOfU1tPdF4gmg8yeqPvgfhyBNkDNz4sx9Na025ia8IuFxuItEYiWSSeML+4ilkgtx+oI277pwaMmz6SyzLIhKLZRLmioqKoiTIz2zYwIann2JycjLvYo2NTSSTy0i2tFBXVzffWhckX9z3/PFuWvfty3vo1uv1Ek8kSCSSxBOJovbc/fxnP2VkZCTvvIrKykwiEo1Gi5aYdXR08Me77mR0dDTv/IbGxkwcDQ3FO+rx3LPP8vT6p/KW4ViWRdRpn8kWu30erdkS5Pvu/RN7du/O2zZ8Pl/m6Ec8kcDr9c5YplB++YufMzSYv/SsVG3j0KFD3H3nHXO2jfRnUsy2sfH553lq3dpZ20YkGs38eJitbSw0QV5yJRaq/Mz4IJhJ++YrzBfX4oNIYcZ6wUwAKfCXJw4zMQzDk5CaAHGBu3RlIJkYRvpIpSbATOJyuRBv7i/5i3v2IyI8UBMr+LYnR4cY6dwPqUksSwjUhQu+jWzGpOjpaMdMTMDkOPHlK3AVMWnp7eliYmKMifFxVk2M43YXtucqn8nJCfa37mNifIzx8TFWnnwqXk/xvnynS6VS7N+3j7HRUcbGxjj5lFMJ+ANF2M7krMkxwKFDHYyPjTM2NsrJp5xatMPb4+Pjs9Y1jo2NsXvXLkZHRxkfH2flyScXrQxktuQYYKC/n507tjM2Zicn8XgcgPuchO6SSwsTQyqVmjUBAug8dIjR0VFGR0dxu91FK0eZmJiYtUY9lUrRum8fo077POXUU4v2w2VsbGzWtjE6OsruXbsYGxtjfHycFSuLNyDTyBxD/c3WNgrNGLOgtjE2NobL5Spaz/Z8bWN/aytjY2OMjo5y6mmnHVXb0ARZLYwI4qlwem0rEFfWF7anAmuxdbnz9CCbkR5Mamzmyyy3XWKR7jlO1+KKIP46JFWZvXCe7eaLZfpyzkKpcVIjXfnD91Qg/mq799jtz6zHGINVEbWfZ0osZGqdYmV1AVpZ0/L0JotgJkYxQ3l658VC/FVYFQ1YoUYsbzDTG2zHF8BVdwJiwee23gcCj5z08qmeUrvr1uk5xim1sHuHXS47XktgrHMnMPMokztQib+uGX9dGF9VPS6XK9PznM1f3YDLZdmlEC7BQqZKMcTuFRan7MJlWYz0HmKoq2PGeiyXi9qmZuojcZqiUQKBYKbEYiHiy06isTkC2D3TgjA+OsLeHfkHUKlraCISTxCNJ6iprUOQo06ORYQzzz6XA/tb6eyc+R49Xi+xeJx4IkksnsTv8xW69BqwDxOfdfYqnn3m6Zzp9iHTOMmWFuIJu8ShmE5YfiKdnZ3s27snM01EaG6OkHB6xGqqa4oaA8Dq887nvnv/xGDWiYvpQ/qJRHLBh22P1qsuuZT778vtwqyprc30DobD4Rm1ll/7in1fqAS5traWc1ady4an12emiQjh5uZMHKWo0T7xpJPo7DzE3j1TbcPtdmd689MlOMX2ktXn0dvby0B/f2ZaMBi020ayhVgsVpI63ItfdQn333dvzgnF87WNQqupqWHVuS/h6fVPZaaJSE65RynaxgnLl9PZeYjdu3ZlprndbmLxeKY3v1DlHpogq1llklFPhZ2MWvmbi3jt+Ytb+ez/mM3kGKmhqQRC3P6p2mN3YNY/BFZgWi/yQmuQpy/nLJPqa82a5pqqPfbXTO2LaesTEaRyeoK8iBrkafMnO7dmhemGoFN3HKxDXO6c8omcODxB3PUn2CUVHj+I4GlYPncNsmTXIAsTvQfAmMyxf09lPb7aZvy1YTzBikyiO9cfZn9tE6H68IwaZMuaWYPsEmHn41MnwHkDIWrDEeqa49Q0hPF67PINr3vxXwTxE07CfqtTZRcvbFibme92ewhHYkRiCSKxBAG/f6r0xNF7xVULqB+Y26lnnMW2LZsyzysqq0gkk8QSScLhZlyuqTKaYgkGg/T399nbD1U4XyrJqZPkivs9mxPHwfZ2vN7SHarOZ2JigsGBAWrr6jJf9MU+KSyf7u5uLMuiORLJJD5VVVUljcHn89HefiBTWpL+THxFOjF3Nn6/n/YDBwhVVGQ+k0gkUrTe+6vfkn/6xMQEA/391Dc05JQPlLpt9PT0ICKZ8oFytA2v18vBg+05bSMWj5f8hEG/38+BtjZCFRWZzyRapBN8NUFWeblqloPLX/I/BABm5LDTW+3UObvLcMbu5BhmvB8r2Ih4q8FbgVhZPb6liGFsEMaHsKpiSLABAjWI5Zo1KS7oto1hrHMP3roovppmvDWNuD3eTFJcDH3t+3C5PdSfdAa1zTGqauqcumPJSVQLYWR4iEPtbZyw8lSao3GawhE8bnemdjifrr/8YHbJ8BHZsW0LVdU1nHbGWcQSCaqra7NqhEtjbGyMurp6zjp7FXV1dWW7rvPg4CCXvvo1JT3ZKR+Xy8Xbr3lnQWpZj0a4uZl3nfWekv9AyDY+Ps6qc19S0pMT8xkZGeENb3xTwWrP5/Phj+af7nK5eMc730UoFCpJHLNpCod517vL2zYmJiY4+5xVx0TbeN0brqC+vr7o29IEWeUl7uIfvpp128Hw4ks2Cs1y46o/tWTJcF6eAK7ouXaPslgljsUQOulC3G6rqElxtsqmGPWxpFNuUdztebw+XvW6K50TAFnQ9mR4yM5iA0f+ZXnSylM45dTT7fWVKTP1er2cVcjLHhyhUp59P5dwuLh18wtVrNrRxfB4PESj0XKHUfLe0fRlyacfmW9qaippHLOJxQp//shiud3uF13bKNo3roj8j4h0iMjzs8wXEfmWiGwXkWdF5NxixaKWlpJdZ1hjmHPbpT56YJXwGrhHcjhu2XuuZtm7ry75dpVSxfXmN9o3pbIVswf5J8C3gZ/OMv91wArndgHw3869UqqAPnPRX02Vhyiljhvf/k65I1Dq+DVvgiwi1wE/N8Z0L2bFxpiHRGTZHItcCfzU2KdlrhGRGhGJGGMOLGY7Sqm5ba8u3rUxlVLls/Lkckeg1PFrId+azcBaEfm1iLxWCnfcNQbsy3re6kxTShXQ5fue4jV7n5p/QaXUkvKH39s3pVThzZsgG2P+HrsM4kfAe4FtIvIVETnxKLedL9HOO6yfiHxIRNaJyLr0kI9KqYX52MY/8NGN+i2q1PHmm/9u35RShbegGmRjjBGRdqAdmABqgZtE5B5jzN8d4bZbgUTW8zjQNsv2vw98H+yhpo9we0opdcS63/qu0l2LTSlVMu9+T7kjUMeihdQgfwL4S6AT+CHwt8aYcbFPsd8GHGmCfBtwnYjciH1yXq/WHyuljlU9b/uLo74OslLq2PPuvyx3BOpYtJAe5AbgKmPMnuyJxpiUiFwx24tE5JfAxUCDiLQC1wMe57XfBe4AXg9sB4aA9x3JG1BKqVJwdXWCQKqusdyhKKUKqLPTvm9oKG8c6tgyb4JsjPnHOeZtmmPeNfOs1wDXzrd9VR5mcgxxlWfUntRgO6QmwFuFeENluR6wmRgl1b/PHlraV1WWgVPM2ACpnj1IsB4JNiC+0o30ZUyKwZ3r8QSr8NaG8VbWUey+054DexjsaKW6KUptOIpn+lX7C2h4cIANTz5CcyROczRO7QJG7Ep++N0A7L7prnmWnN2WTRvp7DhIPNFCNB7H5yv9KJFjY2Ps2b2LeCJJIFC+AYH6+vowxlBdXV22GAC6urqorKzE4/GUNY7Ozk7q6+vLMnpp2vj4OIODg9TU1JQtBoCBgQFcLlfJ2uc7327f//He3Ok9PT1UVFTgdpd3TLXDhw/bo16WsW1MTEwwMDBQ9rYxODiIiBAs4vdDmo6kp/Ka7N6GuP32UM+eCnAHSjbyl/hrmezeBqM9gCDeCsRbZcdSoqRd3D6wPKQG2mCgDXH5nGS5GnxVJflDJd4KQEh174Lu3YgvhAQbsEIN4K9a8A+Hj7782kUP1Sxi4a4OM7J/I6OHduLyePHVhPHVhvHVNGEVYcjT6nCCzu3P0X9oP20vCFW19dSGo9RFYlRWF3bI2UCogorKKjY9+xSbnn2KispKItEEkViCxnAEy12cAT1OOHEFzz39FHt278QSoaEpTCLRQiyZpKa6pijbnM7r9bJn9y4eefhBGhubSCZbiCeSJRm6dXocv7rxF1SEKkgkkySSLWUZdrq/v5/f3XIzkWiUZLKFRDJJZWVlSWMA2L5tG3ffeQfxRIJksoVYPD7v0MI/+klhY/B4PDxw/32MjY2RTLaQbGkpy9DCLpeLX9/4S2rr6jKfSanbJ9g/4m69+bc5baMcQ5Lv2L6du7ZuWVTbKDS3281DDz7AyMjIMdE2amprSSSSJFtaitY2xO7IXTqi0aj58Ic/XO4wjmvXX389nsSrcqaJ5UZ8VeCptBPWrOTMjA9hJkcWuZW5EzYz0omZHJuxbCZp91Y5SbszT4TUaK/d8zwVdJ7N5tnu9OXSi0yMkhrunDnDciO+SsRXg/irEcudWY8xBjPSlbstkazHVlYM6fW58i+LBeNDpAYP2ss6f4hEBHF5kGAdVqgBK1iP5fbY+0Ls+UyOYoa6nGnOUNECVnqEPEsQETtxFrCsqekuZ56IYfTAZgSDZYkTmmBZFt6qevx1zfjrmvEGK7CsqSGpXVn34wM9TA714rIEt8ter0uylhPBsuyhnl1iMXS4jYHOA1giuJy3bIngD4Soa47SEInREG7G43bjdtbhEpzlnfWK4Hbem8u572zbx/jYCIKzTYGRoQF2bLIH+rQswf4P3B4PzZEokXiSaCyBP+BHEE582+sAuwfZ2W3OfnI+ScFexxzztm/dzO6d2znU0e58+lNFzVWVVcSTSeKJJOHmCC7LmmoWWctlWk/2vLma97TlxsZG2bplM+vWPpGzvlCogkQiSaKlhUg0mjPqX/Y2ZtvO1LLzcBYYGhpizeOPsXvXzswsr9eXkwT4C9zDni/u3t5e7rzjDwwODGSm1dbVZb58m5qaSvKDuLW1lbvvvCPz3LIsmiORTGJWiiF2JyYm2Pj886xb+2RmmtfrzXwm8UQCn89X9DiGh4d5/LFH2bVzqm2EKioyn0l0Wvs8Wq+51L6f3oPc19fHnXf8gYH+/sy0uvr6TILY0NBQkrbR1tbGXXf8gXS+Vq62semFF3jyiTWZaV6vl1g8nmkbfn/xj4gNDw+z5vHH2LljR2baYttGwCNPGWNWz7ctTZDVDPkSZCAniRN3yO7V9VVihg9PSyQXYFF/VPIvK5Yb8VaCtxLxVZPq2YGZyL4MYL4EeSGxyCzzZOY0EcQTsnuXA/Xg8jB5cEPucjnLWzmvzUzLTppzXidT99kJcjocEUQsrECNnSxXNGJ5A5jhLibangWBtxzeCSLc3HAikk4EM69NJ86SeW5ZktlOOjHOTpDTiV96midYib8uQrAhir+6PidB7tuzif7WLZlpdoIKYqWTV2c7TpJu2Tn6jARZEFyWPc/jcVPfFKExEqMpnsTv882bIK994G56DndAevvOPkh/GtkJMunpTmz1jU1EY0ku/8fP4Ha5jzhBxsCNP/vRtNaUm/imP3qv10csFieRTBJPtuD1eAuWILcfaOOuO6cu+5fvn4Tb7SYai5NsaSHZsmxGolqIBPnp9U/x9PrZr88tIjQ3R0kkkpywfHlBeu7yxX3HH37Pgba8F1ACwO/3k0gmM8lIsYYL/9EPvj/n/OqaGpLJFlqWLSMcDgPwm1/b8976tsLE0N7ezh9uv23W+SJCUzhMMtnCshNOKFpi9vT69ax/at2s891udyYxa1m27KiT9tkS5LvuvIP9ra2zvi4YDNpHPxJJEslk0XpTf/yjH5JKpWadn+5NzW4bhdbR0cHtv7t11vmlahvPbNiQ8wNuunTbSCSSLDvhhLxtY6EJspZYqEUTy2v35Lp9IGVsQi4fuHx2LGWqzRLLjbgDdo2yq0w1jG6fXavtDUGeEpS/OrgJsBPkQhPLjTtQhTtYidsfKvj68/GHKghWVROsqsHtKe5hRr8/QFV1DVXVNbis4iRG+VRWVVFdU0t1TW1ZamOrqqupraujpqa25Idy04LBELW1tdTW1ZWtVlpEqKmtpba2jpra2qIlx/PxeDzU1dVRW1ubU7P9g+/Z94VKkOcTCAYz+6IUNaCzqaquzsRRrvZpWRbVNTXU1NhttFyjlXo8HvvfybS2UWqBYJCa2tqyt43KqqrMZ3K0bUMTZDU/we4x9qXrgKf9IvPX4fIusmZvnoQ2NdCGmRyd9hprqhbZWzFV2uCwKmNgUjnL59nw/LE4z834EKnBmVceFE8wU48s3qyk0CmxcNWfnLve7B7i6Y/B7ibN25tsYUZ7SfXl6cHwV2OF6u2brzLTs5vpZfRV4Ymfa/cY73gIQfAlV9vPRTL36T/qOSUWTimEmEmG96xn+vg9Ll8AX20zgbpmfNUNuNyuTInFdBXNLYTqw7hdgsuy7F7drB7mdJmFywKXZdG7fwd97XunfRwW1Q1h6pujNETiVFZV2L3EzntYiNPPvYDJiTG7J9rpVe7r6eKFp2f2RNTU1hONxYnEk9TVN2R6l7ve88EFdI/OTkS47LVXsPHZDRxoy/1M3W430WiMWCJBLJ4kFArl9CgXUlM4zMtfcTEPP/RAZpplWUSiMftQaYnqLM8+ZxV9fX3s2L4tM62xsYmEc/i6rq5uRmlHMbzm8tdy029+nSmxKEdJAcBVb3krN9/0m8zzisrKzKH8SCRSkgSsubmZl/3Zy3n0kYcz0xoaGzNxlKoO+JxVq+jt7WHH9u2A3T6jsVjR6oA/OMtB6Ve/5nJu+s2vMyUWPp8vp22UKjn/86vfws03/SZTYlGOttHU1MTLX/FKHn7owcy0dNtIJJM0lOgSIGedfTa9vT1s27oVSP/timb2RyHbhibIKi+xXOCpyJykJ5ZrloQT+8S5xZ48N8c3v13TPOrE4c1cSQJ3cM6EaMaVJo64Btlexq79xUnMK6eSYvfsX5giAukfC9ZCE2TXrPNTPbszy9hXs6i3Sync3kwJQN44XB7EXWMnwpYbRLCCNZlEOCdBFnKmu1z247FDO8AYsAR3qNY+Qa+2GW+oKlNvLHmS4mxufwhXsAK3S3C7chPkdA1xOlmWyQlaO9vt1/l81DXFqG2OUNsUwevx4nZqlY9EZXWt/TskK0HetfUFwD7po6k5SiSWIBpLEAxV2B/dtP3b96arsysijkhFRSUH2+3D+cFQiFiihXg8QTgSxeN2l+REWJfLxeZNLxAIBIgn7NKBaDQ21VNdooMxAwMD7N27h5ZlJ2QSjnL0FO/csQPLsjj9jDPLduIRwHPPPkO4uTlTS1lbW1vyGFKpFC+8sJGWZcsyZQPl6A3s6+vjQFsbK08+2W6fsVhRj6TM1gO/c8cOXC4XZ5x5FsmW8pxECvD8c8/SFA6XvW1s3Pi8XXblJMXlaBv9/f3sb21lxcqVmXMVitU2llyCXK5DXC82Vu3JZStbMOODWMFm+0Q4l2/WxLyoMUyMIi4vVmi5XeOc07NbohjGBhBfFVbtMgjUIi7PVN1wsbdtUqTGRggmz8JXG8bt9WWS4mIZ6OqgPnEiNeEYlbX1eF2W07Nc+G0ODw7g9fk4/+WX0hiO4PN6nFrn2XnaWkFgIpqYY6m5te1v5YyzVhFPJKmrr4d0PXgJjY2NccGFL6WhsXGqnr0MvF4v73zXu8v+Nz3Z0sLKk08uawwAF1x4Ucl6q2djjOFNV7657Jc1CwQCvOOd7yrZd9C+ffZ9Yto/7WRLCytWrixJDHM57/wLjom28cY3XVn2tuH3+0vWNpZcghwOh7n++uvLHUZR3HDDDeUOIaOc11u0guUfiEHcPqQqUZbkPBODt8LuORcpeRwiFsHEGbhcxU2Ks1WH47gj8cxVNIopEKrg7PNeOm9SnC3+yQ8CR3cd5JNWnlz2kfi8Xi+NTU1ljoKSnPG+EMdKHOVOgODY6YAqdV3xB95r308/Se9Y+Ezg2Ijjxdg2llyCrJRanPdd/KmynUCilCqeX/yq3BEodfzSBFmp41yXv0oTZKWOQzo0slLFo9+aSh3n3rH9Qd6+7YFyh6GUKrCf/a99U0oVnibISh3nrtn+IO/Y/uD8CyqllpSf/dS+KaUKT0sslFJqATo/9PGSXQJNKVU6n/x0uSNQxyJNkJVSagH6X/36o74OslLq2POGK8odgToWaYmFUkotgHfHVrw7tpY7DKVUgW3dYt+UyqY9yOqYYybH7NH5yhlDagIQxFW+35BmcgwsD+Iq/T9TY1KkxsdxuUo3stn4yBAuv98eWbDIxsZGcYks6vqisc99Eji66yAPDgzYw0iX8TrjSqlc133Mvp9+HWT14qYJssorNdJjD1RhlSE5G+kmNdpjD+/srZwaya7EUoc3gSeYGepa3CUeUMAYJvc/ifirkWADEmpEPIuP4R2XfXbRl3kTsRja/TQiKXw1zhDTFTWL3vZijA72s/Pxu6lpilITjlLXFMXlL84PJUG4/85bqaquJRKLE40lqKyqLsq2sh1sP8CGp54kFk8QTyZpjsTxeos3hG4+Y2NjPPnE40RjceLxBL4SD8qQ1tnZyaGODhLJJBUVFWWJAWDPnj1YlkU0Gi3rYAhbNm+mvqGBhkVcu+3W2wsbw/j4ONu3bSv7Z9LV1UVPdzfxRKLkg4Zk27dvHyJCJBIpa9vYumULdfX1i2obhTYxMcHWLVtIJJNUVlaWLY7u7m66Dh8mnkgUfQAVTZBVXqmB/QCIJ4B47ERVPKUZd10C9aRGDmNGumCkC8RlJ+veKjuOEiTtYrntOIY6MGP90A/iDtjJsr8GPMXvBRS3DyvUSGrgIGa4B7p3It4KrFADVqgBfBULimHY7Tui6yD7mk9ieNc6hof7GD24HZfXj682jL+2GV91IxT4c6ioD+OvqKb7wB562/fSagnV9U3UNkepD8epqCrcH2WP18uyFaew9bmn6TzYxsYNa6mqqiESSxCJJ2lsbCrK57ts+YlsfPZpdmzfys7tW7EsF+FIhHiihUQiSUVl8ZMSr9eL2+XmwfvvxbIswuFmkskW4okk1dXF/5GQVldXx733/JHHH3uEurp6ki0tJJItNDQ0lLSHvbKyklt+exNut5tYPE4ikSSRTBIMlubvXdrk5CS/u+VmgsEgiRa7PcRisTmH9i10iB6Ph7a2/Tz26CPU1tWRTLaQbGmh0RmWvFSqq6u5+647eeD++2iOREgkkiRbWkraPgFCoRC3/PYmPB4PsXicZLKFRDJZ8tEXp7eNZLKFaDRa0mGf3W43Bw+28/hjj1JbV5f5TJqaivO3cjbptvHgA/cTbm7OtNFitA1NkNWczPgwZnwYhjoQly+TqOIJZnp1U6M9mNG+xa14nn9QIhbGpJwgUpjRvsw2xBNwkuXcXt3UYDtmcjRrLXmSwnzbnT4t/Tw1mTPZTIxgJkbsfWG5wVeF+GvsOJyyAGMMqZ4duesRyXqcFVP6sWWROfUrZ1mZGcPYAKnxQUzPHnD7MKF6O2EO1uWUYqRG+0l170UE/qp1PSLwo+RqxLIQEWczYn+GApazXbHsoaXTy9j/M/Y6x0cYObSX0c59WC4XvppG/LVhAvURLH/+b+rBQ62MHm7D5RJcloU427IswSWCJSDpx5aQmpzIerOG/q6DDHZ3sH/TM4QqK6lvjtEUi1FT37SoUoytz29gaKAXQeztC0xOTOQs09/Xy0BfL9s2P4/f5yccjRFLJGmOxPB6j76nwhjDYw/dj2T9WEmlUhxo28+Btv2se+IxauvqiCeSTqJYnKSkr6+PCWc/p1Ip2g+00X6gjSefeJzq6hriySTJZAtN4XBRB5jp6OigqqqKwcEBuroO09V1mA1PrycQCJJIJkkkksTjiaInAb09PYQqKhgcGGDP7t3s2b0bgMampkwSUF9fX9QYwO69BRgaGmLLpk1s2bQJt9tNJBrNJAHTk/bv/bd9/+GPFiaGwcHBTK9cd1cX3V1dPLPhaQKBQOYzicXjeDzFPepx+PBhqqurGRoc5EBbGwfa2njyiTVU19RkPpNwkdsnQF9vb6Zt7N61i927dgHQFA5nkuW6urqixgB22xCRGW0jGotl4ij2D7qhoaHM38F023j2mQ34/X4Szt+MUrWNmpoaBgcGaD9wgPYDB3jyiTVUVVdn9kVzc3NB2oYmyGrBTGosq1fXQrxVWMEwTIxgxgqbIM8ZRzppHzyIuDyIvx4JNmLGBjATQ1lL5kuQFxKLzDHPiSE1AcNdmJFuQBBfJVZlwk5aR7pzX5u9jpwEOStpziwzLUHOfj7d5Cip/gOY/nYmLQtXqAFXw4mINwiTY6QGOkDgz9ueAYTv1yYRSxCmkl8RyU2QnUTV3rzzOM/mTWqSsZ6DjPceZGDPc3gra6lKnEKwIZKz3PhgH4Od+3GlE2+mJcVOom4JWJZl38/ydkcG+zmwczMdu7fg8XiJJJex/LSz7LrleXQdaqfncAekt+/sg9n+hI6NjrBv9w5a9+y0e1mbo7RMjON2H90f/717ds05v6e7i57uLp5/9hkCAT8nrTiZM88+B6+ncIeZBwcG2DbLGUm9vT30PtfDxueexevzceKJJ3HOuS8h4C98LfqBtv0cONA2Y/rw8BBbt2xm65bNuFxuEokkq887v2i9h5s2vcDgwMCM6Yc6OjjU0cH6p9YRqqjglFNO5cyzziraofZ1a5+cMW1iYoJ9e/eyb+9eHn3kYRoaGzln1bm0tLQA8Nub7OUKlSD39/ezZfPmGdOHh4fZumULW7dswbIs4okEq887n9ra2sJseJr9ra0caJvZNnp7eujt6eH5557F5/Ox/MSTOPclLylaj+7mzZvyto2OgwfpOHiQdWufpKKyktNOO53TzzijaAn7U+vWYozJmTYxMcHePXvYu2cPwIy2UWgDAwNs3vTCjOkjIyNs27qVbVu3YlkWsXic1eedX7QfDm3797O/tXXG9L7eXp5/7lmef+5ZvF4vy088iZesXn1UbUMTZLUoYnmmaoM9Ibun155T2jgyvciViDuQ1fOanYzmfeX80xaYvNu9yNV2jbC3CnF5nF7vrGQ3fZ9Z5bTHme3l6UGeKzlOc3mdkot6rGA9kvPlLTPXjd1jjJMYp3uQ8yXl8+4GsfDWNBKoayZQF8ETyNODkdmG0yuNnRxn91CLxdR8MTPXkcUXrKApFqehOU5dYxMe98KSFRHL7j2HTC+yCJBKzfoaj9dHJBonGk8QiSbo8niOupmLZYExM77sstXUOr3IiSSNRTh86Xa7qaqqpq+vN+/8qupqEkn7EH+4QD0x+QSDIUKhCgYHZyYgfr/dY9mSXEY0Fitqr1RtbR1dhw8zOjo6Y15DY2OmV6rY9Z/NkQjtBw7MmO5yuYjGYpme01AoVLQYvF4v9Q0NHO7snDEvu6cwGosVtTa4srKSyqoq+vtmdrwUo6fwc1/IP722to7OQ4fyto3GpqZMz36xe5GbIxEOtLXN+LuRbhvp/VHMtuHxeOZtG+kjDMVsGxUVFbO2jcqqqsxnUoi2UdQEWUReC3wTcAE/NMZ8bdr8i4HfAelulZuNMf9czJjU4ok7YCeivuq8J6pZoWasUPMiVzr7l75dprDNvopDZnnLKe9w6qGtmV+YrpoTp21joSUWVt5lUiPdpPr25s5y+xB/LeKrtn8gTPsHKGLhjrzEfpLuCs3uIZ7+GOxSgVnmp/rbSfXk9jqKN4SEGuyE2F+FlSmbmHpvVrAe34pX2SUTOx8BEQInXzq1rJXuLXZKLLKmu1z2YzM+xODWh3K2bXl8mTpkf00jLo8Hy5JZ/xDVtJxG/Qmn43YJbpeFJZLpTXZbU49dluC2LNo3raVnf/b7FSpqG6lrjtEQiVFRVY3XPVWSsVAXXPwa7Lea7rkWDrbu4anHHshZrqKqmkgsQTSeoL6xCbfL5fyWEAZf/qrc3zeLJCJc8+7388Cf7qZt/77MdLuHOkI8bte+VlRWTv2YKMLvzsamJk47/QzWPP5oJq5wuJmEU4dcU1tT+I3mcfIpp7Bzx/ZMglxbW5epQ07XvEoJfnivOvfcTI96qQ9bZzv7nFWZBDkYdMpMki3z1iEXUl1dHfF4IpMElavW9KQVK9i8eRP9fX12+3RqTRPJJDU1NQXf3iWX5p9+zqpVbN1i96i73W7iiUSmRj0QKN0Vfs4+ZxVt++3zgsrVNmpra0kmWzJto8Z5nkgmCYfDJWsbJ550Elu2bM5pG+k2Wui2UbQ9KyIu4L+AVwOtwFoRuc0YM72P/mFjjF6m+xiTSUSzT4or0ZUkzGivfam3dG91Ohkt4ZUsjDGYwXZA7MTcV+38QPCVbj+kJjF9rXbvqr/WvopFqB7LE8iURhTzj9LowR1gwB2qxlvThL+2GU9FDS6XZZdLLCJBXYixoQG69+/G7fZQ3RSlvjlGbVMzPr8flwjuAu52YwxbNj4DIjQ0NRONJ+wrWVRWZ0o+pudm/o3PgsDo6Wcf8XY7D3XQtn8fPp+feCJBNJ4kGrN7XIqVEE83OTnJ5k0vcMLyE+2e4njxzwbPp6OjA8vl4qKX/llZr5qwa+dOTjxpBYlksuQnPmXbu2cP56w6l2RL6U9UTBsfH6evr5eLXvqysl6toLOzk4qKCk591SUluVrBMxvs+7PPyZ2+e9cuTjxpBcmWlrJeyeJYaBsTExP09HRz4UUvJZFMUlVVVfIYwK5BDgQCXFyCtlHMvwTnA9uNMTsBRORG4EpgZhGLOua4qpLl27gIrpoT7dIJKFlCmiM1hoQiWL7qzAl4Jclesk2OInUnYgVqEZcnt6d5kV7W/gK33HEDAmxsOIHrX/Z+AL55z78TGey0k3Bn2Q2xU/n6y9+LO1TLj566hdrRwameUxHWLj+XH1/6HgD+7Ud/i39izJlvL/TEGS/j5lf/BQBf/bePZCo90nW/T17wGu57zTvwjg7z6X+9Fnu1QmpiHAGevvytbDjnIqr7u7nm/33Ans/UOjZe9S52XvZGQgfbuOSf/zq3oEVg67s/zKGLL6di93bO+eLfkemHdBbc85HP0H7Oas7zernwd7+2e8+z5u//m+sZXn0BoaeeIPb/TR3QCrzwHCOnnXlU10EeGxvlNa97Iw2NTU4P+AJKWYrgyj+/OtPrX4bNA9DU1MTlr31dmbY+5dTTTit3CAC89GUvO6LXPfwQvMbpAT3rbPj6N+zH73sPOJ2OGRdcCF/8sv34HW+DrsO58191iYfP/7/LALjyChgezp3/ujfAp//afvyaPL2uV7/FroceGoI3v3Hm/He/B979l9DZCe98+8z5H/wwvPVtMDzcwFe+dMmM+Z/8tD3q3dYtU9cuzva5L9i9wc9sgL/9zMz5N3wRLnopPP4YXP8PU9Offcbed9Ovg3zyKafMXEkZXHjRReUOAbfbzSWXXlbuMKivr+dVs3X5F1gxM48YsC/reaszbbqLROQZEblTRE7PtyIR+ZCIrBORdYcOHSpGrOoYYvmqp5LjMhGXD8tfM5UclyMGT9AuozjKGK587T/yaPPikgARC299wrnCRmm43B5cHk9JekcCoQqaIrFF1aiNnHYmPW9+61FtNxpL0NhUusOR+bhcrqKf/a9K44/3wstfUe4olr6zzoa3v6PcUahjjcx1sshRrVjkrcDlxpi/cp6/GzjfGPPxrGWqgJQxZkBEXg980xizYq71rl692qxbt64oMZfbDTfcUO4QALj++usJrLpu5oxC9uQuJkFYyHYXUlu80OUWctWJuZbN1BYffQ1y5rlYmeUy9cZOiYXMNW2OWuP5apAtS3C5xKkxnu9mZR5n1xWna44XWoPstsDlPPdYgiv93CmxcFmSqUFOv94l9lU40nXJLhHcTp2xK/t+Wg2y5bxOIBOr3VM9VWKRPpkvffWNdE+5s6szJxume6AXOm+q6Uz1IOeeK5lbg5zunU8vx/R5eZrjjGbrLDd9mRkvybeOaRPn+uc777/sxfzTL3D/dhl/lyiljhEBjzxljFk933LF7EZoBRJZz+NAznVbjDF9xpgB5/EdgEdEyjdUjFJKKaWUetErZoK8FlghIieIiBd4B3Bb9gIi0izOsUYROd+J5/CMNSmllFJKKVUiRTtJzxgzISLXAXdjX+btf4wxG0XkI8787wJvAT4qIhPAMPAOU6yaD6WUUkoppRagqNezccom7pg27btZj78NfLuYMSillFJKKbUYeiqzUkoppZRSWTRBVkoppZRSKosmyOqYY0b7MJOj5Y1hctSOw6TKF8P4EGa4pywxGJNirLuN1MTY/AsXyGD3IYZ6DlOK0xCGBwdo37+PiYmJom8rW3vbfrqnj85QYqlUqiT7WCmllrLyjKmpjnmT/a32MM+eipIPlmHMJKnubYjL6ww1XQPuYGkHV7C8pPp3YPomM8Ndi6/aHtGuVFw+Uh0bMcYgwTok1IAEGxC3t+ibFrGY6DvESOszeCrq8NWE8dWG8YaKN7yo2+tnx+N34vH6qQnbQ03XNIZxeQv/fv3BEE889CfWP/4gjeEIsXiSSCxBMBgq+LayWS4Xd9x+C6FQBbFEgni8heZotKRD2KZSKf5w++9oaGwknkgSj8XLMrxyR0cHzz37DMlkC4lkEr/fX/IYALZs3kxPTw+JZJLm5uayDaLyxJo1BAIBki0t1NTUlCWG8fFxHn3kYaLRGPFEgmAwWJY4Dh06xJbNm0gkksTi5WmfANu2bqW7u5tkSwtNTU1laxtPPvEEPp+PZEsLtbW1ZYlhYmKCRx95mObmCIlksmxt4/Dhw7yw8XmSyRaisRgeT/G+kzVBVnmZ0V7MaK89MIU7OJUkukqQnPlqkKFDmMkxzPBhGO6yk3RPJeKrRDyVRU/aRQQJNWP6903tCwTxBBF/jb0vPMX9AyGWC6mKYXr2YAY7McNdwDaMvxorVI+E6hFfRdG27wufyERfGxMDXaSGuhk5sBm3P4SvNoy/thlfdYM9eEmhtheqpKa5hd72PXS17qJ3/y5cbhfVDWHqm2PUN0cJhgrzfkWEk884m6cff4iDba0cat/PM+vWUFtXRySWJBpPUlNXV/CRJZrCzTRHYrQf2M+2zZvYtnkzbo+bSDRmJ6uJJIFAcUeRdLvdnLRiJU8+8Thbt2zG7XLRHImSTLYQTySpqCxem8rW1NTEyPAwDz/0gPM8TMJJluvq6koSA0DLsmWs+eUveP65Z/F6vcQTCWdfJPD5fCWLIxKNcs/dd7H2ySeorKoikUiSbGkhEomULDHzeDwEgyEefuhBABqbmjJx1NfXlyQGgMbGRh5/7FG2bN6My+UiEo1mfkhVVJSmfQIkkkkee/QRnnv2GXw+H4lkkmSyhVg8jrcIP9xnE43FuPvOO1i39smytQ23200oVMEjDz8EQENjI8lkS8nbRn19Pb29vfzpnj8WvW0UbSS9YtGR9Irv+uuvx5N41cwZIojLZyfL3spMr25qqMNOZBdjnsTDmMnshWfG4Q4ivio7FpcPRJjs2QUTQ1nLLfAPx4yR9NIxAKRmznBiF8uTSZbxVSKWG2NSpDqet5ezsl4n2a/NXU/O6HnTljUAJoUz3J0zWaZGZ/MEsEIN9i1Yizgj4pnhHiban0ec0fwssXJG2ZvtcWaUPbDvUxOIgGU5o8BllgOXx4OvpolAXTOBumbcPv+MkfT6921hoG1HZnQ8yYxO54xklx7BTsAlFsIkpCad0e/st2yPcGePqldRXUtTLEZDc4yaugbcLmtBI+mtf+Q++roPAVkj5mGYHB+3949lbyO9Xy3AHwwSiSWIxhOEm2N4Pe6jGkkPAzf/6v9IpSaZmJhIj2uXM0KeCNQ3NBJP2H/w0188hRxJ73DnIR55+EG6u7ty1pdWV19PItlCMtlCfUOD094KP5Letq1beWbD0/T19c5YpKKi0klGlhGJRArWw54v7iefeIJtW7cwMjIybVkh3NycSQKqq6sLEsNs/nj3Xezbu3fGdK/XSywezyTtxexp7+rq4tFHHqbj4MEZ80IVFZnELFrkox47d+xg/fqn6O3pmTGvrr4+85k0OO2zWNatXcuWzZtmtA3LsmiORDL7o6qqeEfWAO75493s27t3RmlUKdtGT08Pjzz8EAfb22fMC4ZCmSQ1FosVtW3s2rmTp55al7dt1NbVZdpGY2PjrG1joSPpaQ+yWhQzOYoZHoXhw4ivCivYDCY1LaFdiKP4o2YMZnwQMz6IWB1IoBEJNoKZzI0j34+/vJudVuNrshaa44+vSY1jhjthuBPxVmJVJcHtwxinrjWVlQinQ5lt6OpZEuSc5/limBgh1bufVF8brlADrsaTEG/Qfk+pCYyxv+hNeh3OeMki2NOyEuT0czFOYp6STIKdd9uTE4x2tTHWfYCh9mqqW04j2BCZto9SpCbG7PU4SagRO/lOb9ukh3a2LGf451k3yVBfN/sGejiwYwuR5AmcePrZuBbwpTA5Mc742Bg4Q0anE9m5fkKNDA+xe8dWdu/YSlM4wqrV51NTd3Q9JWNj89fWH+48xOHOTjZtfI6VJ5/CWeeswuspXG/V+Ph4JjnOp+vwYboOH2bjc89y0oqVrHrJagL+wvdqDwz0502O0/M2vbCRzZvsw+znX3Bh0RLUzs5DMxIgAGMM7QcO0H7gAM8+s4HTzziTM886q2hf/vmSY4CxsTF27dzJrp07qa2r4yWrz6OlpaUoMYyNjeVNjgEGBwbYvOkFtmzeRCwe5/wLLiza4f7e3t68CRBMtc/nnfb5ktWri5YYztY2UqkUbfv307Z/P88+s4Ezzzqb0884o2i9ua379uU9b6DUbSNfcgwwNDiYaRvRWIzzL7iwaEeB+vr6Zm0b3V1ddHd1sfH55zhxxQpWrz7vqNqGJshqwcRyI55K8FYi3hAi9heFcXqVC2piZCrRnB6H2+/0YleBO+D0gtrlD1hZTTpvYjlHF9v056lJTHaPdM4ylt2DnS63sNwgll0v7KvOXY/kSXqddWTuhazHWcmymcSMDeSPwfJgheqwQo1YwXost2dqPZYXK1Rv7xfJ14PsTE/3SjvJK05PL07P6+RgJ1PZffYusvBU1uGvayZQH8EbrMTKk9m6AyGCdc1TPctOL69keojT0+we5MnRQcYG+/K+Xa8/QH1znMZolLrGZnxejx3rAlTXNeDxehHs3mZLhNTkBF0d+f/gu9xuwtEY0ViSSDxOwB+cM3FfqGg8SX9vD/39+d9jRWVVptSiuTmCy1X4L9xgKMQJy09k184dM+cFQyRbWkgkW4gUuZewuTlCONzMwYO5n4HH6yWRSGZuxS5zWLFiJb29vQwNDuZMr6mtzfRGNTU1Ff0ciHNWncuGp9fnTLMsK6cXu9g9lRUVFaxYuZJtW7fmTC9lTyXY5SbNbRHaDxzImZ7uqSxFLzbYbaOnp4fBgdy/wele7EQyOWdPZaGcfc4qNjy9PidJLnXbCIVCrDz5ZLZu2ZIz3ePxEE8k7H+vJTiXINzcTCQa5UBbW8707F7saDRakLp1TZDVnMTtlFR4KsETyvuHwPLXgn+RPQlz9sxOkuremrOseEKIN11Skb83zaqITttGnuQi7zHo6SUW9jKpwfacBFlcXjsZ9tfYPxKyE9/MSwVX3QonoDw9xNMfg13HO8v8VPfunARZPEGsUD1WsAECVViWayrpzd4X/kpc0bPtxFfEToSdhDhTRjHLdJfLfpwa7GJo4NBUPu/y4qtpwl8XxlcTxu312gnuHJljRbiF6sgy3C7B7bLssgfnNe5p5Rhuy2LvU/czlpWnBKvrqGuOUxeOUl1bh8sSvG67dGIxTj17NfZbnSq72LVlY06CHAyFiEQTROJJmsLNuNyuTPlHIYgIr7zk1fzhd7/NmdbY1EQ80UI8mcycnJUpoymC6upqQlknIzY2NhFPJEkknVrC4n7XZ4Sbmxkasv99VVVV24l5Ikk460S54u2FKY1NTQwNDmJZFpFoNHPYvLKywD/65xEK2Z+Jz+fLqYMuZa1rRUUFqZR9RK1cta5g16f39/cD5at1BahvaMi0jWgsVpY6aLA/F2NMWdtGKBTKJOgVlZWZz6QcbWPA+cGSbhuJZJKGhoaCb0sTZJWXVRGxr2CRnYwW+Vdymhmx65nFV+OcHFiV6a0uFZOaxAx12om5r9qOIX1S3kJrm482hskxUoMHEX81EqhHKhqdnvup2uFiGjm4HZc/hLcmjK+2GW9lLS6Xa96k+EgNdnUw1NtFVVOU2nCM+nAMfzBg1y8XuO1NTkywffPz1NQ3OnXGSWpr6zK1w0V4ewDs3b2TkaEhki0n2L20sQSBgN3jUqK8lLGxMYaGh3jZn72CeCJJqExno3d1dXHKqaeVpL53Lj3d3Vxy6WUlP/FqulQqxRve+KayXi1hfHyc+voGzll1btmupAF2veuqVeeW9WoJYJd6XHrZq4t+tYT5TE5O8vor3kg4HC5b25iYmKC2to6r3vLWsl1JA+y2cfbZ55SkbehJeseQY+kkvcCq62bOKGRiOGdd7Si4vFO9ogvZ7kJ6hhe6nAgmNQ5I/h8I+eqIs6dneoaPrgfZpCbActuXlhMrs9ysJ9flm3aEPchgYGIEb7AikxDPfbMyj7N7hdM9xgvpQU6NDOEP+PF47NIJj2WfmJdOkN3O43QPcvr1CzlJz+WUcaR7kCfGRhEMgUAQgUysOQmykOlBFqamHelJeoLQ399LZUWls7/tGZmPPruJZWJJz5v6QZQpwMmel6c5zmi26dMCp1cUzXhBnnUU4SS9hSh0D3KJfuMrpY5hepKeWrLEXbpLK80ag1W+3oJMDC5vyXqrZ2xbLCxfca8JPJ2djJdoWz5/0XqJ51JVVV2ynmKllFJHTkfSU0oppZRSKosmyEoppZRSSmXRBFkppZRSSqksmiArpZRSSimVRRNkpZRSSimlsmiCrJRSSimlVBZNkJVSSimllMqiCbJSSimllFJZipogi8hrRWSLiGwXkc/lmS8i8i1n/rMicm4x4znWhUKlHZjhWI1BKaWUUqqcijaSnoi4gP8CXg20AmtF5DZjzAtZi70OWOHcLgD+27l/Ufqbv/mbcoeglFJKKfWiV8yhps8HthtjdgKIyI3AlUB2gnwl8FNjjAHWiEiNiESMMQdmW+mWLVu4+OKLixi2Ahjdtm3mRDmWB8nNE9uCw51jwXnfs+R5KHkWyRefZC8wy7KSu14BybNNmXqQNWvqtSK5r5m+fPb89GOR3MfT5818LlnTp7Zhr2cqHnFel36r2c+z1yuZ9ZA1T7Bkajrp5cjdbva605Fk1p2eNm03Tj3P2sMzd2vO+59aW/bM/K/Jfd20hRexjtnXMN8L8sR6pOb6J1OI9SulVJkVM0GOAfuynrcys3c43zIxICdBFpEPAR8C8Pl8BQ9UzfSK1SvKHYJSSimlVFkUM0HO15FgjmAZjDHfB74PsHr1avPAAw8cdXBKKaWUUurFRRZ4NLyYJ+m1Aoms53Gg7QiWUUoppZRSqmSKmSCvBVaIyAki4gXeAdw2bZnbgPc4V7O4EOidq/5YKaWUUkqpYitaiYUxZkJErgPuBlzA/xhjNorIR5z53wXuAF4PbAeGgPcVKx6llFJKKaUWopg1yBhj7sBOgrOnfTfrsQGuLWYMSimllFJKLYaOpKeUUkoppVQWTZCVUkoppZTKogmyUkoppZRSWTRBVkoppZRSKosmyEoppZRSSmXRBFkppZRSSqksmiArpZRSSimVRRNkpZRSSimlsmiCrJRSSimlVBZNkJVSSimllMqiCbJSSimllFJZNEFWSimllFIqixhjyh3DoohIP7Cl3HEcBxqAznIHcZzQfVkYuh8LQ/dj4ei+LAzdj4Wh+7EwTjbGVM63kLsUkRTYFmPM6nIHsdSJyDrdj4Wh+7IwdD8Whu7HwtF9WRi6HwtD92NhiMi6hSynJRZKKaWUUkpl0QRZKaWUUkqpLEsxQf5+uQM4Tuh+LBzdl4Wh+7EwdD8Wju7LwtD9WBi6HwtjQftxyZ2kp5RSSimlVDEtxR5kpZRSSimlimZJJcgi8loR2SIi20Xkc+WOZykSkf8RkQ4Reb7csSxlIpIQkftFZJOIbBSRT5Y7pqVKRPwi8qSIPOPsyxvKHdNSJiIuEXlaRH5f7liWKhHZLSLPiciGhZ7xrmYSkRoRuUlENjt/Ky8qd0xLkYic7LTF9K1PRD5V7riWIhH5tPM987yI/FJE/LMuu1RKLETEBWwFXg20AmuBa4wxL5Q1sCVGRF4BDAA/NcacUe54lioRiQARY8x6EakEngLerO1x8UREgJAxZkBEPMAjwCeNMWvKHNqSJCJ/DawGqowxV5Q7nqVIRHYDq40xes3ZoyAi/ws8bIz5oYh4gaAxpqfMYS1pTi60H7jAGLOn3PEsJSISw/5+Oc0YMywivwbuMMb8JN/yS6kH+XxguzFmpzFmDLgRuLLMMS05xpiHgK5yx7HUGWMOGGPWO4/7gU1ArLxRLU3GNuA89Ti3pfHL/RgjInHgDcAPyx2LenETkSrgFcCPAIwxY5ocF8SlwA5Njo+YGwiIiBsIAm2zLbiUEuQYsC/reSuakKhjgIgsA1YBT5Q5lCXLKQvYAHQA9xhjdF8emf8A/g5IlTmOpc4AfxSRp0TkQ+UOZolaDhwCfuyU/PxQRELlDuo48A7gl+UOYikyxuwHvg7sBQ4AvcaYP862/FJKkCXPNO1lUmUlIhXAb4FPGWP6yh3PUmWMmTTGnAPEgfNFRMt/FklErgA6jDFPlTuW48DLjDHnAq8DrnVK09TiuIFzgf82xqwCBgE9d+goOGUqbwJ+U+5YliIRqcWuPDgBiAIhEfmL2ZZfSglyK5DIeh5njq5xpYrNqZf9LfBzY8zN5Y7neOAcgn0AeG15I1mSXga8yamfvRG4RET+r7whLU3GmDbnvgO4BbvETy1OK9CadTToJuyEWR251wHrjTEHyx3IEnUZsMsYc8gYMw7cDLx0toWXUoK8FlghIic4v6LeAdxW5pjUi5RzYtmPgE3GmG+UO56lTEQaRaTGeRzA/iO2uaxBLUHGmM8bY+LGmGXYfx/vM8bM2jui8hORkHPiLU5JwGsAverPIhlj2oF9InKyM+lSQE9iPjrXoOUVR2MvcKGIBJ3v8Euxzx/Ky12ysI6SMWZCRK4D7gZcwP8YYzaWOawlR0R+CVwMNIhIK3C9MeZH5Y1qSXoZ8G7gOad2FuALxpg7yhfSkhUB/tc5O9sCfm2M0UuUqXIJA7fY35+4gV8YY+4qb0hL1seBnzudWjuB95U5niVLRILYV/H6cLljWaqMMU+IyE3AemACeJo5RtVbMpd5U0oppZRSqhSWUomFUkoppZRSRacJslJKKaWUUlk0QVZKKaWUUiqLJshKKaWUUkpl0QRZKaWUUkqpLJogK6WUUkoplUUTZKWUUkoppbJogqyUUscBETlPRJ4VEb8zGtxGETmj3HEppdRSpAOFKKXUcUJEvgT4gQDQaoz5aplDUkqpJUkTZKWUOk44Q/quBUaAlxpjJsscklJKLUlaYqGUUsePOqACqMTuSVZKKXUEtAdZKaWOEyJyG3AjcAIQMcZcV+aQlFJqSXKXOwCllFJHT0TeA0wYY34hIi7gMRG5xBhzX7ljU0qppUZ7kJVSSimllMqiNchKKaWUUkpl0QRZKaWUUkqpLJogK6WUUkoplUUTZKWUUkoppbJogqyUUkoppVQWTZCVUkoppZTKogmyUkoppZRSWTRBVkoppZRSKosmyEoppZRSSmXRBFkppZRSSqksmiArpZRSSimVRRNkpZRSSimlsmiCrJRSSimlVBZNkJVSxwwR2SgiFxd6XSKyW0QuK8R6Z9tG1rRGEdkgIqsKuJ2fiMiXCrW+RWz3qPfbXJ/p0byvcu0TpdSLg7vcASilXhxEZDcQBiaASeAF4KfA940xKQBjzOkLXM9fGWP+NNdyC1nX0Zq+DRHxAP8LfNQY83Sxt78UlOJzUEqpQtMEWSlVSm80xvxJRKqBVwLfBC4A3leoDYiI2xgzUaj1LYYxZhx4fTm2rZRSqnC0xEIpVXLGmF5jzG3A24G/FJEzIPeQvoh8VkT2i0i/iGwRkUtF5GdAErhdRAZE5O+yXvdZEXkWGBQRd57ygPNE5AUR6RaRH4uIPz1DRIyInJT1POfwvYgkRORmETkkIodF5Nt54j1VRB4QkR6nrOBN2e/ZWfZvRORZEekVkV9lxzBt2VUist55778C/NPmR0Xkt048u0TkE7Os53MictO0ad8UkW8tZj3zvb/Z9k+efTTf+/qciOxw5r8gIn++0H2SJ95Z39siP4t/FZFbsp7/fyJyr3O0QCl1nNIEWSlVNsaYJ4FW4OXZ00XkZOA64DxjTCVwObDbGPNuYC92T3SFMeZfs152DfAGoGaWHuR3Oes5EVgJ/P1CYhQRF/B7YA+wDIgBN05bxgPcDvwRaAI+DvzceR/Z3ga8FjgBOAt4b57teYFbgZ8BdcBvgKuz5lvOtp5xYrkU+JSIXJ4n/F8CrxeRqqz38jbgF4tZz1zvbyH7ZyHvy7EDuy1UAzcA/ycikQW+NntbC3lv834Wjn8BXiUi54jIR5zXXOUcLVBKHac0QVZKlVsbdtKTbRLwAaeJiMcYs9sYs2Oe9XzLGLPPGDM8y/xvO/O7gC9jJ9QLcT4QBf7WGDNojBkxxjwybZkLgQrga8aYMWPMfdhJ4/RtfMsY0+bEcDtwTp7tXQh4gP8wxowbY24C1mbNPw9oNMb8s7OtncAPgHdMX5ExZg+wHnizM+kSYMgYs2Yx65nn/S1k/yzkfWGM+Y2zf1LGmF8B25z1z/vaaRby3hbyWWCMOQz8B3a9/OeB1xtjeufYtlLqOKA1yEqpcosBXdkTjDHbReRTwD8Bp4vI3cBfG2Pa5ljPvnm2kz1/D3ZStxAJYM88dc1RYF/6ZMOsbcSmLdee9XholhiiwH5jjJm2rrQWICoiPVnTXMDDs8T2C+xE9qfAO53ni13PXO9vIfsnvY653hci8h7gr7F7osFOyhuAwHyvnWYh720hn0Xa08D1wLuMMfO1M6XUcUB7kJVSZSMi52EnWTN6HI0xvzDG/Bl2smOwD3XjPM5ntulpiazHSeye67QhIJj1vDnr8T4gKSJzdSi0AQnn0H72NvbPE1M+B4CYiMi0dWXHs8sYU5N1qzTGzHZy4G+Ai0UkDvw5UwnyYtYz1/tbyP6Z932JSAt2L+91QL0xpgZ4HpD5XpvHYvfRrETkTOC/sa9O8v7Fvl4ptTRpgqyUKjkRqRKRK7BrVf/PGPPctPkni8glIuIDRoBh7LILgIPA8iPY7LUiEheROuALwK+y5m0A3ikiLhF5LfYVNtKexE7QviYiIRHxi8jLpq37CWAQ+DsR8Yh93d83kqcWdwEex74U3ifEPtnwKuwyg+x4+sQ+KTHgxHyG82NjBmPMIeAB4MfYSeOmI1jPXO9vIftnIe8rhP0j5xCAiLwPOGOBr51uUftoNiISwy6/+AjwMeBMKdB1upVSxzZNkJVSpXS7iPRj9/D9P+Ab5L/Emw/4GtCJfSi8CTupBfgq8PdiX03hbxax7V9gn2S207llDzLxSeyErwf7ZL5b0zOMMZPOvJOwTxBsxb76BlnLjAFvAl7nxPwd4D3GmM2LiC97XVdhnzTW7Wzr5jzxnAPscrb3Q+wT22bzC+AypnqPF7Weud7fQvbPAt/XC8C/YSfDB4EzgUcX8to82zqSfZTDObHxDuAbxpjbjDFDwP+HXb+ulDrOSW5Jl1JKKaWUUi9u2oOslFJKKaVUFk2QlVJKKaWUyqIJslJKKaWUUlk0QVZKKaWUUirLkkuQReSucseglFJKKaWWnoXmkUtuJL2qqqrLV69erZfeUEoppZRSi9W3kIWWXIK8YsUK1q1bV+4wlFJKKaXUEiMi2xay3JIrsVBKKaWUUqqYNEFWSimllFIqiybISimllFJKZVlyNciqeO699156e3vxeDyZm9frzXk+1zSfz4dl6W8upZRSSi1tmiCrjM997nNHfQKkz+fD7/cTCAQIBAILehwMBqmurqaqqorq6urMLft5ZWUlLperQO9UKaWUUmp2miCrjF/96lf09/czPj6e9zY2NjbnvJGREYaHhxkeHs55nP28q6trxvzBwUEmJyfnja+iomJGAt3Y2EgkEqG5uTnnPhKJUFVVhYiUYM8ppZRS6niiCbLKWL58eVm2a4xheHiY3t5eent76evryzye63lXVxebN2+mvb2d0dHRGesNBAIzEuf0fTQaZeXKlSxbtkx7ppVSSimVQxNkVXYiQjAYJBgMEolEFv16Yww9PT0cOHCA9vZ2Dhw4MOPxpk2buO++++jp6cl5rd/vZ+XKlZx66qk5t5UrV+Lz+Qr0DpVSSim1lIgxS2tQutWrVxsdKEQdqeHhYQ4ePEhrayubN29m06ZNmduePXtI/3uwLIvly5fPSJxPOeUUqqury/wulFJKKXUkROQpY8zqeZfTBFkp29DQEFu3bs1Jmjdt2sS2bdsYGxvLLHfCCSfwqle9iksvvZRXvepVR9TrrZRSSqnS0wRZqQKZmJhg165dmYT5iSee4P7778+Ua5x22mlceumlXHLJJVx88cXU1NSUNV6llFJK5acJslJFNDk5yYYNG7j33nu57777ePjhhxkaGsKyLM4991wuvfRSLr30Ul72spcRDAbLHa5SSiml0ARZqZIaGxvjiSee4N577+Xee+9lzZo1TExM4PV6ueiii7jkkku49NJLufDCC/WqGUoppVSZaIKsVBkNDAzwyCOPcN9993Hvvffy9NNPY4whmUzyoQ99iA984AM0NzeXO0yllFLqRUUTZKWOIV1dXdxzzz384Ac/4N5778XtdnPVVVfxsY99jFe84hU6oIlSSilVAgtNkK0iBvA/ItIhIs/Ps9x5IjIpIm8pVixKlVtdXR1vf/vb+dOf/sSWLVv4+Mc/zj333MPFF1/MGWecwX/+53/S29tb7jCVUkopRRETZOAnwGvnWkBEXMC/AHcXMQ6ljikrV67kG9/4Bvv37+fHP/4xoVCIT3ziE0SjUT74wQ+yfv36coeolFJKvagVLUE2xjwEdM2z2MeB3wIdxYpDqWNVIBDgve99L08++STr1q3jmmuu4ec//zkveclLuOCCC/jf//1fhoeHyx2mUkop9aJTzB7kOYlIDPhz4LsLWPZDIrJORNYdOnSo+MEpVWIveclL+OEPf0hbWxvf/OY36evr473vfS+xWIzPfOYzbNu2rdwhKqWUUi8aZUuQgf8APmuMmZxvQWPM940xq40xqxsbG4sfmVJlUlNTwyc+8QleeOEF7r//fi677DK+9a1vccopp/CpT32Kvr6+coeolFJKHffKmSCvBm4Ukd3AW4DviMibyxiPUscMEeHiiy/m17/+NXv37uXDH/4w3/rWtzj11FO56aabWGpXn1FKKaWWkrIlyMaYE4wxy4wxy4CbgI8ZY24tVzxKHasikQjf+c53ePzxx2lqauKtb30rV1xxBbt27Sp3aEoppdRxqZiXefsl8Dhwsoi0isgHROQjIvKRYm1TqePZBRdcwNq1a/nGN77Bgw8+yOmnn85Xv/pVxsbGyh2aUkopdVzRgUKUWoL27dvHpz71KW6++WZOO+00vvvd7/Lyl7+83GEppZRSx7SyDxSilCqeRCLBb3/7W26//XYGBwd5xStewfvf/346OzvLHZpSSim15GmCrNQSdsUVV7Bx40Y++9nP8rOf/YxTTjmFH//4x3oSn1JKKXUUNEFWaokLhUJ87WtfY/369Zxyyim8//3v55WvfCUbN24sd2hKKaXUkqQJslLHiTPPPJOHHnqIH/7wh2zcuJFzzjmHL3zhCwwNDZU7NKWUUmpJ0QRZqeOIZVl84AMfYPPmzbzrXe/iq1/9Kueffz579+4td2hKKaXUkqEJslLHocbGRn7yk59w11130draygUXXMD69evLHZZSSim1JGiCrNRx7PLLL+fRRx/F6/Xyile8gt///vflDkkppZQ65mmCrNRx7vTTT2fNmjWcfPLJXHnllXznO98pd0hKKaXUMU0TZKVeBCKRCA8++CCvf/3rufbaa/nbv/1bUqlUucNSSimljkmaICv1IlFRUcGtt97Ktddey9e//nXe9ra3MTw8XO6wlFJKqWOOu9wBKKVKx+Vy8Z//+Z+ceOKJfOYzn2H//v3cdtttNDY2ljs0pZRS6pihPchKvciICJ/+9Kf5zW9+w4YNG7jwwgvZunVrucNSSimljhmaICv1InX11Vdz//3309fXx0UXXcTDDz9c7pCUUkqpY4ImyEq9iF144YWsWbOGhoYGLrvsMm688cZyh6SUUkqVnSbISr3InXjiiTz22GOcf/75XHPNNXzta1/DGFPusJRSSqmy0QRZKUV9fT333HMP73jHO/j85z/Phz/8YcbHx8sdllJKKVUWehULpRQAfr+fn//85yxfvpyvfOUr7N27l9/85jdUVlaWOzSllFKqpLQHWSmVYVkWX/7yl/nBD37An/70J6666irGxsbKHZZSSilVUkVLkEXkf0SkQ0Sen2X+u0TkWef2mIicXaxYlFKL81d/9VeZJPm9732vjrqnlFLqRaWYJRY/Ab4N/HSW+buAVxpjukXkdcD3gQuKGI9SahHe9773cfDgQT7/+c8TDof5xje+gYiUOyyllFKq6IqWIBtjHhKRZXPMfyzr6RogXqxYlFJH5rOf/Szt7e38x3/8B5FIhL/7u78rd0hKKaVU0R0rJ+l9ALiz3EEopXKJCN/4xjc4ePAgn/3sZwmHw/zlX/5lucNSSimliqrsCbKIvAo7Qf6zOZb5EPAhgGQyWaLIlFJgn7j3k5/8hM7OTj7wgQ/Q0NDAG97whnKHpZRSShVNWa9iISJnAT8ErjTGHJ5tOWPM940xq40xqxsbG0sXoFIKAJ/Px80338zZZ5/NW9/6VtasWVPukJRSSqmiKVuCLCJJ4Gbg3caYreWKQym1MJWVldxxxx1Eo1He8IY3sGnTpnKHpJRSShVFMS/z9kvgceBkEWkVkQ+IyEdE5CPOIv8I1APfEZENIrKuWLEopQojHA5z991343a7ufzyy9m/f3+5Q1JKKaUKTowx5Y5hUVavXm3WrdNcWqlyevrpp3nlK19JS0sLDz30ELW1teUOSSmllJqXiDxljFk933I6kp5SatFWrVrFrbfeypYtW3jTm97E8PBwuUNSSimlCkYTZKXUEbnkkkv4v//7Px599FHe+c53MjExUe6QlFJKqYLQBFkpdcTe9ra38c1vfpNbb72Vj33sYyy1ki2llFIqn7JfB1kptbR9/OMfp729na985StEIhFuuOGGcoeklFJKHRVNkJVSR+1LX/oS7e3t/PM//zPNzc189KMfLXdISiml1BHTBFkpddREhO9973scOnSIa6+9lqamJq6++upyh6WUUkodEa1BVkoVhNvt5sYbb+Siiy7iXe96F2vXri13SEoppdQR0QRZKVUwwWCQ3/3udzQ3N3PVVVdx8ODBcoeklFJKLZomyEqpgmpoaOCWW27h8OHDvPWtb2V8fLzcISmllFKLogmyUqrgVq1axY9+9CMefvhhPv3pT5c7HKWUUmpR9CQ9pVRRXHPNNaxfv56vf/3rnHvuubz//e8vd0hKKaXUgmgPslKqaL761a9y2WWX8dGPfpQnnnii3OEopZRSC6IJslKqaNJXtojFYlx11VW0t7eXOySllFJqXpogK6WKqr6+nltuuYWenh7e8pa3MDY2Vu6QlFJKqTlpgqyUKrqzzz6bH//4xzz66KN88pOfLHc4Siml1Jz0JD2lVEm87W1vY/369fzLv/wL5557Lh/84AfLHZJSSimVl/YgK6VK5stf/jKXX3451157LY899li5w1FKKaXy0gRZKVUyLpeLX/ziFyQSCa6++mra2trKHZJSSik1gybISqmSqqur49Zbb6W/v5+rr76a0dHRcoeklFJK5Shagiwi/yMiHSLy/CzzRUS+JSLbReRZETm3WLEopY4tZ555Jj/5yU9Ys2YN1113HcaYcoeklFJKZRSzB/knwGvnmP86YIVz+xDw30WMRSl1jHnLW97C5z//eX74wx/yve99r9zhKKWUUhlFS5CNMQ8BXXMsciXwU2NbA9SISKRY8Siljj1f/OIXed3rXscnPvEJHnnkkXKHo5RSSgELvMybiPxjvunGmH8+im3HgH1Zz1udaQfybP9D2L3MJJPJo9ikUupYkj5p77zzzuMtb3kL69atIx6PlzsspZRSL3IL7UEezLpNYpdHLDvKbUueaXkLEY0x3zfGrDbGrG5sbDzKzSqljiU1NTXceuutDA4OcvXVVzMyMlLukJRSSr3ILShBNsb8W9bty8DF2L29R6MVSGQ9jwN6zSelXoROP/10fvrTn/Lkk0/y0Y9+VE/aU0opVVZHWoMcBJYf5bZvA97jXM3iQqDXGDOjvEIp9eLw53/+5/zDP/wDP/nJT/jmN79Z7nCUUkq9iC20Bvk5psofXEAjMGf9sYj8ErunuUFEWoHrAQ+AMea7wB3A64HtwBDwvsWHr5Q6nvzTP/0Tzz33HJ/5zGc4/fTTefWrX13ukJRSSr0IyUIOZYpIS9bTCeCgMWaiaFHNYfXq1WbdunXl2LRSqgT6+/u56KKLaGtr48knn+Skk04qd0hKKaWOEyLylDFm9XzLLbQGeU/WbX+5kmOl1PGvsrKS2267DRHhTW96E319feUOSSml1IuMDjWtlDrmLF++nN/85jds3bqVv/iLvyCVSpU7JKWUUi8imiArpY5Jl1xyCf/+7//O7bffzj/8wz+UOxyllFIvIgs6SU8ppcrhuuuu49lnn+UrX/kKZ511Fm9/+9vLHZJSSqkXAe1BVkods0SE//qv/+JlL3sZ73vf+1i/fn25Q1JKKfUioAmyUuqY5vV6+e1vf0tDQwNvfvObOXjwYLlDUkopdZzTBFkpdcwLh8PceuutdHZ2cvXVVzM2NlbukJRSSh3HNEFWSi0J5557Lj/+8Y959NFHue6663Q4aqWUUkWjJ+kppZaMt7/97TzzzDN89atf5eyzz+baa68td0hKKaWOQ9qDrJRaUr70pS9xxRVX8MlPfpL777+/3OEopZQ6DmmCrJRaUizL4uc//zkrV67krW99K7t27Sp3SEoppY4zmiArpZacqqoqfve73zE5OcmVV17JwMBAuUNSSil1HNEEWSm1JK1YsYJf/epXbNy4kfe85z06HLVSSqmC0QRZKbVkveY1r+HrX/86t9xyC//8z/9c7nCUUkodJ/QqFkqpJe1Tn/oUzzzzDDfccAPLly/nPe95T7lDUkoptcRpgqyUWtJEhO9973u0trbyvve9j1AoxNVXX13usJRSSi1hWmKhlFryfD4fv/vd77jwwgu55ppruPPOO8sdklJKqSVME2Sl1HEhFArxhz/8gTPPPJOrrrqKBx54oNwhKaWUWqI0QVZKHTdqamq4++67Wb58OW984xt54oknyh2SUkqpJaioCbKIvFZEtojIdhH5XJ751SJyu4g8IyIbReR9xYxHKXX8a2ho4J577iEcDvPa176WZ555ptwhKaWUWmKKliCLiAv4L+B1wGnANSJy2rTFrgVeMMacDVwM/JuIeIsVk1LqxSEajXLvvfdSUVHBq1/9arZs2VLukJRSSi0hxexBPh/YbozZaYwZA24Erpy2jAEqRUSACqALmChiTEqpF4mWlhbuvfdeRITLLruM3bt3lzskpZRSS0QxE+QYsC/reaszLdu3gVOBNuA54JPGmBnDYYnIh0RknYisO3ToULHiVUodZ1auXMk999zD4OAgl156KW1tbeUOSSml1BJQzARZ8kwz055fDmwAosA5wLdFpGrGi4z5vjFmtTFmdWNjY6HjVEodx8466yzuuusuOjo6uOyyy9Af2UoppeZTzAS5FUhkPY9j9xRnex9ws7FtB3YBpxQxJqXUi9D555/PH/7wB3bv3s3ll19OT09PuUNSSil1DCtmgrwWWCEiJzgn3r0DuG3aMnuBSwFEJAycDOwsYkxKqRepV7ziFdxyyy08//+3d/+xVZV5Hsff3/a2tEXGDk4pIEpR0ChNXOCC/JJMxF0wnchqHANGEDVBE1Fmweyy6mY1uwkx8dcfuOoERwZRkOWHY4z4I8I4UtHaSh1hASksqx0G24K7UKVA2+/+0UtzgRYK3Nunp/28kpN77r3PpZ8+Ib2fnj73nK1bKSkpob6+PnQkERHpotJWkN29EZgLvA9sB1a5+zYze8DMHkgM+zdgvJl9DXwE/JO716Urk4j0bFOmTGHlypV8/vnnTJs2jYaGhtCRRESkCzL3U5cFd23xeNzLy8tDxxCRCFu+fDmzZs2ipKSEtWvXkpWVFTqSiIh0AjOrcPf42cbpSnoi0uPcddddvPjii7zzzjvMnDmTpqam0JFERKQLiYUOICISwv333099fT2PPPII2dnZLFmyhOxsXadIRERUkEWkB1uwYAENDQ08/vjj7Nmzh9WrV9O/f//QsUREJDAtsRCRHu2xxx7jzTffZMuWLYwaNYqysrLQkUREJDAVZBHp8e644w4+/fRTsrOzueGGG3j11VdDRxIRkYBUkEVEgOuuu47y8nImTZrEvffey0MPPcTx48dDxxIRkQBUkEVEEi655BLWr1/PggULWLx4MTfddBM1NTWhY4mISCdTQRYRSRKLxXj66ad5/fXXKSsrIx6PU1FRETqWiIh0IhVkEZE23HnnnZSWlmJmTJw4kddeey10JBER6SQqyCIi7Rg5ciTl5eWMHTuWWbNmMX/+fBobG0PHEhGRNFNBFhE5g4KCAj744APmzZvHc889x5QpU6irqwsdS0RE0kgFWUTkLLKysnj++edZunQppaWlxONxKisrQ8cSEZE0UUEWEemgu+++m08++YTGxkbGjx/PypUrQ0cSEZE0UEEWETkHo0ePpqKiglGjRjFjxgxmz57Nvn37QscSEZEUUkEWETlHhYWFfPTRRyxcuJAVK1YwbNgwnnzySX788cfQ0UREJAVUkEVEzkN2djaLFi1i+/btlJSU8MQTT3DVVVexdOlSmpubQ8cTEZELoIIsInIBrrjiClatWsWmTZsYNGgQ99xzD/F4nI0bN4aOJiIi50kFWUQkBSZMmMDmzZt54403OHDgADfeeCPTpk1j586doaOJiMg5UkEWEUmRjIwMZsyYwY4dO1i0aBEbN26kuLiYefPmceDAgdDxRESkg9JakM1sqpntNLMqM1vYzphfmlmlmW0zs4/TmUdEpDPk5uaycOFCdu3axX333cfixYsZOnQozz77LEePHg0dT0REziJtBdnMMoEXgJuBa4EZZnbtKWPygf8AbnH34cCv05VHRKSzFRYW8tJLL/HVV18xduxYFixYwPDhw1mzZg3uHjqeiIi0I51HkMcAVe6+x92PASuBaaeMuRNY6+7fArh7TRrziIgEUVxczPr161m/fj05OTncfvvtTJw4keXLl+vUcCIiXVA6C/KlwHdJ96sTjyW7Cvi5mf3RzCrMbFZb/5CZzTGzcjMrr62tTVNcEZH0mjp1KpWVlbz88svs27ePmTNnUlhYyOzZs9mwYYNODyci0kWksyBbG4+d+jfFGDAKKAGmAP9iZled9iL337p73N3jBQUFqU8qItJJYrEYc+bMYffu3Xz88cdMnz6dtWvXMnnyZIqKinj00UfZsWNH6JgiIj1aOgtyNXBZ0v1BwKnXY60G3nP3H929DvgTcF0aM4mIdAkZGRlMmjSJJUuWsH//flasWEFxcTFPPfUU11xzDddffz0vvPACdXV1oaOKiPQ46SzIXwDDzGyImWUD04G3TxnzB+AGM4uZWR5wPbA9jZlERLqcvLw8pk+fzrvvvkt1dTXPPPMMR48eZe7cuQwcOJBbb72VdevW6QwYIiKdJG0F2d0bgbnA+7SU3lXuvs3MHjCzBxJjtgPvAX8GyoAl7r41XZlERLq6AQMGMH/+fCorK6msrOThhx9m8+bN3HbbbQwcOJAHH3yQDRs26MN9IiJpZFE71VA8Hvfy8vLQMUREOk1jYyMffvghy5Yt46233qKhoYHMzExGjBjBhAkTWreBAweGjioi0qWZWYW7x886TgVZRCQ6Dh06xKZNmygtLaW0tJSysjKOHDkCQFFR0UmFefjw4WRmZgZOLCLSdaggi4j0AMeOHaOysrK1MJeWlrJ//34ALr74YsaNG9damMeMGUPv3r0DJxYRCUcFWUSkB3J39uzZc1Jh3rZtGwCZmZkUFRUxdOhQhg4dyrBhw1r3hwwZQnZ2duD0IiLppYIsIiIA/PDDD2zevJnPPvuMb775hqqqKnbt2sWhQ4dax2RkZHD55Ze3Fubk7corryQnJyfgdyAikhoqyCIi0i53p66ujqqqqja3gwcPto41M/r3709hYSEFBQX069ePfv36tbvfu3dvzNq6VpSISFgdLcixzggjIiJdi5lRUFBAQUEB48aNO+35gwcPsnv37tajzXv37qW2tpba2lqqqqqoqalp91RzOTk5J5Xm/Px8+vTpc05bbm6uSraIBKOCLCIip+nbty99+/Zl9OjR7Y756aefqK2tpaampvX2xHbi/vfff8/OnTs5fPgwhw8fpqGhoUNfPyMjg4suuojc3Fx69epFTk4OOTk5Hd7v1asXsViMrKyss96e+lhmZiaZmZlkZGSctn+mxzIyMlo3M2vztr3nTmwi0jWoIIuIyHnJy8tj8ODBDB48uMOvaWxspL6+vrUwt7edGNPQ0MDRo0dpaGg4ab++vp66uro2nz9y5AjNzc1p/M7TK7kwd3Q78boz3Xb0ubO95tT9VDzWUef72hBfM2p6yvfZUSrIIiLSaWKxGPn5+eTn56f16zQ1NdHY2Mjx48fP+bapqYnm5maamppO2u/IY+5Oc3PzSfun3rb33PluwFlvO/rc2V5z6n4qHuuo831tiK8ZNT3l+wTYu3dvh8apIIuISLdzYhlEr169QkcRkS5k2bJlHRqXkeYcIiIiIiKRooIsIiIiIpJEBVlEREREJIkKsoiIiIhIEhVkEREREZEkkbvUtJkdBnaGztEN/AKoCx2im9BcpobmMTU0j6mjuUwNzWNqaB5T42p373O2QVE8zdvOjlxDW87MzMo1j6mhuUwNzWNqaB5TR3OZGprH1NA8poaZlXdknJZYiIiIiIgkUUEWEREREUkSxYL829ABugnNY+poLlND85gamsfU0VymhuYxNTSPqdGheYzch/RERERERNIpikeQRURERETSRgVZRERERCRJpAqymU01s51mVmVmC0PniSIz+52Z1ZjZ1tBZoszMLjOzjWa23cy2mdm80JmiysxyzKzMzL5KzOWToTNFmZllmtkWM3sndJaoMrO9Zva1mVV29JRQcjozyzez1Wa2I/GzclzoTFFkZlcn/i+e2A6Z2W9C54oiM/uHxPvMVjNbYWY57Y6NyhpkM8sEvgH+FqgGvgBmuPt/BQ0WMWY2CagHlrl7ceg8UWVmA4AB7v6lmfUBKoC/1//Hc2dmBvR293ozywI2AfPc/bPA0SLJzOYDceBn7v6r0HmiyMz2AnF310UZLoCZ/R74xN2XmFk2kOfu/xs4VqQlutBfgOvd/X9C54kSM7uUlveXa939iJmtAt5196VtjY/SEeQxQJW773H3Y8BKYFrgTJHj7n8CDobOEXXu/ld3/zKxfxjYDlwaNlU0eYv6xN2sxBaN39y7GDMbBJQAS0JnkZ7NzH4GTAJeAXD3YyrHKTEZ2K1yfN5iQK6ZxYA8YF97A6NUkC8Fvku6X40KiXQBZlYEjAA+DxwlshLLAiqBGuBDd9dcnp/ngX8EmgPniDoHPjCzCjObEzpMRF0B1AKvJpb8LDGz3qFDdQPTgRWhQ0SRu/8FeBr4Fvgr8H/u/kF746NUkK2Nx3SUSYIys4uANcBv3P1Q6DxR5e5N7v43wCBgjJlp+c85MrNfATXuXhE6Szcwwd1HAjcDDyaWpsm5iQEjgRfdfQTwI6DPDl2AxDKVW4D/DJ0liszs57SsPBgCDAR6m9ld7Y2PUkGuBi5Luj+IMxwaF0m3xHrZNcDr7r42dJ7uIPEn2D8CU8MmiaQJwC2J9bMrgRvNbHnYSNHk7vsStzXAOlqW+Mm5qQaqk/4atJqWwizn72bgS3f/PnSQiLoJ+G93r3X348BaYHx7g6NUkL8AhpnZkMRvUdOBtwNnkh4q8cGyV4Dt7v5s6DxRZmYFZpaf2M+l5YfYjqChIsjd/9ndB7l7ES0/Hze4e7tHR6RtZtY78cFbEksC/g7QWX/OkbvvB74zs6sTD00G9CHmCzMDLa+4EN8CY80sL/EePpmWzw+1KdZpsS6Quzea2VzgfSAT+J27bwscK3LMbAXwS+AXZlYN/Ku7vxI2VSRNAGYCXyfWzgI86u7vhosUWQOA3yc+nZ0BrHJ3naJMQikE1rW8fxID3nD398JGiqyHgNcTB7X2APcEzhNZZpZHy1m87g+dJarc/XMzWw18CTQCWzjDZacjc5o3EREREZHOEKUlFiIiIiIiaaeCLCIiIiKSRAVZRERERCSJCrKIiIiISBIVZBERERGRJCrIIiIiIiJJVJBFRERERJKoIIuIdANmNtrM/mxmOYmrwW0zs+LQuUREokgXChER6SbM7N+BHCAXqHb3RYEjiYhEkgqyiEg3kbik7xdAAzDe3ZsCRxIRiSQtsRAR6T76AhcBfWg5kiwiIudBR5BFRLoJM3sbWAkMAQa4+9zAkUREIikWOoCIiFw4M5sFNLr7G2aWCXxqZje6+4bQ2UREokZHkEVEREREkmgNsoiIiIhIEhVkEREREZEkKsgiIiIiIklUkEVEREREkqggi4iIiIgkUUEWEREREUmigiwiIiIikuT/AZHc+rIIqEF2AAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "nq=2 #separacion entre vectores en quiver plot\n", "Nx=40\n", "Ny=8\n", "Lx=8.0\n", "Ly=2.0\n", "xp = np.linspace(0, Lx, Nx)\n", "yp = np.linspace(0, Ly, Ny)\n", "X, Y = np.meshgrid(xp, yp)\n", "\n", "def velU(x):\n", " return (1.0-1.0/(1.0+np.exp(-3*(x-3.0))))+0.5\n", "\n", "def dUdx(x):\n", " return -(3* np.exp(-3 *(-3 + x)))/(1 + np.exp(-3*(-3 + x)))**2\n", "\n", "t=0.0\n", "U = velU(X)\n", "V = np.zeros(np.shape(X))\n", "\n", "ypos=1.0\n", "XP=[0,ypos]\n", "\n", "fig, (ax,ax2) = plt.subplots(2,1,figsize=(10, 6))\n", "ax.contourf(X,Y,velU(X),256,cmap=\"Blues\")\n", "Q = ax.quiver(X[1:Ny-1,4:Nx-1:nq], Y[1:Ny-1,4:Nx-1:nq], U[1:Ny-1,4:Nx-1:nq], V[1:Ny-1,4:Nx-1:nq],alpha=0.4,scale=30,width=0.004)\n", "\n", "pt1, = ax.plot([], [], '.',color=\"tab:orange\", ms=20,markeredgecolor=\"k\")\n", "ax.set_xlabel(\"x\")\n", "ax.set_ylabel(\"y\")\n", "ax.set_ylim([-0.15*Ly, 1.15*Ly])\n", "ax.set_xlim([0, Lx])\n", "ax.plot([0,Lx],[0, 0], 'k-',linewidth=1.5)\n", "ax.plot([0,Lx],[Ly, Ly], 'k-',linewidth=1.5)\n", "rect1 = plt.Rectangle((0, 0), Lx/12+0.205*Lx/4, Ly, color='white')\n", "ax.add_patch(rect1)\n", "rect2 = plt.Rectangle((Lx/12, 0.03*Ly), 0.2*Lx/4, 0.95*Ly, color='gray')\n", "ax.add_patch(rect2)\n", "rect3 = plt.Rectangle((0, 1-0.1*Ly), Lx/12, 0.2*Ly, color='gray')\n", "ax.add_patch(rect3)\n", "ax.set_title(\"Campo de velocidades\")\n", "\n", "xp = np.linspace(Lx/12+0.2*Lx/4, Lx, Nx)\n", "T1D=velU(xp)\n", "ax2.plot(xp, T1D, 'k')\n", "ax2.set_xlabel(\"x\")\n", "ax2.set_ylabel(\"u\")\n", "ax2.set_xlim([0, Lx])\n", "ax2.set_title(\"Distribución de velocidad en $x$\")\n", "\n", "xc=3.0\n", "yc=1.0\n", "delta=0.5\n", "ax.plot([xc-delta,xc-delta,xc+delta,xc+delta,xc-delta],[yc-delta,yc+delta,yc+delta,yc-delta,yc-delta], 'r--',linewidth=1.5)\n", "\n", "\n", "xc=6.0\n", "yc=1.0\n", "delta=0.5\n", "ax.plot([xc-delta,xc-delta,xc+delta,xc+delta,xc-delta],[yc-delta,yc+delta,yc+delta,yc-delta,yc-delta], 'b--',linewidth=1.5)\n", "\n", "\n", "plt.tight_layout()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Para introducir el concepto de divergencia, hemos definido dos volúmenes de control fijos e iguales, uno de ellos centrado en $x=3$ m (en rojo) y otro en $x=6$ m (en azul). Si calculamos el flujo volumétrico neto en cada uno de estos volúmenes obtenemos lo siquiente:\n", "\n", "- En el volumen rojo: se observa que está entrando más flujo del que está saliendo, y por tanto el flujo neto es distinto de cero, es decir, hay una acumulación. Esto se debe a que el pistón genera un gradiente espacial (variación longitudinal) de velocidad en la zona en la que se sitúa este volumen.\n", "\n", "- En el volumen azul: se observa que el flujo de entrada y de salida son prácticamente iguales, por lo tanto no hay acumulación. Esto se debe a que en esta zona, no existe gradiente de velocidad.\n", "\n", "Con estos resultados, vemos que existe una relación entre la acumulación de flujo en un volumen de control y el gradiente espacial de velocidad. Esto nos permite introducir el concepto de **divergencia de la velocidad**.\n", "\n", "
\n", "\n", " \n", "**Divergencia de la velocidad:**\n", "\n", "*La divergencia de la velocidad se define como el flujo neto por unidad de volumen que atraviesa la superficie de un volumen de control $V$ cuando éste tiende a cero:*\n", "\n", "$$\n", "div(\\vec{\\bf{v}}):= \\nabla \\cdot \\vec{\\bf{v}} = \\lim_{V\\rightarrow 0} \\frac{1}{V} \\int_{\\partial V} \\vec{\\bf{v}} \\cdot \\hat{\\bf{n}} dS\n", "$$\n", "\n", "*y se calcula como*\n", "\n", "$$\n", "\\nabla \\cdot \\vec{\\bf{v}} = \\frac{\\partial u}{\\partial x} + \\frac{\\partial v}{\\partial y} + \\frac{\\partial w}{\\partial z}\n", "$$\n", "\n", "*Según el valor de la divergencia de la velocidad, podemos distinguir entre:*\n", "\n", "- *Flujo compresible:* $\\nabla \\cdot \\vec{\\bf{v}}\\neq 0$\n", "\n", "\n", "- *Flujo incompresible:* $\\nabla \\cdot \\vec{\\bf{v}} = 0$\n", " \n", "\n", "Volviendo al ejemplo anterior, podemos calcular la divergencia de la velocidad utilizando esta expresión. Dado que la velocidad sólo tiene componente en $x$, la divergencia de la velocidad será:\n", "\n", "$$\n", "\\nabla \\cdot \\vec{\\bf{v}} = \\frac{\\partial u}{\\partial x} = 3\\frac{\\exp{(-3(x-3))}}{(1+\\exp{(-3(x-3))})^2} \n", "$$\n", "\n", "que depende de $x$.\n", "\n", "A continuación se representa el sistema conducto-pistón, junto con la distribución espacial de velocidad y su divergencia (en naranja). Nótese que la curva naranja es la representación gráfica de la expresión analítica de la divergencia de la velocidad, obtenida anteriormente. Se observa que la divergencia de la velocidad es siempre negativa, ya que la velocidad decrece monótonamente con $x$. Además, se observa que la divergencia de la velocidad es máxima (en magnitud) en $x=3$ m. Lejos de ese punto, la divergencia de la velocidad es cercana a cero." ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "tags": [ "hide-cell" ] }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsgAAAGoCAYAAABbtxOxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAACo/UlEQVR4nOzdd3wc13no/d8zs30XvS22gRJJ9S6qy7IsWbYky71KbomtyE7ilsRO7MSxotzkJo59E9vXufHr2JJbZMmSJVuWZTVbvVKkJPZeQYAACBC9Y8/7x+wuFsACBMgtIPl8P9wPd2fOzDkz2PLMmWfmiDEGpZRSSimllMMqdQOUUkoppZRaTDRAVkoppZRSKosGyEoppZRSSmXRAFkppZRSSqksGiArpZRSSimVRQNkpZRSSimlsmiArJRSCyAiV4pIc5HrXCIiRkRcR7iefhE5cZZ5fyQizx7meou+T5RSqpA0QFZKFY2I3CQir6QCtVYR+Z2IXF7qdh0vjDEhY8yOUrdDKaUWOw2QlVJFISJ/CXwL+N9AA5AA/h/wzhI2SymllJpBA2SlVMGJSAXwj8CfG2PuM8YMGGPGjDG/McZ8KVXmQhF5QUS6U73L3xURT9Y6jIj8mYhsFZE+EflfIrI0tUyviPwiXT59yl9E/lZEDojILhH5cHZ7ROQnItIhIrtF5KsikvP7UET8IvIjETkoIhuAC6bNj4jIL1Pr2ikin5tlPReLyH4RsbOmvVtE1qSeWyLyZRHZLiKdqe2pnmVdERF5QES6RGSbiPxJ1jw7td3bU/tplYjEs/bhstTzmtQ6ekXkZWDptDq+LSJ7U/NXicgb8rFPUn/nV1LrbRORf8+1jUopVUoaICuliuESwAfcP0eZCeAvgNpU+auBP5tW5lrgfOBi4K+B7wMfBuLAGcCNWWXDqXVFgY8D3xeRk1Pz/i9QAZwIvBH4GPDHs7TrVpzgcSnw1tS6ACeoBX4DvJ6q52rgCyLy1ukrMca8CAwAV2VNvgm4M/X8c8C7Uu2JAAeB/5ylTT8HmlPl3gf8bxG5OjXvL1P74XqgHPgEMJhjHf8JDAONqTKfmDZ/JXAOUJ1q4z0i4kvNO5J98m3g28aY8tTyv5hlG5VSqnSMMfrQhz70UdAHThC7f4HLfAG4P+u1AS7Ler0K+Jus1/8H+Fbq+ZXAOBDMmv8L4O8BGxgBTsua9yngyVnasQO4Nuv1LUBz6vlFwJ5p5b8C3DHLuv4JuD31vAwnYG5Kvd4IXJ1VthEYA1zAktT2u3AOBiaAsqyy/wL8KPV8M/DOWeo3wLLUPhgDTsma97+BZ+f4exwEzj7SfQI8DdwG1Jb6fakPfehDH7M9tAdZKVUMnUDtXHdhEJGTROTBVBpCL07AVjutWFvW86Ecr0NZrw8aYwayXu/G6XGtBTyp19nzorM0LQLsnVY2rQmIpNJCukWkG/hbnBzrXO4E3iMiXuA9wGpjTHp9TcD9WevZiBMIT19XBOgyxvTN0v44sH2W+tPqcILt2bYLEfkrEdkoIj2p9lQw+fc4kn3ySeAkYJOIrBSRGw7RVqWUKjoNkJVSxfACzun8d81R5r+ATcBy45x+/1tAjqDOKhEJZr1OAC3AAZze06Zp8/bNsp5WnKAzu2zaXmCnMaYy61FmjLk+14qMMRtwgsnrmJpekV7XddPW5TPGTG9XC1AtImWztH8v0/KJc+jA6WHPuV2pfOO/AT4AVBljKoEeJv8eh71PjDFbjTE3AvXA14F7p/2dlFKq5DRAVkoVnDGmB/ga8J8i8i4RCYiIW0SuE5F/SxUrA3qBfhE5BfjTPFR9m4h4UgHfDcA9xpgJnHSLfxaRMhFpwsnb/dks6/gF8BURqRKRGPDZrHkvA70i8jepC9dsETlDRC7IvSrACYo/B1wB3JM1/XupNjUBiEidiMy4w4cxZi/wPPAvIuITkbNwemX/J1XkB8D/EpHl4jhLRGqmrWMCuA/4h9Tf4jSy8ohx/hbjOIG0S0S+hpPPfMT7REQ+IiJ1xpgk0J1aZmKO/aWUUkWnAbJSqiiMMf+OE4h+FSfw2gt8BvhVqsgXcXpV+4D/Bu4+wir34+TNtuAEj582xmxKzfssTv7vDuBZnKD19lnWcxtOr+9O4FHgp1nbNAG8Heditp04vdM/wElHmM3PcXKk/2CMOZA1/dvAA8CjItIHvIiTz5vLjTh5yS04Fz7eaox5LDXv33EC2EdxDjh+CPhzrOMzOCkp+4EfAXdkzXsE+B2wJbXtw0xNqTiSfXItsF5E+lPb/CFjzPAs26mUUiUhxphSt0EppfJKRK4EfmaMiZW4KUoppY5C2oOslFJKKaVUFg2QlVJKKaWUyqIpFkoppZRSSmXRHmSllFJKKaWyzHrT/sWqtrbWLFmypNTNUEoppZQ6rq1ateqAMaau1O0ohKMuQF6yZAmvvPJKqZuhlFJKKXVcE5Hdhy51dNIUC6WUUkoppbJogKyUUkoppVQWDZCVUkoppZTKogGyUkoppZRSWTRAVkoppZRSKosGyEoppZRSSmXRAFkppZRSSqksGiArpZRSSimVRQNkpZRSSimlsmiArJRSSimlVBYNkJVSSimllMqiAbJSSimllFJZNEBWSimllFIqS8ECZBGJi8gTIrJRRNaLyOdzlBER+Y6IbBORNSJyXqHao5RSSiml1Hy4CrjuceCvjDGrRaQMWCUijxljNmSVuQ5YnnpcBPxX6n+llFJKKaVKomABsjGmFWhNPe8TkY1AFMgOkN8J/MQYY4AXRaRSRBpTy+a0efNmrrzyykI1WymllFJKHecK2YOcISJLgHOBl6bNigJ7s143p6ZNCZBF5BbgFgCP11uwdh5vRscmePH1HVMnipSmMXPK0aZ5NXOWQofcRsnxdPq0XG2SQywrU5cVkBzlJWt+5nX6eVbbM8/nKCcy9fn0eSBZ06ctl1qZJc4EmbYOyVome54lWctlrcuaVk/23kqXSe8eydqerL032b6s5abttSnLkKNc9vI5/1wzlpll2UMsn3vpQxXMUcfhmO2tf6TrVUqp40TBA2QRCQG/BL5gjOmdPjvHImbGBGO+D3wfYMWKFebJJ5/MdzOPW/5zPzN1guQpLX2+gfZ86su1runLLaRM9vS5pmVPFysr4rOmLpf93LIn15FZNvU8XdayM88l9SAdNGY/rJnPLcvK+Xz6NMuysCzBsgTblszzyWnWjGnp6Xb6uSVYInhcTllXepoluGwLW5x125bgsixcFtiW4E6Vc9uCbYEtznO3Lc4yFrhtC1ucYNoWZ93p51aO11ZW2fT/kpqW+R9nH1oy+X/6IETSQbdMPidruSnlpi0z+ZaYOS0d6GdeZx+kTH+LpYPf2Y6t5igzS6ye9XLqhNk+fvOIzedlen2Ha1Eejyul5s3vPnY/xAUNkEXEjRMc/48x5r4cRZqBeNbrGNBSyDYtJt/85jcZGBgoSd3BYJAvfvGLJalbKaWUUmoxK+RdLAT4IbDRGPPvsxR7APhY6m4WFwM9c+UfH2tKFRyXum6llFJKqcWskD3IlwEfBdaKyGupaX8LJACMMd8DHgKuB7YBg8AfF7A9SimllFJKHVIh72LxLIfIakvdveLPC9UGpZRSSimlFkpH0lNKKaWUUiqLBshKKaWUUkpl0QBZKaWUUkqpLBogK6WUUkoplUUDZKWUUkoppbJogKyUUkoppVQWDZCVUkoppZTKogHycc4kJ4pbn0ky0bub5GAHZnykqHUDJHubSfa1YEYHcG7DXRxmYpSJ9vVO3ePDxakzOcHArtUMt21nYqivoHX1tu9j75qX6N6/l4mx0YLUMTE+zspnn2DbxnX09fYUpI5se3bv5PlnnmT3rh2MjhZmm2bT29vL3j17GB8fL2q9afv372diorjfDWl9fX0MDxfnMzKdMYaurq6S1A3Q09NTsr/52NgYvb29JakboLu7m2QyWZK6h4eHGRwcLEndAF1dXUX9Pco2MDBQss/bYlfIkfTUUWDi4CbEFUA8ZYi7DHH7C1qfiIW4AiQH22CwDbG9Tt2ecnAHcUYoL2D9vgomunc4dVsu8FYg6YdlF65e24PYHpJdO+DgTmebgzVYgVrwlRdku8WycQWrGGrZxHDrZly+AN6qMN7KBnyVdZDH7S2rbaR9y2v07N/NPtumvKaOmnCM6nAjwVB5XuqwXS4qqmvY8PorbFyzilBZGZFogsZYnLr6MLaV3+P9WLyJV1e+xM4d27Ati/pwI7F4E7FYnLLy/GzTbEKhEI889CDDI8M0RqI0JZqIxRMEAoGC1pu2d89uHn3kd0SjMRKJJmLxOH5/Yb8b0owx3HXn/1BbV0ci0USiqYnKysqi1C0irF71CgcOHCCRaCKeSBCJRLDtwn03ZBsYGOD+X95LJBolHk+QaGoiGAwWpW6Xy8XvH3+MiYmJzH6vr6/HyvPnajbtbW088Kv7icXjxOMJ4okEPp+vKHW7XC7uufsu/IFAZttra2uLUjfAzh07+N3GDcQTCeLxBNFYDI/HU5S6RYS7f34nNbW1Rf+8LXYaIB/vDJixQczYINCGuLyIpxzxhMA1GbCasX7M6MD81ztXwGcmewnMxChmqBOGOkGsVLCceljO29OYJGawfdpKpn1p56pOppdJFRIbzAQmOQ5DXZihrsm6fRWIrxKxJ7+cksPdMD6UtbxMfZ6uXCxI/5iITLZRnHnZPQRmbADTPYDp2esEz8EarGAtVqAKsd2T5cZHmOjZh1iCSOqReW4hFpnpiGCl51kWloAwua+To0MMt+9kpGMXAy433qp6fFVh/NUNWN7cP0T9+3cjY4OIJdgi2JYgAi7bwhLBssC2BFss3F4f48MDmGSSvgNtDHa1s28jBMsrqAlHqY/EqKypm+WPlaPu3h7279mJJU6dloAZn+zVHOjvY9vmDWzfsgGPx0O4MUpjNE5jJIYvD8Hc5o3rCQSCDAz0k0wm2d/Swv7WFla9/AIVlVXEEwli8QT19Q15P8Dp6emhuraWPbt3sXfPbpr37AagpqaWeOpHrKaAP+ChUBnjY2Ps3rWT3bt2AlBXVz9Zd3VNweoeHx+nsqqKtv37adu/n5Uvv0RZeXkmYG1sbCxY0DY+Pk51dQ27d+1i44b1bNywHpfLRTQWy9RfyAMFl8uFz+9n75497N2zh+efe5aa2tpMsFxbW1uwToSRkRHq6xvYtHEDa7u7WbvmdbxeL/FEgkSiqeBBWyAYxBjDzh072LljByJCfUNDZturqqoKVvfw8DD1DQ3s2rmTzgMHeHX1KgKBAPGmJhKJJiKRCC5X4cKlyspKhoeH2bplC1u3bMGyLBojkcy2l5WVFazu0dFRamprc37eEk1NhMPhoh0kLTZSqm79w7VixQrzyiuvlLoZeXHbbbeVtP5bb70Vd/xNUydmf/mKjXhCWIF6zEgPyRlB6hzm/SU+ezlxBxB/LeIpY6Jz/bS58wmQp0+UHNNzTBNBXD7EX4MEw5ie3SSHu6YFxemy1pTlMq+nBM4y+Tr9PFVORJxSkqpXLKxAFXZVE3awGjM6wPjelalFJSsYBiu1rvRrQaYG0qllrFRQm/5/ctrka295NaHGEwmFE9iWM9+2hI61zzLe14mIYFtMBquWhYWzTiv9OhXE2uJMs9PzUsvaluDxeKmNRFl62tkEg0FnngguSzLPrdTrA63NvPrck5l2Wqn9lf5f0tssqd2X2teWJdTW1rP8lNOILzlhahmZfJ7eh+nnmXKp5w/cdzcD/X1Z75L0fs5+Gwg+n5dYvIlzzj2PUKhs8s8+7W0o6bXkeK9OL7NxwzpeevH56e/SKfyBACeccCJnn3seft/UoG22j9+cn8qsmbf/4PtzlaQsVM4JS5dy9tnnHFHQlKudL77wAuvXrZ11GY/HQywe59zzzs97T1d/fz93//zOOcvU1ddz6qmnsWz58rwHq48/9ii7d+2adX4gEKBpyQmce955eQ/UW1tbeejB38w637Iswo2NnH7GmSQSibzWDfCr+++j88CBWeeHyspYunQZZ519dt4D9a1btvD0U0/OOt/lchGJRjn7nHOpr6/Pa90AP/vJjxkZmT3lsLKqiuXLT+L0M87I+9mMV1evZvWq2WOqQ33e/G5ZZYxZkddGLRLag6xmEgtxh6b05BrE6Xmd9zoOMd/Mnmsmbn+qF7sccfkwJjmz7tmC33mVMalHjkVcPqcH2VuRSfkwYjn15+pBnhIxWdOmT+tlFpl9u8VC/JVYwVrsYC2WJzC5HsvO9BBP/s+M19k9yZIVAGNmzyV1h6rwVTXgr2nEW1Y5Y75lu7Bc7lQPbnawPTVAti0LMROzbp/tclMTjlDXGKMm3DivHl4RC5fb4/SEp4JWS2BibGzWZWpq64lEY0TiCaqqqg9Zx1zcbg+2bc+ai+t2e4jFE8RicSKxOD6f94jqy+b1+QgFQ/QP9M+Y5/P7U6egm4hEo7jd7hxrODLhcCP797fOmB4IBIknEjQlltBYoF61iooKAoHAjJxQl8s15fR7IXpybdumrr6ejvaZnQHZp6ALdfq9urqG/a2tM4Iln883pSe3EH9zr9dLdU0NXZ2dU6aLCA3hcKYHvVCn3+vq6unp7p6Rgx0MhTI9qYVKd/EHAlRUVtLT3T1lumVZRKLRzLaHQqG81w0QbmzMeWBUUVmZ2faGhoaC9OSWlZURDIUY6J/6XeN2uzNnToqZYrWYaICsABDbnQqIK3LmAluBOqxA3QJWOHuEbEb7mejdlVXWQjyhTC5yOrVicraNq/b0aeufJX3iEGXMxBgTnZvIBMgizsFAKigWl3fGuqyKBFblEqd7NL1emeV5Oq93em+yWCT720ke3D7ZHNuNBGqwAjVIsBrLdk8Guem6vUG8S9+YCXgty8r5fPo0y7KwLCE5eJDBHS9lbYyNp6Ief3UYb1UDbp/fCXKt3H+vutMvweNy1uVK9SpbluCyLSflwnamuSyLfa8/R1/HvsyyvmAZ1eEI1Q1Rqurq8brtVJpGzqpm1t0Y5S3v/pATmKcC9M62Fl5+6vFMGZfbRUM4SiSWIByJ4vcHUgH1kffsXf+Od/P0Hx6jee/uzLTy8gonKI4nqG9owLbteSaMLMzSpcvYtXNHJkCurq4hnmgiHk9QW1eHzPL3ypfTTj8jEyDX1tYRb0rVnQoMpSBb7Tjp5JN57bVXASc4SgeljY2NBc8F9vv9JBJNdLS3Z3oN08FRMfK/Tz3tNNaueR2AqurqTHBUX19f8Oszqqurqauro6uzM9NrmA6OvN78HfzN5tTTTmPTxg2A00uf3u81NYVL50mLxWIEg0F6urvx+/2Zg5FCHYBOd9LJp7B71y5EhHBjY+bvXlFRUfC6T1y6lFdfXQ0U//O22GmAfJyzAvVOYOpK5aBODyoLIDnYjlipgDzTU1ucHCcz2O780HirEW/55MV5Ba7fmCSmd6+TNhKsRQK14KtwAtrMOf/8G27biuXx4alswFvZgLeiFtvlwratWYPiwzHUe5DejhbKquucgDgco6y83EmtkNkD8IXasu51/MEQkWicxmicuoZGXC57MlUij7o6D9Cyby8N4QixeJxo3PnBmp46UQjd3d2YZJJLLr2cWDxBWYF6rmbT1dXJZZdfUbTAMFtHRwennnoaiaYmqquP7CzAQhljGB8f55q3XlvwvNNc2tvauODCi4gnEgXNO81lbGwMr9fHdW+7oSR5pwc6OnjDFW8seJ53Lv39/dTXN3D+iguoq6sr+MHIdL09PbzpqquJxeNFuzgvrauri+XLTyrJ522x0xzkEloMOcj+cz8zdWK+AsVZvmCMScLE6MIC8nn2Ds+njBkbnNpDnt37m2tdmV5g64h6kE3SST8QT8Apk1ouO6c4O8d46sV4M3uI59ODLCRhbBBPqCLTS5x+pAPkXNOzc5AtkXn1IE8MDeD1efF6vbhT5dy2ZAJkt516nepBdtsWdjo/eZYc5OzXloCZmGB4oJ/KqmrsdF5y9v+kcpRl8v8pucUsLAe5r68Hn9eH1+vN5BtnH8tk0lqyX2el3BxJDvL0MjMWmTF/6oQjzUE+lHwdjhQ5DlFK5ZnmICuVJyIWuIpz656c9bsDJflVFttdlN75KXVaNpa/sLcjS/MGy3AVePNsl4vyyqrCVpKlvLwiT2GgUkqpo83xee8OpZRSSimlZqEBslJKKaWUUlk0QFZKKaWUUiqLBshKKaWUUkplKViALCK3i0i7iKybZf6VItIjIq+lHl8rVFuUUkoppZSar0LexeJHwHeBn8xR5hljzA0FbINSSimllFILUrAA2RjztIgsKdT6lTrefGzL73nvzucB+OvLb2FndZxrdq3kU2seSJWQzB3svnj9l2irqOe6jU9x0+u/zbrXLyDCl2+8jb6ySq5/5Xe8bfXDk/NT9/X9+z//D8Z9fq5/8l6uWP345P1+U+v4t1vvAOCaB+7grNVPp+4x7Mwb9/r42T/9EIDLf/ZdTnj1hSn3Ih6prOKJr/9/AJz73X+lfu3qyfsMA8MNjbz+9f8HwCn/8lXKNq/LuqewMLxkKTv/+dsALPnbz+PbtW3KfXmHTz+T1n/4tzzueaWUUsebUucgXyIir4vI70Tk9NkKicgtIvKKiLzS0dFRzPapPDMm6QyaUar6k+MlqnfCGSTlCLx3x3Oc0bVr/nWaJBRpXx/pts27nuT864l97mZin735sOsaHh4+7GWVUkod3Qo6kl6qB/lBY8wZOeaVA0ljTL+IXA982xiz/FDr1JH08ufWW2/Fe9rHEE8QkfQIcIUeSc+Q7N4Olisz1LTYhxhaM48j6U307IHkKOIpd4aa9gRnli3ESHomSXL/6+AJIcE6Z7hpl3dBI+k98Mj/AhHe87Z/mNdIepYlDG5/AcvlcoaZrmrA7Q8VZCS94e4DtK57kcqGKNUNESrrwng97ryOpCfAc489iM8XIBKLE47EKCsrn3UkvaUfuA6AXfc+fFgj6bW17uOFZ58iGk8QTyRoCEdxu11FGUmvp6ebLZs2EosnCDc2Yk8f9rfAI+ltWL+e6poa6uvrcw45XMiR9Do6Ohjo7ycai+F2u/NSz3wZY9i0cSORaJSKioqi1g3Q0tJCMpkkEokUfajnsbExtm/bRjyRIBgMFrVugN27duH1+WhoaCj6UM/9/f3sb20lFo/j8xV/IKvt27ZRUVlJbW1t0evu6uqip7ubWDx+WJ83HUmvAIwxvVnPHxKR/ycitcaYA6Vq0/Eo2bfXGfLYHUDc8wxYj4CIIIE6kn17MWP9MLDfCRQ95YinDFyBgn45WsEGJro2Y8YGYKAVsb1OoOyrBE+ZM9JfAYjlQkJhkj17MMMHoWsb4i3HCtRgBWsRX6gg9XrrT2Ro96tM9Hcy3LIRl78Mb1UD/upGPOXVLGh84TmEquvx+EN07t1Od/MOXC4XlXUNVIcj1IRjuIOBI65DRFh26pm8+sLTHGhrYe3ql6iorKYxGiMSTVBTW5fX9044EiVUVs62LZvYvmUTtstNYyRCLBYnFm8ikIdtmk1lZSUHDnSwfv1aPB4P0WiMeKKJWKw4P+CWZfHQgw/g8XiJxeMkEk3E4nE8nsJ9N6RVVFTw8EO/ZXx8nMZIhESiiXgiQVlZWcHrFhF6enp4/rlnqaisJB5PkGhqoqGhoSgBaygU4t5f3I3L5SIai2W2vRh/c7fbTXPzXp579hlqamtJJJpINDVRU1NTlIDV7fHw2988gM/ny7znorFYUd5zoVCItWvX8PRTT1Lf0JD5u1dVFWfkzmQyya/vv49AMEg8kSCRaCISieByFT5EKy8v55HfPcTwE8M0RiKZbS/G522xK1mALCJhoM0YY0TkQpx0j85Stee4ZgxmdAAzOgCDbYjtc3p3PWXg8iMiJIcPYoa75r/OBXyhmvERzHgHDHYglu0Eqp5yxB1CLNvpfe3eMff6c9Y3W6+bAM6ZEzMxihk8AEOdIJaz3b7K1IGCczSd7G/FjPRmdfPJ1OdkT7dmliH1fNrZGjPSS3K0D9O9C9w+rKATLFv+asR2eqLN2CBjbRsRga+HT0PEYmTXyyBOTy6ZHmenTitVr5XpUZ66XyaG+xja389I+w5stxdvVT3+6kZ8VfVYOX6Iura9TnKoBxGnJ9iynB5ay7KwhEwvs2UJZnQyJSE5MU5Pewt9HS3sXbeK8qpq6iJRasMxKqqrc/ytZuo60M7WNasQJnuFhan7sLf7IH09B9m6YS1er4/GaJxoLE5DJDavOuby9BOPMTjQn3k9MT5O89497Nu7h5deeI6amlpiqQCmpia/PT/Ne/cyPu6kA42OjrJr5w527dyBiFBf30C8qYl4oonKysq81pvW0dGeqnuEHdu3sWP7NizLoqEhTDzRRFPTEsrLCzOMecu+ffj8fnp7etjX3My+5mZeeP45qqqrMz/e9fX1BQnaRkZGGBwcAKCnu5ue7m7WrV2D11ucA4XWlhb8fj+Dg4Ps2rmTXTt3AlDf0JAJlqvn+flZqN7e3sx7rvPAAToPHODV1asIBALEEwniiSai0WjBgraO9nZcLhfDw8Ns27qVbVu3YlkW4cbGzLYX6j3XnqrbGEPb/v207d/PKytfpqy8PPOea2xsLNhBUleX89s6ODDA5o0b2bxxIy6Xi0g0mtn2QKAwB+Stra14fT4GBwczn7cXX3i+KJ+3xa5gAbKI/By4EqgVkWbgVsANYIz5HvA+4E9FZBwYAj5kCpnvoebNTAxjhoZhqANxh7BCjZAcw4wPzX8lh/lhMskJGO7GDHcjthsJNiKeMsz44LSSc59yzt0GmWV6pnLMSA9mtBfExgqFkWAYxkecHmfJsfz01IzsAJnpAbXMXvf4MMneFkxvK0lvCFfdcuxgNSaZxAz3YgT+EKhygsTh3nS+QCZATqcImFRgbFJBczJHkJyWHB9l+EAzI537cPn8VDSdTiicmFJmbLCX8b4uJJUaYaXWa1kWFswImGepioGeLob7DtK8eR310Tgnnb3ikKdxx0dH6O48kDkAsEilUMxSfnRkmN07t7Fn1zaCwRBLhoePqOftYFcXA1kB8nRdXQfo6upk7WurSTQt4YKLLiYUyk+vS29vD52dM0+mGWNoa9tPW9t+Vq18meUnncz5F1yI3+fPS71pW7dsnjEtmUzS2tpCa2sLr6x8mVNPPY3zzl+R92Bx//799Pb0zJh+sKuLg11drHn9NaKxGBdfcmneDxDGxsbYuWPHjOkjIyNs37aN7du2EQgEWHHBhSw/6aS81g2wd+8eBgenf9dBe1sb7W1trHplJcuWL+eCCy/C78/v33xgYIB9zc0zpg8ODrJ50yY2b9pEeUUFF19yKfF4PK91A+zcuSMToKclk0la9u2jZd8+Xn7pRU47/QzOPe+8vL/nerq7aW9rmzG9r7eXDevXsWH9Omrr6rjk0suor6/Pa92Q+/M2Pj7Ont272bN7N263m7PPOZczzjwTO9V5ki8HOjo42DWz86sYn7fFrpB3sbjxEPO/i3MbOLWYiDg9t54yJ+Ui1YtqbCcNYiHrmZ3BjPblXszly0q3cHqvDQbxTMsHnE8P8izpEmasH3JcVCa2x+k59lU6ucKp/GLjDjo9l5kO4ay84+ygd0YPcnbwbIGZcHqic/FVYAVrsYO1WN5Q5mhdLBdWyEkdOLO/DcsI6yobAScozeQuW+Lk0GblJKeD2Ym+9pxVuvxl+KrD+Goa8ZZVYdsz95evohbj9SKWTOlBttMBcTpfWYTxoT5GB2Zun2XbVDU0UtcYpTYcxR/w485R13Ren59wLJEJikUEMYb2lr05y1dUVROJJYhE41TX1pHcvJ6Zocb8RaIx2va30tvTPWOey+WiMRpNpT0k8Pv9h3tMmFNNTS3hcCP797dOme7xeIjFE8QSCWKxOF6vN3+VZjnr7HNY8/prU6Z5vT6nJzHu1F2oXtR4IkFLy74pP9qWZU3pTQuFCpOS5PF4OOXU09i0ccOU6ZVVVZm6C5kju2zZcjo6OhgcGJjSpuyUg0KlW5SVlXHCiSfOOECoraubkm5RKKeddjovPP/clCDZ7/dn3nOFzEmvqa0lGotNOUAQERrC4cy2FzIn/cyzzuaVlS9PmRYMhTI9uJFIJO+BcVpjJELtnjoOZN0AwbbtKelNhfq8LXYlS7FQi4ekL5jzhMBTnjMP1/JWgHcBXxBz/IAkh7smA2QRxB3MBMW58p9FLOyKpumNPnR9OcqYsUEmDk4GceIJOkGxtxJx+3OuywrWgTQc0UV6iEWye89kgCw2EqjCCtQ6Ocgu9+QFe9lNdvtwN56JWMK/PfIrFnqR3nh3y2SALIK7vBZvVRh/dRi3P5gJcGf7wa9oOnVeF+m5LIudLz6aWc7tC1DTGKU6HKWqtgGvx5W5SG++KqprOe/SKzMX6Vki7N2xJRMgW5ZNfUMjjbE4kWicYDA05SK9ti/fRtY1cwu24qJL+d1v7s+8DoRCqfzjBOHGCC6XPeUivXyqb2hgdHQUgPLyCudHOtFEfToXtsBnOz0eJ/CuqqrOnF7PPs1amK12VFdX09fbmwmOEokmItFoUS7Y83g8GJMs2qn96crKyxkcGKCsvDwTmIXD4aLlPw8PD2fyn+Opi1MLdWp/Oq/Px/j4OFXV1Zltr6vL73UFs6msrKSvrw+PxzN5EBgv3AHodOm0lbr6+sy2FyqVZrrq6mp6e3pK8nlb7DRAPs7ZlSeC7Zv8EirQRWppxhjM8EEsb6UTjHvLyNxBowiSgx1OMOwtd4JyVyogL/R2T4xhhrqwyhqRYB34qxDLzhkU561Ok2S0cw+e6ijeqga8FfXYbnfmbhX51Nu+D7EswsvOoDocpayy2gmIU2kZ+ZBMJtm7cxuJpScRicSpb4zgcbszd7HIt+a9u3HZLs4653ziiQRV1bWTd8AosJ6eHpYuW86ViTdTUVFRlDqzhUIh3v/BG0tyoc7Q0BDXve2GogVH2YwxxOMJLrzo4qJcHDbdxMQE733/B0pyKntsbIwzzjyraBeHTed2u/ngjTeVpLdyaGiIyy5/Q9EORqYrr6jgpo98NO9pM/MxODjIW6+7viSft8VOA+TjnLiK/4G0Kk4sWkA+o+7yhHMhYLFZNnbkPKc32bKLtt3BZRfjSvUAy2wJwnlQVttIdTiKbQnuAtZz+dXXY1tO7/Whvsvjt3wYgOb/vvOw6orGEiQSS4DDTqk/bJWVlSXN9ztx6dKS1V2snrNcRISmJUtKVn8h8lvny+12k0gkDl2wQCKRSMnqDgaDJbm1XVohcrrn63jLK14IDZBVUZX6CLVU9Rfq9nGHqrNY2ytF6HWxrIVtj+vgAu66Mkt9Simljk/6C6CUUkoppVQW7UFW6ijxT+d9qCC5tkoppZSaSgNkpY4SK+tPctIMSt0QpZRS6hinAbJSR4kL2rdgifBK4ymlbspRof+yK4tzywmllFLHHA2QlTpKfHX1XZn7IB+pjpWNeMrHqDm9i6F2P9vvW541OrZzh4hl17VQf1of3Xv8rL07nhq8L3UfXIELPtRG5LRh9m/y8/KdDZk7PaRvYnH9nx0gtnyUbav8PPE/Vanpkqnnj77SRXTJBKuf9vG7/ykjPfbgFdcPc/0Hhqc3eeHb+IW/OaL7ICullDp+aYCs1HGo8/UGSAo1px/ZnR7ybedmN4jkJUBWSimlDpcGyEodp8Q2APjrhzjrz9ZmBhBJj5ZnW06fbmViiDf+zdacI+mBED5liPf80x5cFpn7INuW4Ladvttl5w9x6oXDmZH0bAvctoWd6lE+74phLrxyBEuE226uIV99vk0ffQ8Ae352/yFKKqWUUlNpgKyKypgkjA2AO1iSewObkV7whBCruG99MzEK4yPgK0cozkAlJjnBWH8XVkUtFHh7h3oP4nbZBMsXMBx5Dp/75+5Z79QxMT5O54F26hoasecx0pc1PHREbenqPIDL5aKiovKI1nM4ksmk3odZKaVK6KgLkNva2rjttttK3YxjRrK/FfGEihawilhMDHVievcgnhDirUA8ZYhVnHHfzdgAyZ5diDvo1O2rQFy+wldsuUl2rYfkOARqkGAtEqhB7MJtt1g2o517Gd7zGp7yWjxVDfiqGrC8+R890bJdbH3+d/gCIarqI1SFo1TVNWAvMMirDSdTAfLMINl2udixZSOrnn+ShnCUcDRGJBrHHwjkaStm1vfbX/+SUKiMWDxBNN5EQzi84G06HH19fTz5h8eJxeLEE03U19cXdZCbF194Ho/HQzzRRG1tbVHrbmlpYeeOHcQTCaLRKLZdvJEvjTE89+wz1NTUkmhqKvroaju2b+fAgQMkmppoaGgo6n4fGxvjheefIxKJEovH8fmK8L2YZcP69QwPD5Noct5zxdTf38/qVa+QSDQRjcVwu4vze5S2etUqXC4Xiaamoo9s19HRwZbNm0vyeVvsjroAeWJiotRNOKYkh7tguAtEEHd2wDr1rWGMAcwC1jz7F7vlr2VirB8z2ocZ7XdKu/yIt9ypO8fw18YkD7u+7DLir4GhTsxYP2asH/pbEJcX8VUi3gpwh2b8KDl1G0imh8c2k2MPT3+eqUomX4uAWEh5lGTXdhhoxwweAATjr8QK1iDBGsQz88fYGAMmCQh/u+IjWJZgkhMggsE4250OKLOmGQwGwVt3AoN97Yz2tDHe187Q3rW4g5UkR0/BcnkOuceSE+MkxQIjJI0gRpznOKPaCc40t89PRUOc3ra9dOzeSueerXi8HirrwtSEY9SGI7gDh/7Bfe4RH4Jw5fUjJJNJMAYjglOtsPSU03jpyX207tvD/pY9vL5SqK6tJRKN0xhNUFVdc8g65isYDBFPLGHP7p1s2rCOTRvW4/F6aIxEnYA5FsfvL8xQ7RUVFVRVV7NmzWusWfMaPp+PeDxBPNFENBrD7SnsD3g8nuCRhx/itVdX4/cHiCcSJBJNRKJRXPPovT8SjY2NPPfsM2zauAGXy0U0Fktte4JAgQ6G0kSEqqpqnn/uWZ5/7lmqa2pIJJoyQVuhA9ZYPM5zzz7D2jWv4/P5iMXjmaDN4zn05/VIuN1uvF4fTz35BCJCfUMD8XiCRFMTVVVVBa0bnG2/9xd38+rqVQSCwcn3XCRS8PdcKBRidHSU3z/+GJZl0RiJZLa9rKysoHUDNEYiPPTgb1j58kuUlZdn3nPhcLjgZ5Lq6upK9nlb7MQJfI4ekUjEfOpTnyp1M44Jt956K+74m6ZOTN+lwOVHPOmA1UdysJ3kYPv8Vz7vH5KZ5cRyI94yxFMG7hAAE53rp5Wa9qWRq7oZbZAc06dNE9vpVfZWOAG77SHZvcs5kJAcy2f3uqcC4ckyWeWzgtjsck6QmZrlCWIFa7CCdVj+CizbxowOML53ZWpRyTwQnJ7WrNeCIJZklXOWsSznefp/ESE5UoUAvqpRfNUN+Kob8VfW4vJ4puQgd6x9lvG+TiSVO2xJel0WFs46rfRrce5gYYszzU7PE8G2hcqaOmrDUeoiMSoqK7HT80RwWTKZgyzCv95xkAOtzbz63JOZbbFS+yv9v6S3OXWnCgECoRCRaJxILMGln78ZEWHXvQ9PlpHJ8ul9mNn/WXfYEIQH7rubgf6+rHdJej+n3oGWUFfvBBGxeBOVVZVIVoF0uczbJr2WHO/V6WW2btnEyy+9wNjY2JR1OfVahCMREokmYvEEZWVlmeWmr29GPbknz5h5z9130dfXO6OIbds0RqI0JZYQTySOuIc1Vztff+011rz+GqOjozPm1dbVZYKHmpr8HQylDQ4O8uBvHqCvd+a2BwLOgYJzkFKYA4Xnn3uOrVs2Mz4+PmW6ZVmEGxtJJJqIJxKUl5fnve6Ojg5+//hjDPT3z5hXVl6eCRgbGxsLErQ9/tij7N2zxzkwzuJyuYhEo5ltL0TQtnvXLp5/7lkGBwdnzKuqrs5se6HO5Dzw61/R0T7z99Xj8WQOkmLxOF6vN+91b9ywgVWvrGRkZGTGvLr6+sy2z/Z587tllTFmRd4btggcdT3IqjjM+JDTc2kmQArfezCl7uQYZrgbSU5gGcATKmLlE5jhbkhOONsfqCte1WODJPsnIDnhfAkHp+73K7v3ISI8VRU74rpc/m5EhIlRGO5sgeQ4lhhcddEjXndOxtDX1YEZH8NMjOL1nFyQ09eDAwPs2bWDsbExmi64hPICnq40xtDe1sbY6Cijo2OcfMophEL56W0aHx/PBMfTJZNJWpqbGRsdZWRkhFNOPQ2/L7892bmCY3DO4O1r3svY6Bijo6Occuqpee/ZHBoayhkcAxzo6GB0dJTR0VFs28776ehkMpkzOAYneN6xfTujo6MkJyY44cQT81q3U8fAjOA43a6WffsYGRlhZGSEU087Le9nL8bHx3MGxwB9vb3s2L6NsTHn7xKN5v97or+/f0ZwnG7X3j17GBkZYXR0lJNPOSXv77nR0dGcwTHAwa6uTN2WZVFXl//fhN6enlnbtWvnTkZGRhgbG2P5SSflPQVieHg4Z3AM0NHentn2QnzeFjsNkNUkESc311Pm9B7bWV9CnjIsWcDbZa6DbDORszdabE+m19rJiXZWYgArNO0LeXq+dM76ppdxCiUH9juB/5TVuZwUi3RecnZPsL8GyxOavMGvWFldX5LV/WeBld2DnPVcBMZHSPa3zmymtwwJVGOHahFvuTNaXqYn34Or7iTEEr689QkQ4flT3pzqhLYme4szvcMWYkmmRxczwWjblhlVDrVdhDtUScOF/XjLa7BdNpY1cyeWRZdhTcSdnl7L6UUWS3BZVmaaZYHLsujvaGawa+rfVSyL8toG6hqj1EWiBINlmbtYHEqooorTz7sIK9Uj7QT0I2xZ99rMsuXlRKIJGmMJ6urqsW2bscvfSOcR3Af57HNXsH3rZtr2t0yZblkWDeFG4lk9uLCAkybzkGhaQnt7Gzt3bM9Mc3rSnNOfsQKf/rzyTVfz5BO/n6zb7SYWm+zJyndAnu2MM8+kvb0t06MmIjSEw5me44qKI7sQdC5+v5+LLr6El158ITMtVFaW6b2MRCIFPeV9wYUXceDAgUygWoze07Ta2lrOPOts1q55PTOtGL2naZe/4Qp++5sHMgcIxeg9TYsnEixdtozt27Zlps2n9zRf3vimq3j04d9lXvv9/ilpTYXMiT75lFNobW2htcX5nivm522x0wD5OCeW7eTdesqcHORZLhoTlz9nbvDsK579izQ50DZZLB2Qe8sRO/cXoEgqd3hqww9dX44yyeHuTHAsLr+Te+wpd+5skSuFApx0D6nIHSBPf27Zk+vIDrLFYuLAlkw58VcjgRqsYC2W2zclhWJK3bYHqzLmBMAuL4jgqoqlUiesyZSK1P/paZZlYVnCaPu2TBtcwSq8VWG8VWF23nUFIhB/8xokR2CcFqhp5Nznxjnl5XEE2HKFh+1v9BEcgDd9qy+V4gFiDEM9SVadbthxRh9Rb5w33x/G5fZgWRYH3xykZ9nCzgQEgiHKlp2cCZAtEbasXZ3aHKG2voHGaJxINE55RWUmhWKOzVmQWKKJVS87gZLP7ycSSxCLx4lEnIt40ukqheDz+djf2kIoGCIWd34oGyORyd6jwqbCsn9/K2Vl5Zkf6XCBTqvnMjo6Sm9PD0uXLUulrxQ2OMpm2zZ79+6hvqEhEyAUI/82rbu7G5NMcvKppxYt/zYtve3RWCwTkBcj/zatbf9+/IFAUfNv0yzLorWlhaYlS0qSf7uvuZmq6urMttfV1RXtAs3x8XEOdnWV5PO22GmAfJyzqk4u6pXSxiTBjGOFYs5dLOzCXngyw/ggVlk8k1+cM6+4AMzEKGK5sOpOde5iYbsn84cLVWdyAjM+QrDpbDyV9bg8XidneIER5MkvjVO7d4LOxOyn9ibGx3B5fYSXnUHgqnqCXUlcvz3o5AVvG0WAnncd2Y/txPg4o6OjnH/pGwmHo3h93kxOdC4nvP86AHbd+/Bh1be/dR/LTzqFaDxBbV2d0zt/BD3SCzE8PMxb3no91ameq+J9Qh1nnHkWl152eZFrdfj9fm76yEdLcps7Ywxvuurqot/BIa2+vp4bP/yRktSdTCZ5xzvfVfQ7OKSduHQpp59xRknqBvjAh24s2R0czj7nHC6+5JKS1O31ernxwx/R20rmoAHyca6YwbFTn4VMT5coIisUmdmzXARie5CaZU4gbhXnS1gsG3/sDGx74UHxdAcSNr/5SshJqQBGyi0eu7US23bSLFyWNTlQiAgjdS7WfLMe24Iz/6pj3gHeF795cNb7INsuF2evuCRzYV+hxeJNxONNQMGPn2YIhUIQKmLu/TSFuAhsvgp1Z5D5EJGSBcdQ2m0vVk/1bEq57YW+Q8ihlHLbtbd4dgWLFETkdhFpF5F1s8wXEfmOiGwTkTUicl6h2qKUKp2W95XR9sH59R6XVxnKq46uO+sopZQ69hTykPFHwHeBn8wy/zpgeepxEfBfqf+VUjn81SU3IyU4DfbA5/05e6A3dd/Djt6HWFZ5LefUfZix5BD3bP0UZ9S8nRXhD2XKdV/qx20L8zlx+4df+7FEeMu7h/O4BUoppdTCHPLXVkQ+I7Lw+3wZY54GuuYo8k7gJ8bxIlApIo0LrUep48W2igjbKyJ5WdfSG9ez7Kbp95bObdwrjHtnBsjbex6ic3jzlGnN/SvZ0PXglGm+vWN49+S+Zdl0Tz7g5w8PlO50o1JKKQXz60EOAytFZDVwO/CIyc/oIlFgb9br5tS0HPfBUkq9de8qRCweW3Lk92R3B8dSvcKHTq4984lRRIRNb56Zq1bjO5kzam501mn5iYUumFHmxP9wLtbb+d3wkTZ7QXpueE/xr25TSil1TDhkgGyM+aqI/D3wFuCPge+KyC+AHxpjts+99Jxy/XTlDLxF5BbgFuC4viefOr792frfgkheAuQDq8OIQMMFhx4dcfnKcUTIGSAvZl0f/5MpI98ppZRS8zWvhMZUj/H+1GMcqALuFZF/O4K6m4F41usY0JKroDHm+8aYFcaYFcf72OBK5cOB1WEOrD7yHt3WwVf49Y4/Ymj8IACDYweOeJ35IkODyFDu0bGUUkqpucwnB/lzIrIK+DfgOeBMY8yfAucD7z2Cuh8APpa6m8XFQI8xRtMrlDpKvK3pDhoDU3uzLwz/CadV31CiFk215GPvZclHj+QrSiml1PFqPjnItcB7jDG7sycaY5IiMusvoYj8HLgSqBWRZuBWcC5kN8Z8D3gIuB7YBgzipG8opY4ibz/hR5n7IAOcUfse3Edwz+W/+25X6j7ImhihlFKqdOaTg/y1OeZtnGPejYdYrwH+/FD1q2OLMUnMYDviDoE7WPQBGJIDbeDyO8NbF2nADnBG0jP9bUigBnwVRdluk5xguG07nopaPOU1wOFvb+2eCd7xL/2pnF7JjCi35sMhDp7qwf/ifs755TgujxfbtlPDPsOuP6uk+cPluOYZNHv9zDpU9MT4OFs2rqEhHKWuPoxtF/aWdy379tLf20s0lqCsvHhD7gIMDjqpIaVKKRsZGSnZAALj4+MlG7TCGIMxpmSjik1MTJRsNLdkMplzuPtiKeXfvZT7HUq77aWse7HTvXKcmzi41QkWPWXgChQ8cBOxMMYw0bsLxEI85alHCLGK8Ha03CR7dgKWU6evAvFWIK7Cjp4ltofkaD/J3mbE5UUCtRCowQpUI/b8tvtP3/Dns44yl7NOy8aYJP3bXsZyufFW1OGtasBb2bCgtt/31wHqm5Nc8fPZ703sDZUxOtTM6GA/tu3C5fHi9nowxtB7vm/e90F++G7nPfj2G2fWZbtcjI2O8fwTj+DxeGmIRIlEE4Qj0YKMflZTW8/zTz3BKy+/QFVVNZFYgngiQV1dfcGDCJfLxT1330l5eQXxRBOJRBM1qWGni+GlF1+gr7eXWDxBoqmJqqoF3+nzsHV2dvL0U08ST9UdDoeLFrCKCL976Ld4vV4SiSbiiURRR9bbtXMna9euIZFoItHURG1tbdHqNsbw61/dT01NDfF4gmgsVtQR5tavW8fevXsy215ZWVm0ukdHR3nwNw8QiUSJJxJEIpGiBo0vvfgifX29mW0PFXEUzd7eXn7/+GMl+bwtdpKfO7YVTyQSMZ/61KdK3Yxjwq233oo7/qbMa7Fs8JQ5Aas7NKWH1YyPYCZG5r/yuQKI5BjJgXS6+WQ5cQczwXp2wGoAM9o7bf3TPsC56psxpLQAhmRfM5iJKfWLO+AEyt4K8AQnAyCxMGODmOTYZB1iTXueVV9mn0lWGXHmjQ2S7G2efI2zzy1/JRKswQrWYrn9mV4csQSSE5jhbsRyplmp6c58K6us8+NuWU7bLMtybuOWHGVk33pnhGsr1fMrFu5APb6qBgINdXiC5ViWMxy1bVvOcNKWM4T0aG8nthnHsgSXSKocTjkkM4y1y7LobdlB/4FWbBEscYad9ni9VDdEqI3EqAs34nF7sC1w2xa2kBk22mU523bbzTUgwr/ecZDR4SH6DnZipdZnIYwOD7F+9Uup7XZ6sy1LqK1rIBKN0xhLUFFRgYiw9APXAbDr3oczPd6Tyzl/Iksk8zzTM556vr+lmc0b19Oyb2/6XQICPp+PaCxOPJ4gEovjcbsn/8xZt83IvC0yr2X2t+q0MiMjw6x8+UW2bd2SWVcwGCIeTxCLJ4jEolN6vATJub4Z9eSePGPmvuZmHnn4oczrUKiMRJMTqIcbG7HzdPYlVztHR0d5+HcP0dHu3GHF4/EQi8dJJJqIxeMF7dlOJpNs3bKFZ595OjOtvqEhEyxXV1cXrG6AoaEhfv2r+xno7wecMwjx1H4vdNA2MTHBa6++ymuvrgbAsiwaI5FM4FRWVtizKL29vdz/y3sZHx8HoKy8PBMwFjpoGx8f5/nnnmXrFufz5nK5iESjmb97oc/ktLW18eADv868rqquzuz3+vrCHpCPjo7y+8cfo2XfPmDhnze/W1YZY4781kqLkAbIx7HpATIw5RdrMmAtx4x0kxw89C3Bcq3nEAVzT7U9Tt3eCnD5meicPqjF9AB5Pm2QHNNnThPb7dTrrUB8VZie3SSHu6YGvJnCWe3ICnzJzqNNR13poDk7QM4K0BDB8oawgnVYoTpsfzlmdIDxvStB4H2dO0CE++uWZYI70qdE0wFeOnhOB4KpoHZqgJye5rx2+0P4qhvw10QIVNdPCZA71j7LeF8nIoJtpQJKcX48LZx1WunX4qRHZAfIVjoItsBl21TVNVATjtAYbyIQCMwZIB9obebV557MtNNK7a/0/+mANBP8pvZ1eXk5kViC819dSVlFBT0f+OhhBcgP3Hc3A/19We+S9H6e/LNalk24sZFYPEHTkhMIBoJ5CZA3bljHSy8+P/1dmuH8gMeIJxIkmpbg900dXOVIA+Tbf/D9WYu53G7isQTxeIKmJUuOqJcxVztffOEF1q9bO0t5oSEcJpFoYskJJ+Q9aOvv7+fun9856/xQWVkmaItEInkPXB5/7FF279qVc57L5aIxEslse757tltbW3nowd/MOr+yqopEoommJUuor6/Pa90Av7r/PjoP5L4LjsfjIRqLZep3u+dzPmr+tm7ZwtNPPTnr/Nq6usx+L8TZlJ/95MeMjOTugPL5fM7nPBWs5zsV5NXVq1m96pWc8+bzeTuWA2RNsVA5ieVGbC9i+6AYqQ9TKweXz3nYxTvFl5GqW1w+RCT3zbkLwXI5edmeAOKaOZrczW0bgVSAfIT6dl4KCJXLX8L2l+EKlOPyF/a0ntcfwF9WQbC8Ere3MKetbZeLsopKyisqGfjwJ5gI+At6uV8wGKSysorKyqqinoovKy+nsqqKqqrqgvSo2i4XE6mevOkqyiucuqurC3IK3rZtLMsimUzOmOcPBJz9XVVVsF49t9vN2NjMkR9t26aqqoqqqioqKysL0qvncrmc75wcHVehsjKqqqqprKoqyN9cRHC5XJke3Gwejyez7eXl5XmvG5izd7y8oiKz7fkOjsE5wLdtm4mJiRnzfD5fZtsLlfrgcrtzBsgikvmcV1ZVFSRP2jnbmPvzFkh/vxXw87aYaYCsMsTld9IMpqU4AOCrxvYuYJCWOX48zPgIyb49U4tbbsTr9FY7F+9N9swawK46edr6DyPFQgRMkonu7VkpFk6aA6n0CvGWI/bUL2Api2KXRSavHpuRYpHpK5xMsZjemywWZriHZPfOqW1yB5BADVawBvFXYFn2lAtlxB3A03QxWILseBYBvCdemunFzU7HSKdYiDX5P2ODDO1aNaVKy+NjqP0iLLeHuvMqsd3uTIrFdDUnr8AtxkmrSPUqW5bgsi1syXptWRzYvoa+9n1T9neoupaacJS6xhjllRWpZZjX6dLqujBvvO5dk73WIgz29rDquSemlPMHgk56RTROfTiC2+XsQ/fBAzA8QLK67pB15XL1W67n1VdeZO+e3VmbJNTXNxBN5SNXVlXN6CnOh1NPO52e7m42bdoAOPsr3BhJnfYs/EWD1173Nn77G+eUr23bNEYmTzcHg8EZKR35dMGFF7JvX3OmN7Guvj5zurnQedihUIhLLr0s05sYCASIJxLEE01Eo9GC56Ve/oYraG1pYXBwMPU3b8zs90IFpmnhcJgzzzqbV1c73xfpFId4IkFjY2PB81KvuvrN/OKunzMxMVH0FIely5axb19zJsWimCkOAG++5i38+v77gOKmFAGcfc45NDfvZX+rk/ZYzM/bYqcB8nFOvKl8Y0+Zc5HcjLzdVDnLxYLeLnN8oSQHnFSNqQH5zB7TyVUJuKZ9SRxmgJwcaAcz4fSOeysQX6UTkM+RUym221nXoQLk7BzkHAFysnOr89JXiQRqnbzjdL5zKvVh5iZYiB1IBcCp/GJPYEowPFuAbFnCcIcz2KUrUIG3Koy3qgFPqJLOVSGnWYe4QNDl9eN2WakgOEeAbDvTzOgwve0tuFxuKusaqQ5HqQ5H8Pm82CK47YX/wLjcbrwez2QOsghb170KQFVNHY2RGJFYgsrq6kyqRPY+THzqo4CTg3w4RIR9zXvxuD1EYjGi8SaisTi+1A9WIX8zBwYG2LtnN8uWn0Q80UQsGitIz9lstmzexMmnnEoi0URjkS9Y2rdvH6FQiFNPPa0owVE2Ywx79+7hnHPPy1wkV8y7OuzauZNoLFaSi+TGxsY4cKCDCy68qOgXyQFs27qVZSedVJR86+n6+/sZHh7mkksvI55IFDzferrt27Zx+hlnluQiufb2drxeL5e/4Yqif94Wu6MuBzkej5ubb7651M04Jtx66634z/3M1ImzBMgLNsuPijFJzEhP6q4V7vnVN9/e4XmUSQ51OXWne8izg9tc68oEuUcWIJvkOGakDwlUIy5vZrlMb7GQeT69Vzj9/IFH/heI8J63/cO8AmQhyURPK96qelxef6aX2LKErXechwic/qk1U6ZPv0jPEsEzjwB5tLcLyyQpr6nD47KxLScoti0yAbLblkwP8mwX6Tn5yzNfWwJmYoK25t2EIzEC/kCmVznzP6kc5dS+PNKL9Dra92OSSeob0reUy1o2/ScWmfo6TxfpjY+PZU63Z69rcoHpL6dOONIc5EPJVw9yEWNPpVQBaA7yItLQ0MCtt95a6mbkxW233VbqJhSdiIX48n+Rw3xZ/ur8HQQsgNgeJFhX1IhALBtPTRzrMHpvFypQWYvLwknrKBDb5SJ+wrIF3eruSNQ3hEs2XEkxe4uVUkrNdNQFyEodr/74yi/k/dTbrt+cyGBrCLJ6T4P1w5z+4V0ArPlZE0PtftIdoyJCddMQF//RfgD+8J0og13uTO8rQPzUYa7+RCcAd/5DmKE+Z+AQK9VVe+oFQ7zzZufuEN/8XC1jI1amZ3bvdjfv+UQ/7/vjobxup1JKKbUQGiArdZTo8pWnUieO3Ck3v4ZlCXt+uzQPa8ufxNIxAsGjK+1LKaXUsUcDZKWOEh/a9hQiwi9OflPe1rnk7Tty5iCnE1LP+sjunDnI6ftQX/W5fdipu1i4Une6cGctf9M/7M+Zg5xe/ovfOZAzB3lBCbGz6PzozflYjVJKqeOQBshKHSVu3PYU5DlAPpb1vuO9ZF0zp5RSSs2bDritlDomuVuacbc0l7oZSimljkLag6yUOibFPv8nwOHfB1kppdTxS3uQlVJKKaWUyqIBslJKKaWUUlk0QD7OmYmx4tZnkkz07CI50IYZG6TYIzkme/eQ7G3GjPRiTLJo9ZqJUSba1pLs2YsZHTisdXzozX/DTdd8ef51JicY2LGSoZZNjPcfLOi+7mlrZverz9G5dwdjw4W5h/HE+DgvPvUYm9a+SldnR8HfO3t27eDpJx5j25bNDA0OFrSu6Xp6eti+fRsjIyNFrTdtX3Mzo6OjJam7p6eH/v7+ktRtjKGtrY1ksnjfDdm6uroYHh4uSd3OUNMHSlI3wIEDBxgbK+7vUdrQ0BDd3d0lqRuc4Z4nJiZKUndfX1/JPm+LneYgH+cmDm5BXD7EU4Z4ysAVyAxvWwgiFuIJkRzYD0MdiOV26vWUOUNAi12wugHEV81E93YY6gCxEW956lGJ2IUbvUxsD+L2k+zeDT17ELcfCdRiBWogUIXMY3S/IZd3QfdBFsvGVV7PcMsGRtp3YLu9eKvq8VaF8VU1YFn5297yuggHtq2hr2MfrRuEUGU1NY0xasIRyiqr81KH7XJR1xBh4+uvsHXDGnw+H43ROI2xOOHGGG5Xfr/OYoklvL76Ffbu2c3LL0BNXT2xeIJYPEF1dU1e65qurKyMxx75Hc889QQNDWESiSZi8QSVlZUFrTetrW0/jz36MOFwI/FEE4mmJsrKyopSt23b3HP3XVRUVpJI1V1XV1fQ76U0EWH9urW07NtHPJEgkWgiGovh8XgKXjc4QeqdP/sp9Q0NmW0v1t/c7Xbz3LPPMDg4SCLRRDyRIBKJ4Mrz52o2Pd3d/ObXv6IxEslseygUKkrdHo+HX91/Hy6XK7Pt4XA47wMzzaZl3z5+99sHicZimfr9fn9R6na5XPzirp9TVl5e9M/bYqcBssKMD2PGh2GwA7Hdk8GyO5QJ3MxoH2Z0AUeZc324snpuTXIcM3wQhg+CCOIOIp5ypw2286NkTBIzsH96BYeub3rQmS4iNpgJMBOY4W7McDfIXqdubwXiq0Tck19OyaEuGBtMDwXnrDdTnTVZt8hkndOfI5jk+OR2j49gevdh+loQy0YC1VjBWqxgDeLyTik30b0HRPiTPSsREW4/4SJI3S9YLGf4O5HUSHiWhYhzr2IRQZjsZTUTo4x0NjPatY8B28ZbUYuvOoy/KowVCM7cf0Bfy3YYHXTukSyCZeHcr9i2sBAsm9S9jS1sl5t0/89gTxcjfQfZv3UtXn+AusYYtZEINXWN2Nb8DoL6eg7SsnObsz0CgmAmJvfhyMgwu3dsY8/Obdi2TX1DI5FYgkg0RjBUxoFbPntE93hbv+Y1PJ7Jv0VnRwedBzpY8+oqgsEQ0XiceKKJxsYItp3fA7uDXV1UVFTQ19fL/v2ttO1vZeXLL1JeXkE89QPaUMAfcLfbQzKZpKVlHy0t+3jpxeeprKwi0eQE6uGGcMF+QAcHB6mqrqbzwAEOdnXx+muv4vf7MwFrJBot2FDcY2NjlJWVMzKyg21bt7Jt61YsyyLc2JgJXMrLywtSN8DExASBYJC2/ftp27+flS+/RFl5OfF4gkRTE42NjQX7mw8NDVFTU8OBjg42bdzApo0bcLlcRKLRzLYHAoGC1A1OoGZZFvuam9nX3MwLzz9HVXV1Ztvr6+sL9p4bGBigrq6O3bt2sW7tGtatXYPH4yEWj6cOTuN4vd5Dr+gw+f1+xsfH2b1rF7t37QKgrr4+s+01NYU7IB8cHKS6pob2traif94WOyn2Ke4jtWLFCvPKK6+Uuhl5cdttt5W0/ltvvRV3fNo9dbO/gEQQdxlWsAEz0kNysH3+K5/3F9ns5cTlQwL1iKeMic710+bOEvzO2QbJMT3HNBGnxzdQhwTDmJ7dJIe7pgbCmbLWlOWmB8WT01Ov089T5ZwglvQ4zgiC5a/ArjkRO1iNGR1gfO9KEHh4w28B4W1nvh3ECVTTwTGpAFLSgXE6YM4Ey2T+nxJAp157guWUxU4iFE5kBgOxLaFj7bOM93UiqQE+LEmvy8LCWaeVfi3OMYSdCmjt9LzUsrYluGwXtZEYy888l2AwmBkcZPpAIS5LONDazKvPPZlpp5XaX+n/Jb3N6WGw0387gaqqGk494yziS06YWkYmn6f3Yfp5plzq+QP33c1Af1/WuyS9n7PfBpLpdTpvxQWEQmWTf/Zpb0NJryXXsdy0Mhs3rOOlF5+f/i6dwuPxcOLSZZx7/gr8vqm9TbN9/Ob8VGbNvP0H35+rJD6vn2XLl3PueecfUe9qrna++MILrF+3dtZlbNsmFo+z4oIL89672t/fz90/v3POMpVVVZx11tksP+mkvNYN8Phjj2YCpFw8Hg8nnHgi56+4IO89jK2trTz04G/mLFNXX8+5551PPB7Pa90Av7r/PjrnSPHw+XwsP+lkzjn33Lz36G/dsoWnn3py1vkiQrixkRUXXEh9fX1e6wb42U9+PGc6VTAU4tRTT+OMM8/M+8H4q6tXs3rV7DHVoT5vfresMsasyGujFgntQVYziOVC3Om0hyAiNkZsZCGn5A8RIJvkLLlmOXqRjUkilmdGuWkTDt2G1GunJzf3gaG4g4ivwulJdgdABGO5nN7sKQHy9OA31YZMgMy04Nk6xHY7vch2sNbpSXZ7M+sXlzcrqBbE7Uut0soKjJ1KrVSPcrp3WURgfJacRhE86V7k6jCewMzTmbbHC74Akgl8nbpsS5weZCv1WiyYGJs1p93t9VMXiVIbjlFd34DPe+gfOMt24Q8EZwTII4O5c7jFsqgPp3uR49S0t8L2LYwtPfmQdeUSCAQZGxlhdCx3Lm4gECQaTxCPJwg3RnC78/d1GggGKS+voLe3Z8a8srJy4k1NJBJNBetFjsUTNO/dM2N6RUUliaYmEokl1NfXF6Tu6upqgqEQA9PyIn0+35S0h0L0arlcLhojEVpbWqZMtyyLhnA4cwq6UL3I9fUNtO3fPyMPOVRWNiXtoRD73efzUd/QQHtb25Tptm1P6UUOBnOfbTpSjY0Rerq7GR8fnzK9sqoqU3dDQ0NBepGDoRBV1dUc7OqaMt3j8WTSHmLxOD6fL+91A8QTCbZt3Tpjem1dXWbba2trC1J3ZWUlZeXl9PX2TplejM/bYlfQAFlErgW+DdjAD4wx/zpt/pXAr4GdqUn3GWP+sZBtUrlN5iGXg8s/40vI8teAfwGneeb4EjOjfUz07p4satmpYLw8Zx6yWDZ2zSnT1j+9B3k+KRbiXCzXuWlKGfGWId4qJxfZds9Yl1UeA0lMS7GY5Xk6fSBHukWybz+me2dmveLyIcEarEAtEqjEsuxM72+mbk8Q+4TLEEuwtv4BRPAtvTzVC2xN9hin/k9PsyxneOiJgU6Gdq7MqtODt7IBf3UYb2U9Lo8nM8x0LrWnXJhzqGmXbTmpFbZkhpre++rTDHROpsIEK6qpCkeoCUeprK6ZNtT0odU2NPKmG96LJZM90Qda97Hymd9nynh9PhqjMRqjcRrCUTwej5OOIUL0Ex8ADv8+yNdcdwNPPPYwrVmDjdTU1hGPJ4jG4tTU1k6eAcizJUtOYOvmTfT29iAiNNQ3pFIrUjmpBU4PXLp0Gc179ziBYUM4k4ecDgwLs9WOE5cuZdUrznu2WKfY03w+Hw0NYVpbWvB6vVNOsRcjD3npsmWZ3rzsPOSqqqqC111VVUV5eTntbW0EAoHMQVix8pBPXLqUdWvXYFkWjZEI8Xii4CktaZFIJPP3zc7FLVYeclPTErZt3YrL5SIai2W2vZApLZm6lyzh5ZdfApzPWzogL8bnbbEr2LtenCjnP4FrgGZgpYg8YIzZMK3oM8aYGwrVDjU3K9SIuEOZfN8ZQWUBJAfbEdvrBOTeioJfGJjNDLQ7FwZ6y526vWVOnnWBt9skJzC9zc4BQLDOeXhDkwFxgTZ/ZP9WbF8IT2UD3qoGPGXV2Lbl5BDPEhQfjsHuTgYOdlBeH6GmIUpVQ5RAMOCkVuTxb7t5/WuUVVYRiSZojMWpqalLpXnkP2TraG+jo30/sbiTdxuNJQgEA0UZurq7uxuX280Vb3wT0Vgcf4F6rmbT19fHm656c1EvUEs7cOAAZ59zLvFEomgXBqYZY7Btm+tveDsNDQ1Fu0grrbOzk8sufwPxRKJgvZWzGRsbo6Kikne++z0F662cS29PD1ddXZr3XH9/P4lEE5e/4YqiXRSZbWhoiGveem1RL4pM6+rq4swzzyrJ522xK+Rf4kJgmzFmB4CI3AW8E5geIKsSsnz5ucPAfBmTxCqLFzUgzyaBWqyKRNaEIh0hmyRW4zlOuoRlH/F2/+Dxb1I94pyCTm/Cc/Gz+e5FNwJw+31/j298BIxBbBsBnj7pYn56mdOr+r0ffCGTnpHOq33y3Kv4zRXvwzs6zD9/7y+d1A3SWSTC05e/nWff+E5CfQf5/He+NJm7KwLJCV647kbWnfcGajv384Gv/UlW3q9Tz2s33syey99Mxe7tXPmNr07m6KbKbLz583Re8kYqNq3jrG98DVI5weky2z73FVZceiWNWzaw5Otfm8zddkrS/LV/Yfj0swk9+wQN//cb+DasZfi0Mw97H/v9Ad77wY/gcrky+cbFUllZyZuuenPR6pvunHPPLVnd4XCYcDhckrpFpKTbnkgkDl2oQNxud0m3femyZSWrOxQKcdbZZ5es/lNPO61kddfW1pbkgOhoUMgAOQrszXrdDFyUo9wlIvI60AJ80Rgz/WosROQW4BYo7ReIOnIiFtjF7R2YUr+ruL0ymXpt9xEHxe+89msLus1b6iq0I6pz3jVZtpMTXUCWbRMIzv+2T8OnnUn3u95/2PWFysqKGBIrpZRaTAp2FwsReT/wVmPMzanXHwUuNMZ8NqtMOZA0xvSLyPXAt40xy+dar97FIn9uvfVW/Od+ZurEfPXozrdndj71zTO/eN5lpt95YrZp2dPFOuIc5EzZdA9y5m4TkumJnfKwZj7PzjueTw6yZTl5wunnk9OsGdPS07PvYmGJzDsH2ZW6eM+dKue2JZNi4bZlSg6y27awU3nFs93FIvu1lVU2/b9I1l01JN3bLZkcZCt1LeXh3sUiO/Ml3YM8fVp2DnJ6uXzcxWLG9aUzFpj+cuqEI72LxaHkK6HlOE9xVOqodyzfxaKQXT7NQPa9YGI4vcQZxpheY0x/6vlDgFtEtK9fKaWUUkqVTCED5JXAchE5QUQ8wIeAB7ILiEhYUldniciFqfZ0FrBNSimllFJKzalgOcjGmHER+QzwCM5t3m43xqwXkU+n5n8PeB/wpyIyDgwBHzJH28glSimllFLqmFLQ+4mk0iYemjbte1nPvwt8t5BtUEoppZRSaiGKe48tpZRSSimlFjkNkJVSSimllMqiAbIqKmOSmOR46eqfGC1Nvcnxom+3SU6QHBsuSl1jI0OYZLKgdUyMjzMyPFTQOrINDgyQLPA2KaWUWpyKO6ahWnSSw93O8MdWcd4KIhYT3TucewCnhpoWl78odQOYgTaSY4OTQ017QkUa5lpItqwGT8AZZjpQi3gCha3Rshnc/jIi4K1swFsVxhOqKEhdo4P97Hj+YSrqG6luiFJVH8Ht9+a1Dsu2ef6Jh7EsOzPUdFVV4UaC7Ovr5aFf/5LGaIxYoolINI7Pl99tmk13dzfr1r5OPNFEJBLF43YXpd60tWvWUFlZSWMJhr5ta2ujp7ubeCKB31+87wZwhppet3YtjZFISUYXa25uZnxsjGgshrvIf/OxsTE2bdxIPJEoyXDLO3fswHa5iEaj2LZd1Lr7+/vZs3s3iaYmQqH5D0aUL5s3baKsvJxwOFyS4c07DxwoyedtsdMA+TiX7N8HgLj9iDsdsBZ2tDkrUM9E3x7M+BAMdiC22wmWPeXgDjqj7RWIBOtJdm7GDLbDYLtzYOAtR7yVzrZbhfliFstGyqMku3dhRnrh4E7EHcAK1mIFa8FXhkj+6/Y2LGdo1ysMDfUw0rYV2+PHW9WArzqMr7IO8nRgFKyqw19RRXfrHvr272WvJVTW1FHdGKW6IYq74sgDcxFh+Wlns+q5J+jpOsCmdasJBkM0RuNEYgnq6sN5DeYawo1U1dSye9cO9uzagYhFfUMDsXgT0Xi8oEFEZWUlA/39/OHxR7Ftm8bGCIlEE7F4oig/4D6fj8cefRjb5SISiZJINBFPJAgECntQB1BdXc3jjz7CM08/RV19PYlEE4mmJqqrC3cwlCYiDA8P8+v77yMQCBBvaiKRaCJSpAOFyspK7rn7LgAaIxHi8QSJpibKysoKXrfb7ebAgQ5efulFysrLM/u9WEFbIBjkwQd+jcvlIhqLEY8nivaeC4VCbNu2lReef46q6urMttfV1RWlA8XtdvO73z6Ix+MhnkgQjyeIxeN4vYU/IK+srOSxEn3eFruCjaRXKDqSXv7ceuutuONvmjpRBLE8qYC1DNwBRCySQ12Y4QXcovoQ3ymTqQ7ThwSznB7tVMAslguDIXlw64xyh27D9JH00nWPAWbqRHGGXRNPCPFVOAGzywtikezbhxnpyRruTKYul/kCFcj8kEjO8mZiZMooe5mR2Gw3VrDGCZgDNVguN2IJjA0xvn9tatQ9pwc+M4JbZhQ+mTotawQ+yxLM6IAz2pw1Wc6yBMt24a2sx1fdgL86jNvnnzGS3sGtrzIxcNAZyc7KGtXOsqZMsy3BjI+SHBtJjXZHaiQ+Z7S6YFkZtY1RahtjVNXW4XW7DjmS3sGONja9+nJqBLz0qHfCYF9P1oh4k6Pbud1uGhqjRKJxGmNxAn7/EY2k98TjD9Pd1cnw8FB6fLv0PwDKKyqIJ5qIxeLUN4SxbStvI+nt3bObVa+8THf3wSnrAqiqqs4EbrWpH/B8j6T3h98/zq6dO2YUqa2tc+qON+WlhzVXO7dv28aqVa/Q19s7ZXowFMoEjJFIpCC9jMPDwzz91JPs3bNnynSXy0VjJJIJHgoVtK1ft47XX3uVoaGpqURV1dWZba+vry9I0Nbd3c1zzz7D/tbWKdM9Hg+xeDx1gFa4oG3VK6+wbu0axsenpqLV1ddntr2mpqYgde/fv58XX3iezgMHpkz3+/3EEwnnICkaLViv/rPPPsPmjRunTBMRGsLhzHuuIg+dDLns3rWLlStfpqe7e8r0YCiUOTCe6/N2LI+kpz3IagaTHHWC4eFOxFOGFQyDGXeCu/k63C9wk8SM9GJGehG7AwmGEU9ZjrpzB79zt0FmmZ6pHDPahxnrRwbakGADEgzDxBhmfHhawJte5bQhqrOHl54RRMvsdSfHSPa3YfrbSfrKcNUuww5WOznbo4Pp6C7zMKngzqQCYZMO8LKHpxYwqWA459YmJxg52Mpo936GWrdRnjiVUDgxpcz48ADjg31IaojozNDOloVFOkDOCphn2bzhgT5ad2ymfddWaiMxTjrrfILB4Cx/B8fE+Bj9vZPBsEUquJ+l/PjYGPv27qaleTdlGyo485zziC85Yc465tLX28PwHDnPfb09bFi3ls0b1hNPNLHiwosIhfLT09ff35cJjqc7eLCLgwe72LBuLScuXcb5F1yI35ffU6O5gmOAAwc6OHCgg3Vr1nDSSSdz3vkr8Hg8ea27o6NjRnAMMNDfz6aNG9i8aSOxeJwLL7o477344+PjM4Lj7Ol79+zh9ddf47zzzmfZ8uV5D1RbW1tmBMcAB7u6ONjVxfp1a1m6bBkrLrgw76fDh4aGZgTHAKOjo+zYvp0d27dTVV3NigsuJJFI5FjDkdm7d8+M4Bigo72djvZ21q55nZNPOZVzzzsv7++5vt7eGcExOPtky+bNbNm8mYZwmAsvupj6+vq81g2wa8fMz5sxhv2trexvbWXN669xxplnccaZZ+b9wLCrq2tGcAzO523jhvVs2rihYJ+3xU4DZDWV2JM9uO6yyZQDlw/LW7WA9cw+y2CcHtlci7kDTs+xpyyT6mEwWL7pp3um9zzP0S037XVypAfMzIuvxOV30ix8lame81Qw6glhiZUVk1tTg+UpPch2VvOsKWVMchwz3J2jnRbir8QK1WIFarE8/swPr9gurPLGyZ5Py5p8LlYqICbTVivTg2xhWSAYxntm/uiB4C6rxlfVgL+6EU+oPGcg7a9ugGAIsVK9u6kg2c7qQbZT80b7uxnpn7l9Lo+XmnAjdZEYNfWNeL0e3PahzwD4AkFiJyzDSnXKWiKQTNKyZ+fMrRGhtq4hlW4Rp6KyatZgfb4STSewv2UfBw/OPHPi9fmIxeLE4gki0Rgej+ewjwlzqaurJxqNsW9f85TpgUDQOfXc1FTQ/OBzz1/Bq6umnqkLhcpINDURjydobCxMDy7AkhNOoLW1ha7Oyf3u8XiIxmKZXkyfrzBpYF6vl9PPOJP169ZOmV7f0JDpxSzkqeeTTzmVjo4OBgcGMtMCgYBz2j3RRDQaLdjfvKKigmXLl7Nt6+TZOsuyCDc2ZnoSy8vLC1I3wFlnnc0zTz81JUgOlZVlelAbGxsLlupRV19PPJGYcnDkcrmIRIuTXnTueefz4gvPT5lWjLMGALF4nL1799DR3p6Zln3WIBqLFezztthpgKwQOzulIvdFa07QuoAvxzk+zMmhzskAWaxM3eIpy3mxoIiFlMWmTZzeg5wrQJ5ZxowNwHC6Z04Qbyrv2leF2J6c67ICtc660hGXZAfI055nAuRpvcliOfnHqQBZLDcSrEECtViBKsR2TaZMZDfZ5cPdcGqmZ9iyrJzPp0+zLAvLEsYPNk8GyJaNp7Ieb6UTFLu8XqcHeI5Isjx2Eh6Xsy5XKhi2LMFlW9gi2PZkgLzzxUcyy/nKKqgJR6kOR6iorsPjsnDbTrn5Kq+s5qwLLp1M6xBh99ZNmQDZ7fYQbozRGIvTGInh9XqdfZCn35Fzzr+A3zZP/mBWVFYRSySIxeLU1TekUlamJzfkR21dHf39/c7z2jrnRzqeoCad1lCY38oZ6usbiKcChOzAsDBb7SgrK6Onu7skebBut5uRkWHcbveUgLxYFy/5fD4GBwaoqa3NBEe1tbVFyYMNBAL09fXh8/mmBEf57q2djYgwMTFBQzic2faqqgV0yhyB8vJyDh48WJK8c4BkMollWUXPOwfn89Z98GBJPm+LnQbIxzm7ahliZ+WUFfiL2EkZ6MXy1TgBuaesSHeRcCQHO7F8Nc6FeZ4yxE59BAp4YSA4OddmpA+rIoYE68BbkdUbXJjtNybJ6MEWvHVNeCvDeCpqsG07lX+c3+3t62jB5fVRm1hKTUOUQKjMCYgt8rZ9ExMTtDbv5sSTTyMSTVBb34DLtjP5yfm2d88uAoEgJ518KtFYnLLyisn85QLr7e3ljDPPIhZ3eq6K9wlx1FTXcNNHPlaSnqPR0VHe9Z73luR0rjGGZctP4vI3XFH0OymA81n50E0fPmT6USGMjY2x4oILaWhoKOp3clowFOKmj3y0JO+54eFhrn7zNSW5cwk4B8Qf/ujHinYwkm10dJR3vOvdx136xHxogHycmxIcF6dG7IqsvNAifxFb5fGC3ali7ord2OGzU1eb2UXabiG07CJsWzK9nYVSVhehOhzFtgR3vrpwp7Esi8uuujZzMV+hd2E8sYSmJue9Wux4oaKiomAX5cxHoqmpZHUXq9cwFxEhGo2WrP5SBWjg9J6Hw+GS1V+I3N75CgQCRblbxmwaGxtLVnch02aOdtqHroqqFD0Ti6H+UtRbzDqLUVex92Gp36tKKaVKRwNkpZRSSimlsmiArJRSSimlVBYNkJVSSimllMqiAbJSSimllFJZNEBWSimllFIqiwbISimllFJKZdEAWSmllFJKqSwaICullFJKKZWloAGyiFwrIptFZJuIfDnHfBGR76TmrxGR8wrZnsWmFMOJLoa6lVJKKaUWs4INNS0iNvCfwDVAM7BSRB4wxmzIKnYdsDz1uAj4r9T/x4UvfvGLpW6CUkoppZSapmABMnAhsM0YswNARO4C3glkB8jvBH5ijDHAiyJSKSKNxpjW2Va6efNmrrzyygI2+/gysnXr1AmLcnjdHG2aVzNnKXTIbZQcT6dPy9UmOcSyMnVZAclRXrLmZ16nn2e1PfN8jnIiU59PnweSNX3acqmVWeJMkGnrkKxlsudZkrVc1rqsafVk7610mfTukaztydp7k+3LWm7aXpuyDDnKZS+f8881Y5lZlj3E8rmXPlTBHHUcjtne+ke6XqWUOk4UMkCOAnuzXjczs3c4V5koMCVAFpFbgFsAvF5v3ht6PLtixfJSN0EppZRSalEpZICcq7PCHEYZjDHfB74PsGLFCvPkk08eceOUUkoppdThk0V51jk/CnmRXjMQz3odA1oOo4xSSimllFJFU8gAeSWwXEROEBEP8CHggWllHgA+lrqbxcVAz1z5x0oppZRSShVawVIsjDHjIvIZ4BHABm43xqwXkU+n5n8PeAi4HtgGDAJ/XKj2KKWUUkopNR+FzEHGGPMQThCcPe17Wc8N8OeFbINSSimllFILoSPpKaWUUkoplUUDZKWUUkoppbJogKyUUkoppVQWDZCVUkoppZTKogGyUkoppZRSWTRAVkoppZRSKosGyEoppZRSSmXRAFkppZRSSqksGiArpZRSSimVRQNkpZRSSimlsmiArJRSSimlVBYNkJVSSimllMoixphSt2FBRKQP2FzqdhxlaoEDpW7EUUT318LpPls43WcLo/tr4XSfLZzus4U52RhTVupGFIKr1A04DJuNMStK3YijiYi8ovts/nR/LZzus4XTfbYwur8WTvfZwuk+WxgReaXUbSgUTbFQSimllFIqiwbISimllFJKZTkaA+Tvl7oBRyHdZwuj+2vhdJ8tnO6zhdH9tXC6zxZO99nCHLP766i7SE8ppZRSSqlCOhp7kJVSSimllCqYoypAFpFrRWSziGwTkS+Xuj2LnYjcLiLtIrKu1G05GohIXESeEJGNIrJeRD5f6jYtdiLiE5GXReT11D67rdRtOhqIiC0ir4rIg6Vuy9FARHaJyFoRee1Yvmo+n0SkUkTuFZFNqe+0S0rdpsVKRE5OvbfSj14R+UKp27XYichfpL7314nIz0XEV+o25dNRk2IhIjawBbgGaAZWAjcaYzaUtGGLmIhcAfQDPzHGnFHq9ix2ItIINBpjVotIGbAKeJe+x2YnIgIEjTH9IuIGngU+b4x5scRNW9RE5C+BFUC5MeaGUrdnsRORXcAKY4zen3aeROTHwDPGmB+IiAcIGGO6S9ysRS8Va+wDLjLG7C51exYrEYnifN+fZowZEpFfAA8ZY35U2pblz9HUg3whsM0Ys8MYMwrcBbyzxG1a1IwxTwNdpW7H0cIY02qMWZ163gdsBKKlbdXiZhz9qZfu1OPoOOouERGJAW8DflDqtqhjk4iUA1cAPwQwxoxqcDxvVwPbNTieFxfgFxEXEABaStyevDqaAuQosDfrdTMavKgCEZElwLnASyVuyqKXShd4DWgHHjPG6D6b27eAvwaSJW7H0cQAj4rIKhG5pdSNOQqcCHQAd6RSeX4gIsFSN+oo8SHg56VuxGJnjNkHfBPYA7QCPcaYR0vbqvw6mgJkyTFNe6pU3olICPgl8AVjTG+p27PYGWMmjDHnADHgQhHRdJ5ZiMgNQLsxZlWp23KUucwYcx5wHfDnqfQxNTsXcB7wX8aYc4EBQK/bOYRUKso7gHtK3ZbFTkSqcM7inwBEgKCIfKS0rcqvoylAbgbiWa9jHGPd+ar0Unm0vwT+xxhzX6nbczRJncJ9Eri2tC1Z1C4D3pHKqb0LuEpEflbaJi1+xpiW1P/twP04KXdqds1Ac9bZnHtxAmY1t+uA1caYtlI35CjwZmCnMabDGDMG3AdcWuI25dXRFCCvBJaLyAmpo7wPAQ+UuE3qGJK64OyHwEZjzL+Xuj1HAxGpE5HK1HM/zpfmppI2ahEzxnzFGBMzxizB+Q77gzHmmOp1yTcRCaYumiWVJvAWQO/MMwdjzH5gr4icnJp0NaAXGx/ajWh6xXztAS4WkUDqt/NqnOt2jhmuUjdgvowx4yLyGeARwAZuN8asL3GzFjUR+TlwJVArIs3ArcaYH5a2VYvaZcBHgbWpnFqAvzXGPFS6Ji16jcCPU1d+W8AvjDF66zKVTw3A/c5vMC7gTmPMw6Vt0lHhs8D/pDqUdgB/XOL2LGoiEsC5S9anSt2Wo4Ex5iURuRdYDYwDr3KMjap31NzmTSmllFJKqWI4mlIslFJKKaWUKjgNkJVSSimllMqiAbJSSimllFJZNEBWSimllFIqiwbISimllFJKZdEAWSmllFJKqSwaICullFJKKZVFA2SllCoSEblARNaIiC81Qtx6ETmj1O1SSik1lQ4UopRSRSQi/wT4AD/QbIz5lxI3SSml1DQaICulVBGlhv5dCQwDlxpjJkrcJKWUUtNoioVSShVXNRACynB6kpVSSi0y2oOslFJFJCIPAHcBJwCNxpjPlLhJSimlpnGVugFKKXW8EJGPAePGmDtFxAaeF5GrjDF/KHXblFJKTdIeZKWUUkoppbJoDrJSSimllFJZNEBWSimllFIqiwbISimllFJKZdEAWSmllFJKqSwaICullFJKKZVFA2SllFJKKaWyaICslFJKKaVUFg2QlVJKKaWUyqIBslJKKaWUUlk0QFZKKaWUUiqLBshKKaWUUkpl0QBZKaWUUkqpLBogK6WUUkoplUUDZKXUgonIehG5Mt/rEpFdIvLmfKx3tjqyptWJyGsicm4e6/mRiPxTvta3gHqPeL/N9Tc9ku0q1T5RSqkj4Sp1A5RSi4uI7AIagHFgAtgA/AT4vjEmCWCMOX2e67nZGPP4XOXms64jNb0OEXEDPwb+1BjzaqHrPxoU4++glFJHCw2QlVK5vN0Y87iIVABvBL4NXAT8cb4qEBGXMWY8X+tbCGPMGHB9KepWSim1+GmKhVJqVsaYHmPMA8AHgY+LyBkw9ZS+iPyNiOwTkT4R2SwiV4vIT4EE8BsR6ReRv85a7m9EZA0wICKuHOkBF4jIBhE5KCJ3iIgvPUNEjIgsy3o95fS9iMRF5D4R6RCRThH5bo72nioiT4pIdyqt4B3Z25wq+0URWSMiPSJyd3YbppU9V0RWp7b9bsA3bX5ERH6Zas9OEfncLOv5sojcO23at0XkOwtZz6G2b7b9k2MfHWq7viwi21PzN4jIu+e7T3K0d9ZtW+Df4t9E5P6s198Qkd+nzhYopdSCaICslDokY8zLQDPwhuzpInIy8BngAmNMGfBWYJcx5qPAHpye6JAx5t+yFrsReBtQOUsP8odT61kKnAR8dT5tFBEbeBDYDSwBosBd08q4gd8AjwL1wGeB/0ltR7YPANcCJwBnAX+Uoz4P8Cvgp0A1cA/w3qz5Vqqu11NtuRr4goi8NUfzfw5cLyLlWdvyAeDOhaxnru2bz/6Zz3albMd5L1QAtwE/E5HGeS6bXdd8tu2Qf4uUrwNvEpFzROTTqWXekzpboJRSC6IBslJqvlpwgp5sE4AXOE1E3MaYXcaY7YdYz3eMMXuNMUOzzP9uan4X8M84AfV8XAhEgC8ZYwaMMcPGmGenlbkYCAH/aowZNcb8ASdonF7Hd4wxLak2/AY4J0d9FwNu4FvGmDFjzL3Ayqz5FwB1xph/TNW1A/hv4EPTV2SM2Q2sBt6VmnQVMGiMeXEh6znE9s1n/8xnuzDG3JPaP0ljzN3A1tT6D7nsNPPZtvn8LTDGdALfwsmX/wpwvTGmZ466lVJqVpqDrJSaryjQlT3BGLNNRL4A/ANwuog8AvylMaZljvXsPUQ92fN34wR18xEHdh8irzkC7E1fbJhVR3Rauf1ZzwdnaUME2GeMMdPWldYERESkO2uaDTwzS9vuxAlkfwLclHq90PXMtX3z2T/pdcy1XYjIx4C/xOmJBicorwX8h1p2mvls23z+FmmvArcCHzbGHOp9ppRSs9IeZKXUIYnIBThB1oweR2PMncaYy3GCHYNzqpvU81xmm54Wz3qewOm5ThsEAlmvw1nP9wIJEZnrwL8FiKdO7WfXse8QbcqlFYiKiExbV3Z7dhpjKrMeZcaY2S4OvAe4UkRiwLuZDJAXsp65tm8+++eQ2yUiTTi9vJ8BaowxlcA6QA61bA4L3UezEpEzgf/CuTvJJxa6vFJKZdMAWSk1KxEpF5EbcHJVf2aMWTtt/skicpWIeIFhYAgn7QKgDTjxMKr9cxGJiUg18LfA3VnzXgNuEhFbRK7FucNG2ss4Adq/ikhQRHwictm0db8EDAB/LSJuce77+3Zy5OLOwws4t8L7nDgXG74HJ80guz294lyU6E+1+YzUwcYMxpgO4EngDpygceNhrGeu7ZvP/pnPdgVxDnI6AETkj4Ez5rnsdAvaR7MRkShO+sWngT8DzpQ83adbKXV80gBZKZXLb0SkD6eH7++Afyf3Ld68wL8CB3BOhdfjBLUA/wJ8VZy7KXxxAXXfiXOR2Y7UI3uQic/jBHzdOBfz/So9wxgzkZq3DOcCwWacu2+QVWYUeAdwXarN/w/4mDFm0wLal72u9+BcNHYwVdd9OdpzDrAzVd8PcC5sm82dwJuZ7D1e0Hrm2r757J95btcG4P/gBMNtwJnAc/NZNkddh7OPpkhd2PgQ8O/GmAeMMYPAN3Dy15VS6rDI1FQxpZRSSimljm/ag6yUUkoppVQWDZCVUkoppZTKogGyUkoppZRSWTRAVkoppZRSKstRFyCLSEep26CUUkopdbw7lmOyo3EkvdpgMKi33lBKKaWUKq1jNh476gLkQCDAwMBAqZuhlFJKKXVcE5GhUrehUI66FAullFJKKaUKSQNkpZRSSilVECJyrYhsFpFtIvLlHPNFRL6Tmr9GRM4rRTun0wBZKaWUUkrlnYjYwH8C1wGnATeKyGnTil0HLE89bgH+q6iNnMVRl4Osjtyjjz7KwMAAHo8Ht9uNx+OZ8pg+Lfu12+1GREq9CUoptTgYAybpPJITqecTWa/NtNfZ85NTX5vk5Doxqf/Jem4yL2dOm2OZWddjDrHuHMsc7j46/IW13qLUWzAXAtuMMTsAROQu4J3Ahqwy7wR+YowxwIsiUikijcaY1uI3d5IGyMehL37xi6xdu/awl3e73fh8PgKBQOYRDAYP+ToYDFJZWZnzEQwGNfBWSs1tYhxGemG0H8aGYWwQxlP/T3k95Dymz5sYg+SY83/m+aiz3onR1Ovs5+nHKCTHcwfAx+5F/ErNh0tEXsl6/X1jzPezXkeBvVmvm4GLpq0jV5kooAGyKq6nvvpGTP9pjNohhu0gw1aAYQkwiI8B46M/6aV/wsPo+ASjo6NTHmNjY4yMjDAyMsLAwACDg4NTHm1tbTOmDQ4OYg5xZOtyuaYEzDU1NTQ0NMz6qK2txbbtIu0xpVTeGOMEuQMHnMfgARjocJ4P9zjzhntn/j/cA2OHcQcj2wMuP7h9YHvBdoHldqbbLud/yw2ewOTz7Ol26mG5wbJBLOeReZ7637Kmvc6eLznKZ61ryiPdUSCp56nX6ee55mf6FuZaZj7rma1ups0/HEewrNZbnHoPx22njxtjVsxRIleDpgcE8ylTdBogH4eqkl3QvRYGO2F8lju0iAWhBigLQ33E+b+8EcqaoKwRKuJQmXB+dA7BGMPw8DD9/f309PRw8OBBuru7cz4OHjzIwYMH6ezsZOPGjbS1tTEyMjJjnW63m1gsRlNTU85HIpHA4/Ec6a5SSi3ExDj0tULvPuhpdh7p5737oL/DCYgnRnMv7/KBtxx85ZP/l4VTrysmp3tD4A6A2+8sk36efriynlt6IK1UCTUD8azXMaDlMMoUnRyqZ2+xCQaDRu+DnEejgzDUBYNdTsCcft7fDn0t0LcfeludH72hrpnLl0WgaglUnwBVJ0DdSVB3ClSf6PS6HCFjDL29vbS1tU157Nu3j927d2ce+/btm9JLbds2J554Iqeccgonn3wyp5xyCqeeeipnnnkmZWVlR9wupY5bE+NwcBd0bnMeXdtTz3c43xnpPNo0bwVUxKA84hx0B2sgWOc8ArUQTD0CtfM64FZKLR4iMmiMCc4x3wVsAa4G9gErgZuMMeuzyrwN+AxwPU76xXeMMRcWtOHzoAGymr+xYSdQ7mt1eoS6djo/lOlHX9YBn+WC6qVQdzI0ngWN50LkHOeHsABGR0dpbm7OBMzbtm1j8+bNbNq0iS1btjA6OtljtWzZMs4991zOOecczjnnHC688EJqawvTLqWOaoNdsH8ttK2DtvXO/+2bYCLrrI6/GmqWOp/3ygRURKE85gTFFVHw6gGpUseqQwXIqTLXA98CbOB2Y8w/i8inAYwx3xPnAqTvAtcCg8AfG2NemW19xaIBssqf0QE4sAU6tkDHJujYDB0boWvHZJnymBMox1ZA0+XO8zz0NM9lYmKC3bt3s379el577bXMY8eOyXadfPLJXHrppVx22WVceumlnHzyyViW3gVRHUcmxqF9AzSvnHx0bpucH2qAhtOdR/1pULPcCYwD1aVrs1KqpOYTIB+tNEBWhTfcA61roOVVaH0NWl5zTsuCkzsYvxCaLoMll0PsQucCmSLo6enhtdde44UXXuD555/n+eefp7OzE4D6+nquueYa3vKWt/CWt7yFcDhclDYpVTTGOAexO56A7U/A7uecu0OAk/4QuxDiF0DjOdBwBoTqStpcpdTiowHyIqIB8jGiv8P5Qd79vPN/23rAgK8Cll0DJ18Hy64Gf1XRmmSMYcuWLTz33HP84Q9/4LHHHqO9vR2As846i2uvvZb3vOc9XHjhhXpLOnV0Gh2EbY/B5odhx5OTaVHVS+HEKyFxiRMUVzYd4ZX0SqnjgQbIi4gGyMeowS7Y+TRsfRS2POJc6S42JC6G098Np7/HubiniJLJJGvWrOGRRx7h0Ucf5ZlnnmFsbIxEIsH73vc+3v/+93PRRRdpsKwWt5E+5zO18QHY+phzP2B/lRMQn/gmWPomJ3dYKaUWSAPkRUQD5ONAMgn7VsGWh2HTb508Zsvl9Cyf/UE46bqSXO3e3d3NAw88wD333MOjjz7K6Ogo8Xicj3zkI9x8882ceOKJRW+TUjklk7DjD7Dqx05wPDECwXo47R1w2jshcWnRUpmUUscuDZAXEQ2Qj0P718Gau2Dtvc4dNLwVcOZ74aI/dW4rVwI9PT088MAD3HXXXTz88MMkk0ne/OY3c8stt/DOd75T78GsSqO3FV79Gaz+CfTsgUANnPE+OP1dEL9I7wmslMorDZAPZ8UitwM3AO3GmDPmKHcB8CLwQWPMvYdarwbIx7HkhJOG8fpdsP5+p1ds2TVw8Z/C0qtKljPZ3NzMHXfcwQ9+8AP27NlDXV0dN998M5///OdpaGgoSZvUcWbPS/D8d2Dz75xhkE94I5z/cTjlBnB5S906pdQxSgPkw1mxyBVAP/CT2QJkEbGBx4BhnHvjaYCs5qe/A1bdAS//Nwy0O4OTXPxncPaN4CpN7+3ExASPPfYY3//+9/n1r3+N2+3mE5/4BF/60pc44YQTStImdQwzBnY+BU9/E3Y949yP+LyPOY+apaVunVLqOKAB8uGuXGQJ8OAcAfIXgDHgglQ5DZDVwoyPwLr74MX/dAY0qEjAFX8F53y44PdXnsvWrVv5xje+wY9//GMmJib44Ac/yN/8zd9w1llnlaxN6hhhjJNX/Mw3nXsVh8Jw2efg/D8CzzH5O6WUWqQ0QD7clc8RIItIFLgTuAr4IXMEyCJyC3ALgMfjOX9kZCRXMXU8Mwa2/x6e+BfY94oz7PU1t8Gp7yjp7apaWlr4j//4D773ve/R39/PRz7yEf75n/+ZRELvGqAOw+7n4dGvOhexVibgsi84B4M6RLNSqgQ0QD7clc8dIN8D/B9jzIsi8iO0B1nlgzHOreIe/wdnVLD4RXDtv0L0vJI2q6uri2984xv8x3/8ByLCX/zFX/DlL3+Z8vLykrZLHSUO7oJH/g42PQhlEXjT38LZHyrpWRKllNIA+XBXPneAvBNId+3V4oy/fYsx5ldzrVMDZDUvyQl47X/gD/8E/e2w4hNw9d8XdeCRXPbs2cNXv/pVfvrTn1JXV8c//MM/8Cd/8ie43RroqBzGR+C57zjpFGLDG/4CLv5z8ARK3TKllNIA+bBXfogc5KxyP0J7kFUhDPfAE/8bXv6+c8urt/0f5z6wJbZq1Sq++MUv8uSTT3LOOedw++23c+6555a6WWox2fsy/OrPoHMrnPYueOv/hopoqVullFIZx3KAbBVqxSLyc+AF4GQRaRaRT4rIp0Xk04WqU6kZfBVw3dfhliehPAK/+Bjc80cwcKCkzTr//PP5wx/+wL333sv+/fu54IIL+MpXvsLQ0FBJ26UWgbEhJ53ih29xepA/8kv4wI81OFZKqSLSgULU8WNiDJ79Fjz1dSfV4j3/n3P/5BI7ePAgf/VXf8Udd9zBSSedxA9+8APe8IY3lLpZqhTaNsC9n3BGj1zxCbjmH8FbVupWKaVUTtqDrNSxwHbDG7/k9Cb7q+Cn74bHvuYEziVUVVXF7bffnhm++oorruCzn/2s9iYfT4yBlT+A/34TDHbCR+6DG/5Dg2OllCoR7UFWx6fRQXjkK7DqR5C4FN7/Iygr/ah3/f39/N3f/R3f+c53OOOMM7jrrrs4/fTTS90sVUijg/Cbz8Hae2DZm+Fd34NQXalbpZRSh3Qs9yBrgKyOb2vvhV9/BvyV8IGfQvyCUrcIgIcffpiPf/zj9Pb28t3vfpdPfvKTpW6SKoSunXD3R6FtHVz1d3D5X4GlJ/aUUkeHYzlA1m9idXw7831w82Nge+BH18Oae0rdIgCuvfZa1qxZw+WXX87NN9/MJz/5SU25ONbsfgH++yro2QMfvgeu+JIGx0optUjot7FS4TOdvOTYhXDfzfD0N5yc0BJraGjg4Ycf5qtf/Sq33347l19+OXv27Cl1s1Q+rL0XfvIOCFTDnzwBy68pdYuUUkpl0RQLpdLGR+CBz8Kau+G8j8EN3wLLLnWrAHjwwQf58Ic/jN/v5/777+eSSy4pdZPU4Xru287FoYlL4UP/4wTJSil1FNIUC6WOBy4vvPv/c051r/6Jc7ut8dFStwqAG264gRdffJFQKMSVV17Jz372s1I3SS2UMfD4bU5wfPq74WO/0uBYKaUWKQ2QlcomAld9Fd7yT7DhV3DXTc5dBhaBU089lZdeeonLLruMj370o3zjG98odZPUfCWT8NCX4Nl/h/M+Du/9oXNAppRSalHSAFmpXC79rJNise1xuOtGZ3SzRaCmpobf/e53fPCDH+Sv//qv+dKXvkQymSx1s9RcjIHf/iWs/G+45DPw9m8vmtQdpZRSublK3QClFq0Vf+z08v3qz+Duj8CH7lwUvX5er5c777yTuro6vvnNb9LR0cF///d/43a7S900NZ0xTs/xqjvg8r+Aq291zlIopZRa1DRAVmou59zkjLT3m8/BLz4GH/yZMyJfiVmWxXe+8x3q6+v52te+xoEDB/jFL35BIBAoddNUmjHw6Fcne441OFZKqaOGplgodSjnfxze9n9gy8Pw6z938kkXARHh7//+7/mv//ovHnroIa655hp6enpK3SyV9uy/wwvfhQs/5eS0a3CslFJHDQ2QlZqPC26GN33VuQXc418rdWum+PSnP80999zDypUrufbaa+nt7S11k9SrP4Pf/yOc+QG49l81OFZKqaOMBshKzdcVX4QL/gSe/7/w/HdL3Zop3vve93L33XezcuVKrr/+evr7+0vdpOPXlkfggc/B0qvhnf+po+MppdRRSL+5lZovEbju63DaO53c0k2/LXWLpnj3u9/Nz3/+c1544QVuuOEGdECdEti/zrl/dvhM+MBPwOUpdYuUUmpREpFqEXlMRLam/q/KUSYuIk+IyEYRWS8iny9W+zRAVmohLNsZTCRyLvzyT6B1TalbNMX73/9+fvrTn/LMM8/wjne8g6GhxXF7uuNCfzv8/EPgLYcb7wJvqNQtUkqpxezLwO+NMcuB36deTzcO/JUx5lTgYuDPReS0YjROA2SlFsrthxt/Dr4K+PmN0NdW6hZNcdNNN3HHHXfwxBNP8K53vYvh4eFSN+nYNzbsDCoz2Om8N8obS90ipZRa7N4J/Dj1/MfAu6YXMMa0GmNWp573ARuBaDEapwGyUoejLAw33QVDXXDPHzm3gltEPvaxj/GDH/yARx99lJtuuomJiYlSN+nY9rsvQfPK1NmFc0rdGqWUKhaXiLyS9bhlAcs2GGNawQmEgfq5CovIEuBc4KXDbu0CFCxAFpHbRaRdRNbNMv/DIrIm9XheRM4uVFuUKojGs+Ht34E9z8Njt5a6NTN84hOf4Fvf+hb3338/n/vc5zDGlLpJx6ZVP4bVP4E3fBFOe0epW6OUUsU0boxZkfX4fvZMEXlcRNbleLxzIZWISAj4JfAFY0xRbtVUyIFCfgR8F/jJLPN3Am80xhwUkeuA7wMXFbA9SuXfWe93eg5f/E+IrYAz3lPqFk3x+c9/nubmZr75zW8Sj8f58pdzpXipw7ZvtTNS3olvgjf9balbo5RSi4ox5s2zzRORNhFpNMa0ikgj0D5LOTdOcPw/xpj7CtTUGQrWg2yMeRrommP+88aYg6mXLwKxQrVFqYJ6yz9B7EL49WfgwNZSt2aGr3/969x444185Stf4Sc/me14VS3YUDfc83EI1cN7f+hcwKmUUmq+HgA+nnr+ceDX0wuIiAA/BDYaY/69iG1bNDnInwR+V+pGKHVYXB54/4+c/+/9BIyPlLpFU1iWxR133MFVV13FJz/5SR599NFSN+noZwz85vPQ2wLvuwOCNaVukVJKHW3+FbhGRLYC16ReIyIREXkoVeYy4KPAVSLyWupxfTEaJ4XMS0wlVD9ojDljjjJvAv4fcLkxpnOWMrcAtwB4PJ7zR0YWVwCiFACbHoK7boRLPgNv/edSt2aGnp4errjiCnbs2MFTTz3FeeedV+omHb1W/wQe+CxcfSu84S9L3RqllCoJERk0xgRL3Y5CKGmALCJnAfcD1xljtsxnncFg0OgACGrReuhL8PL34cP3wvJrSt2aGVpaWrjkkksYHR3llVdeIRotyt1yji0dW+D7b4TYBfDRX+lIeUqp49axHCCX7JtdRBLAfcBH5xscK7XoXfO/oP50+NWfwkDOEyIlFYlE+O1vf0t/fz/vete7dCCRhZoYg/tudu6F/Z7va3CslFLHqELe5u3nwAvAySLSLCKfFJFPi8in///27jw+qur+//jrkwUCARLBFtksoqBIqIiAooJRRAERpFoLYsW68EVZ1J+ouI/iAlYrFauWglYUQcANlU3BqIiy7wEUUTCyyRbZAiQ5vz/uQAMmkG1yZybv5+NxHzM3c++ZN1fMfDhz7jnBQx4BagAvBceUzA9VFpEyE5/gFU77dsLHd3ljVcNMSkoKY8aMYcGCBdx0002a/q0ovngWNi6BzsO8ubBFRCQqhXSIRShoiIVEhC+fgxmPe7MbNL3G7zT5evrpp3nggQd48skneeABTVF2XBsWwX/aef89/zTi+MeLiES5aB5ioQJZJBRysuHVy2HbGrj9m7Bcetg5x/XXX89bb73F+++/T9euRZq3vXw5mOWNO87KhNu/hkon+J1IRMR30VwgawCdSCjExkG3VyA7CyYP9DtNvsyMkSNH0rJlS3r27MmyZcv8jhS+vvg7/LIKuryo4lhEpBxQgSwSKic2hNRBsOojSJ/kd5p8VapUiffee49q1arRpUsXtm7d6nek8LNpOXw1DM7qAQ0LXBRKRESiiApkkVBq3Q9Oaur1Iu/b6XeafNWpU4f333+fDRs20LNnT3JycvyOFD5yc7z5jhOS4fKn/E4jIiJlRAWySCjFxkOX4bDnF/j0Ub/TFKhVq1YMHz6c6dOn89hjj/kdJ3zMHQEbFkLHoVC5ut9pRESkjKhAFgm12mfDebfDgv/C+m/8TlOgW2+9lRtvvJHBgwfz8ccf+x3Hf5k/w4zB0PAySLna7zQiIlKGNIuFSFk4sAdebAWVkqH3595NfGFo3759nH/++fz4448sWLCABg0a+B3JP+N7wbdToe8cOKG+32lERMKOZrEQkZKpkAgdnoLNy2HeSL/TFKhSpUq88847AFx99dXld6W972dC+vvQ5m4VxyIi5ZAKZJGy0rgLnNoOPnsSdm3yO02BGjRowBtvvMHixYvp27dv+VtpL3s/TL4HqjeA8wf4nUZERHygAlmkrJhBp797cyN/8ojfaY6pc+fOPPTQQ7z22muMGjXK7zhl6+sXvQVeOv7dWzpcRETKHY1BFilrMx73lqK++VOo19LvNAXKycmhQ4cOzJo1izlz5vDHP/7R70iht2sTvNAcGqRCj7f8TiMiEtYiYgxyICkRyCKQWaQ5TFUgi5S1/btheHNIqgc3fwIx4ftFzubNm2nWrBnJycnMmzePKlWq+B0ptN6/HZaOh35zvSEWIiJSoLAskANJMUB3oCfQEtgPVAR+ASYDIwhkfne8ZsL3k1kkWlWsAu0ehZ/nw/KJfqc5ppo1azJmzBhWr15N3759/Y4TWj8vhMVj4LzbVByLiESuz4BTgfuBkwhk1iOQ+XugDfANMIRA0vXHa0Q9yCJ+yM2F/1wMu7dA//neLBdhLBAI8Nhjj/Haa69x4403+h2n9DkHr3aA7d9D/4WQUM3vRCIiYS9Me5DjCWQeLOkx6kEW8UNMDHQYArs2wOwX/U5zXA8//DCpqan07duX9PR0v+OUvvQP4Kdv4JKHVRyLiESyQ4VvIGk2gaSLj3nMMahAFvHLH1pD4yth9guwZ6vfaY4pNjaWMWPGkJiYyLXXXsvevXv9jlR6crJh5mD4XWM4+7jfuomISGToDfQjkDSDQFLrop6sAlnET5c8Agf3whfP+p3kuGrXrs2bb75Jeno6AwZE0fzAi97wpnVr9wjExPqdRkRESkMgczmBzKuBe4AHCSR9RCCpWWFPV4Es4qffNfJ6LeePgh3r/E5zXJdddhn3338/o0aNYsyYMX7HKbkDeyFtCNQ7D07v6HcaEREpfWuAwUAGML+wJ6lAFvHbRYPAYuCzp/xOUiiPPfYYF154IX369OHbb7/1O07JzHkFdm+CSwPeQi4iIhIdAkkzCST9BCwAHgB2ADcW9vSQFchm9qqZbTGz5QW8bmb2gpmtMbOlZtY8VFlEwlpSHWjVG5a+DZvy/d8lrMTFxTF27FgqVqzItddeS1ZWlt+Rimfvdpg1DBp18MaDi4hI5AskHertGAg0IpDZkEBmVwKZ9xPIfPOoYwoUyh7k/wIdjvF6R6BhcOsNvBzCLCLh7cK7vNkTZjzud5JCqVu3LqNHj2bJkiXcddddfscpnlnPw/5fvbHHIiISLT4jkNQf2Eogc9/hnwaSKhBIuoRA0utAr+M1ErIC2Tn3BbD9GId0BUY7zzdAspnVClUekbBWuTpccCd8Nw3WzfY7TaF06tSJe+65h1deeYUJEyb4HadoMn+GuSPgrO5Qs4nfaUREpPR0AHKAsQSSNhBISieQ9APwHdADeJ5A5n+P10ihFgoxs3y7WJxzx+zuMrP6wEfOuZR8XvsIGOKcmxXcnwHc55z7zQBqM+uN18tMhQoVztm/f/9xM4tEnAN78yxBPT0ixsQePHiQtm3bkp6ezqJFi2jQIEJWoPugnzekpf8CSD7Z7zQiIhEpLBcKySuQFA+cCOwjkLmzKKcWtgd5T54tB294RP2ivFE+8vv0z7dad86NcM61cM61iIuLK+HbioSpCpXhovsgYy6snux3mkKJj49n7NixxMTE8Je//IWI+MfrL6u9JaVb3qLiWEQkWgWSvgIuJJC5sajFMRSyQHbOPZdnexJIBeoU9c2OkgHUy7NfF9hQwjZFItvZf4Uap8GMwd5y1BGgfv36vPbaa8yfP59Bgwb5Hef4PnsK4hOhzd1+JxERKbfMrLqZfWJm3wUfTzjGsbFmtig4+qCw/g8fFgqpDJT0u9RJwA3B2SzOAzKdcxtL2KZIZIuNg9T74ZeVsPIDv9MU2lVXXcWAAQMYNmwYkyZN8jtOwbas8paVPrc3JJ7odxoRkfJsEDDDOdcQmBHcL8gdwMoitV4WC4WY2bLgVGxLzWwFsBr453HOGQt8DZxuZhlmdrOZ9TGzPsFDJgNr8SZw/g9we2FDi0S1Jt3gxEaQNjRiepEBnnnmGZo3b86NN97I+vXr/Y6Tvy+fg/jKcF5fv5OIiJR3XYHXg89fB67K7yAzqwtcAYws5vsUa6GQwg7o7ZzneTaw2TmXfawTnHM9jvO6A/QpJXK0mFhvLPI7N3u9yE26+Z2oUCpWrMjbb79N8+bN6dGjB2lpacTHx/sd63+2fQ/LJ0LrvpBYw+80IiLRIM7M8hadI5xzIwp5bs1DIweccxvN7PcFHDcMuBeoWqRkgaSZeFMJZwHpwe3Gwp5eqALZORf+a+CKRJMm3eDzoV4vcuOuEBMZi16edtppjBgxgh49evDwww8zZMgQvyP9z5f/gNgK0Lq/30lERKJFtnOuRUEvmtmnwEn5vPRgYRo3s87AFufcAjNLLWK2gcDKI+ZCLoLI+NQVKW8O9SJH2FhkgO7du9O7d2+GDh3K1KlT/Y7j2bEOlo6Dc26EqjX9TiMiUi445y51zqXks30AbD60/kXwcUs+TVwAdDGzH4FxwCVm9uYx3zSQ9GjwWQKFHynxG4WaBzmcJCYmuj179vgdQyT0cnPgpfPAYuG22RHTiwywb98+zj33XDZu3MiSJUuoXbu2v4E+vNOb2u2OJVDN5ywiIlGiJPMgm9nfgW3OuSFmNgio7py79xjHpwIDnXOdCzoGgEBSawKZXxNIGg+k4BXJ6cBSYCmBzImFyRc5n7gi5U0E9yJXqlSJ8ePHs3fvXq677jpycnL8C5P5s1ccn329imMRkfAxBGhvZt8B7YP7mFltMyvJYgDJBJJqE8i8lkDmmUBT4HHge+C8wjaiHmSRcHaoFzkmDvp8FVG9yACjR4+mV69ePPLIIzz22GP+hJh8L8wfBQMWaWEQEZFSFJYr6QWSRgLNgJrAKmAxsCT4uJJAZqF6bCLr01akvDnUi7wlHVaG8fzCBbjhhhvo1asXgwcPZubMmWUfYNdmWPg6nNVdxbGISHkQyLyFQGYL4DngW+AH4GJgLlDoSSfUgywS7iK8F3n37t20bNmSnTt3smjRIk46Kb8bmkNk2oPwzUvQbz7UOLXs3ldEpBwIyx7kQwJJSwhknpVn/xzgHgKZ3QtzemR90oqUR3l7kVcVZZXN8FClShXGjx9PZmYm3bt3Jzv7mFOol549W2H+q9D0zyqORUTKn1+DRbEnkLkAaFTYk1Ugi0SCJt2g+qnwxd8hwr71AWjatCkjRozg888/5/777y+bN/36X3BwH7QZWDbvJyIi4eQm4CUCSa8RSOpHIOnfwMHCnqwCWSQSxMRCm7th01L4brrfaYrl+uuv5/bbb+fZZ5/lnXfeCe2b7d0Oc/8DTa6C3xW6w0BERKJFIPM74HxgMt4NeyuBToU9XWOQRSJFzkEY3hwSfw+3fApmficqsv3793PRRReRnp7O3LlzOeOMM0LzRp89DZ8P8eaPrtkkNO8hIlLOhfUY5BJSD7JIpIiNhwvvgp/nw9o0v9MUS8WKFZkwYQIVK1bkT3/6E7t37y79N8n6Fea8DGd0VnEsIiLFogJZJJI06wlVa8MXz/qdpNjq1avHuHHjWL16Nbfccgul/i3W3BGQlQltNfZYRESKRwWySCSJqwgX3AHrZsG62X6nKbZ27drxxBNP8PbbbzNs2LDSa3j/bu/mvIaXQe2zS69dEREpV1Qgi0Sa5jdA4u+8GS0i2H333Ue3bt0YOHAg06ZNK51G578K+7ZD23tLpz0RESmXVCCLRJoKlaF1P/h+JmQs8DtNscXExDB69GhSUlL4y1/+wurVq0vW4MF9MHs4NEiFei1LJaOIiJRPKpBFIlHLm6HSCRHfi1ylShU++OAD4uPj6dKlCzt27Ch+Ywtehz1b1HssIiIlpgJZJBJVrArn3Q7fToGNS/1OUyL169fn3Xff5Ycffij+SnvZ++Grf8IfLoD6F5R+SBERKVdUIItEqla9oWI1+DJyZ7Q4pE2bNrz00ktMnz6de+65p+gNLB4DuzZA22KcKyIicpSQFshm1sHMVpvZGjMblM/rSWb2oZktMbMVZva3UOYRiSqVkr0iOX0SbFnld5oSu+WWWxgwYADDhg1j1KhRhT8x5yDMeh7qtvTGH4uIiJRQyApkM4sF/gV0BM4EepjZmUcd1hdId86dBaQCz5lZhVBlEok6590O8ZVh1j/8TlIqnnvuOdq3b0+fPn2YPr2QS2ovfRt2rvfGHkfg6oIiIhJ+QtmD3ApY45xb65w7AIwDuh51jAOqmpkBVYDtQDEGIIqUU4k1oOVNsGwCbPve7zQlFhcXx4QJEzjzzDO5+uqrWbhw4bFPyMmGL5+DWs2gYfsyySgiItEvlAVyHeCnPPsZwZ/l9SLQGNgALAPucM7lHt2QmfU2s/lmNr9YN/CIRLPW/SG2gjfMIAokJSUxZcoUqlevTqdOnfjhhx8KPnjFu7B9rTf2WL3HIiJSSkJZIOf3aXX0mrKXA4uB2kAz4EUzq/abk5wb4Zxr4ZxrERcXV9o5RSJb1ZrQvBcsGesNNYgCtWvXZurUqRw4cIAOHTqwdevW3x6Um+stuf37JnB6p7IPKSIiUSuUBXIGUC/Pfl28nuK8/ga86zxrgB+AM0KYSSQ6XTAAMG+qsyjRuHFjPvzwQ9avX8+VV17J3r17jzxg5QewdTW0HQgxmpBHRERKTyg/VeYBDc3slOCNd92BSUcdsx5oB2BmNYHTgbUhzCQSnZLqQrPrYOEb8OtGv9OUmgsuuIC33nqLuXPnHjlH8qHe4xMbwZlH39ogIiJSMiErkJ1z2UA/YBqwEhjvnFthZn3MrE/wsMHA+Wa2DJgB3Oecy+e7VBE5rgvvgtxsb7nlKNKtWzdefPFFPvzwQ3r16kVOTo63QMrm5dBmIMTE+h1RRESijDl39LDg8JaYmOj27NnjdwyR8PReH1jxPty1HBJP9DtNqRo6dCiDBg3ihhv+yn/PX4dlZUK/+RCr+xJERPxgZnudc4l+5wgFDdwTiSZt7obsLPj6Rb+TlLr77ruPwYMHs2X2WGzjYnIv/H8qjkVEJCRUIItEkxMbQpNuMPc/sHe732lK3UMPPsiI6xrw485c+o74ktzc38wKKSIiUmIqkEWiTduBcGA3zB3hd5LS99106tkmFlZpxysjRtK/f38ibZiYiIiEPxXIItGmZhM4ozN88xJk/ep3mtLjHHz2JJxQn26B8QwcOJCXXnqJvn37ejfuiYiIlBIVyCLRqO1AyMqEeSP9TlJ6Vn0MG5fARfdhcRV45plnuPfee3n55Zfp0aMH+/fv9zuhiIhECRXIItGo9tlwWnvvZr0DUTDrS24ufPYU1DgNml4LgJkxdOhQnn32WSZMmMAVV1zBrl27fA4qIiKFYWbVzewTM/su+HhCAcclm9lEM1tlZivNrHVZ5FOBLBKt2t4De7fB/Ff9TlJyKz+ALSvgokG/mbni7rvv5vXXXyctLY3U1FS2bNniU0gRESmCQcAM51xDvLUwBhVw3D+Bqc65M4Cz8NbWCDnNgywSzUZfBZuWwh1LoGJVv9MUT24OvNQazOC22QUuDDJ58mSuueYa6tSpw/Tp0znllFPKOKiISPlSknmQzWw1kOqc22hmtYA059zpRx1TDVgCNHBlXLCqB1kkml3ysNeL/M0rficpvuXvwtbVkDromKvmderUiRkzZrBt2zbOO+88Zs2aVYYhRUTKpTgzm59n612Ec2s65zYCBB9/n88xDYBfgNfMbJGZjTSzMlmYRAWySDSrew6cfgXMfiEy50XOyYa0p6FmCjTuetzDW7duzVdffUW1atW4+OKLeeWVVzQNnIhI6GQ751rk2Y6YX9TMPjWz5flsx/+F7okDmgMvO+fOBvZQ8FCMUqUCWSTaXfIg7N/lFcmRZtl42P49pN4PMYX7ddW4cWPmzZvHZZddxm233Ubv3r01w4WIiA+cc5c651Ly2T4ANgeHVhB8zO8Gkgwgwzk3J7g/Ea9gDjkVyCLRrmYTaHqNN8xi1ya/0xRe9gFIGwK1zoIzrijSqcnJyUyaNIkHH3yQkSNHkpqayoYNG0IUVEREimES0Cv4vBfwwdEHOOc2AT+Z2aGxye2A9LIIpwJZpDy4+AHIzfamSitNOTnw0UcweLD3WJoLdswbCTvXQbtHvBv0iig2NpYnnniCiRMnsmzZMs455xxmzJhRevlERKQkhgDtzew7oH1wHzOrbWaT8xzXHxhjZkuBZkApf5DlT7NYiJQXUwbB3H97M0H8vnHJ28vJgcsvhzlzYM8eSEyEc8+FadMgtuCb6Qpl3w544Wyo1QxueL/EUZcvX86f//xnVq1axZ133slTTz1FpUqVStyuiEh5VpJZLMKdepBFyouL7oUKVeGTR0qnvSlTvOJ4925vGejdu739KVNK3vaXz8G+nXDZ4JK3BaSkpLBgwQL69evHsGHDaNGiBYsXLy6VtkVEJPqoQBYpLypX95ag/m46fP9ZydtbtMjrOc5rzx4oaeG5Yx3M+Tc0uw5OalqytvKoXLkyw4cPZ+rUqezYsYNWrVoxdOhQckpzWIiIiEQFFcgi5Umr3pB8Mkx/yJtCrSTOPtsbVpFXYiI0a1aydj99FCwWLn6wZO0U4PLLL2fZsmV07dqVQYMG0bp1a+bPnx+S9xIRkcikAlmkPIlPgPaDYfNymD+qZG117OiNOa5SxbuJrkoVb79jx+K3uTYNVrwHF94JSXVKlu8YatSowfjx4xkzZgzr16+nVatW9OnTh23btoXsPUVEJHLoJj2R8sY5eKMb/LwQ+s+HKvktXlRIOTnemOPFi72e444di3+DXvYBeOUCyDkAt8/xivkykJmZSSAQYPjw4SQnJzNkyBBuuukmYgo577KISHmlm/SKycw6mNlqM1tjZvmufGJmqWa22MxWmNnnocwjIni9vZ3+Dgf3wiePlqyt2Fjo3Bkeesh7LMnsFXNehq3fQsdnyqw4BkhKSuL5559n0aJFnHnmmdx66620atWKqVOnahU+EZFyKmQFspnFAv8COgJnAj3M7MyjjkkGXgK6OOeaAH8OVR4RyePEhnB+f1jyFqz72u80kJkBaUOhUUdodLkvEZo2bcrnn3/Om2++ydatW+nYsSNt2rRh5syZvuQRERH/hLIHuRWwxjm31jl3ABgHHL329nXAu8659QDOufyWGRSRUGg7EJJOhkn94eA+/3I4Bx/eATjo8LR/OQAzo2fPnnz77be8/PLL/Pjjj7Rr146LL76YWbNm+ZpNRETKTigL5DrAT3n2M4I/y6sRcIKZpZnZAjO7Ib+GzKy3mc03s/nZ2SW8815EPBUSocsLsO07mPmEfzkWvQlrPoVLA1D9FP9y5FGhQgX69OnDmjVr+Oc//8nKlStp06YNrVu3Zty4cRw8eNDviCIiEkKhLJDzWxv26AF9ccA5wBXA5cDDZtboNyc5N8I518I51yIuLq70k4qUV6deDC1ugq//BevnlP37Z2bAtAfgDxdCy1vL/v2PIyEhgQEDBrB27VpeeOEFtm3bRo8ePahfvz5PPvkkv/zyi98RRUQkBEJZIGcA9fLs1wU25HPMVOfcHufcVuAL4KwQZhKRo7V/HJLqwfu3wYEynCEmN9cb3pGbDV1fhDCeNaJy5cr079+fVatW8fHHH5OSksJDDz1EvXr16NmzJ1OnTkXfbomIRI9QfiLNAxqa2SlmVgHoDkw66pgPgDZmFmdmlYFzgZUhzCQiR6tYFa76F2xfCx/d5Y0JLguz/gHfz/SWkw6ToRXHExMTQ6dOnZg2bRrp6enccsstTJkyhY4dO1K3bl3uuusuFi5cqNkvREQiXEjnQTazTsAwIBZ41Tn3pJn1AXDOvRI85h7gb0AuMNI5N+xYbWoeZJEQ+fwZ+OxJuOI5aHlLaN9rbZo3F3OTbnD1KG/quQi1f/9+pkyZwhtvvMFHH33EgQMHOP300+nSpQtdunShdevWxJZk+jsRkTAVzfMga6EQEfHk5sJb13rF603ToO45xz3l0DohixZ5K08Xap2QXzfAK22gcg24dSZUrFIq8cPBjh07mDBhAhMnTiQtLY2DBw9So0YNOnXqxJVXXskll1xCjRo1/I4pIlIqVCCHERXIIiG0dzuMuMhb1e7maXBC/QIPzcmByy+HOXNgzx5ITPRWmp427RhFclYm/LczbPseen8Gvzs9JH+McPDrr78ybdo0PvzwQz7++GO2b98OwB//+EdSU1NJTU2lbdu2KphFJGKpQA4jKpBFQmxzOrzWESolez3JVU/K97CPPoIePWD37v/9rEoVGDvWW1TvNw7shTevhoy50GMcNGwfkvjhKDs7mzlz5pCWlkZaWhpfffUV+/Z5c083btyYli1b0rJlS1q0aEGzZs1ISCi7lQRFRIpLBXIYUYEsUgYy5sPrXSD5ZPjbZKhc/TeHDB4Mjz565D19ZvD4497K00fIPgBv94TvPoFrRkHK1aHNH+YOHDjAvHnzSEtLY86cOcydO5fNmzcDEBcXR5MmTWjatClNmjQhJSWFlJQUTj75ZGLCeKYPESl/VCCHERXIImVk7ecw5s+QXM/r8T2x4REvF7oHec9WePuvsH42dH7em3dZjuCcIyMjg3nz5jFv3jwWLVrEihUryMjIOHxMYmIip556Kg0aNDj8eGj7wx/+QMWKFX38E4hIeaQCOYyoQBYpQ+tme8VtzkGv5zfPsIicHOhwmSNn9jbqZu0mI6EKsefXYOp0+98Y5M0r4K3usGcLdP0XNL3Gnz9HhNq5cyfp6eksX76cFStWsHbt2sNbVlbW4ePMjLp161KnTh1q1apFrVq1qF279uHnh7YaNWqgxZZEpLSoQA4jKpBFytjO9TDuOti0HJpdB5c8BNVq43IcCy5byPTNn7Cmxrectq0Rl9VszznTm2MHf4Uv/wHfvOwNz+g+Buocf1YMKZzc3Fw2bdp0RMG8du1aNmzYwMaNG9m4cSM7duzI99ykpCRq1KhxeKtevfrh59WqVaNq1ar5bodeq1ixIhbB0/KJSOlRgRxGVCCL+ODAHkh7Gub8GywWWvyNzT9dSqev72XlSSvJis8i4WACjTc2ZvJpN1Ez/h+wdyuc1QMuDRR4o5+Ezr59+9i0adPhgnnjxo1s27btiG379u2Hn2dmZhaq3bi4OKpUqUJCQgKVKlUiISHh8Ha8/fj4eOLj44mLiyvxY0xMzOHNzI7YP9ZWmGPNTP8IECkEFchhRAWyiI92/Agzn4AV7zNq6Tn0b/Ql+yruO/xywv4EXvy2LTd3SfAK49pn+xZViiY7O5vdu3eza9eu4267d+8mKyuLffv2kZWVdXjLu5/f89zcXL//mIV2qJDOWygfel7cx9JoozTaCjfhmEuZCmfdunVRWyBrMJqIFN4J9eHqkdB5GGuG9yVrV9YRL++P38+adilww3P+5JNii4uLIzk5meTk5JC9R25uLtnZ2Rw8eLDEj845cnNzj9jy+1lBW2GOzcnJOZz9UGdScR9Lo43SaCvchGMuZSoc5xyjR4/2O0bIqEAWkaKrWIXzO19DwlsT2EeeHmSXwPkXp/oWS8JbTEwMFSpUoEKFCn5HEZFSEM0FsibVFJFi6dSoE61PbU1iTCKGkRiTSOtTW9OpUSe/o4mIiJSIxiCLSLHl5OYwZc0UFm9aTLOTmtHxtI7ExhS0zrSIiEQT3aQXRlQgi4iIiPgvmgtkDbEQEREREclDBbKIiIiISB4RN8TCzHIhz23zUhhxQLbfISKIrlfR6ZoVna5Z0eh6FZ2uWdHpmhVNJedcVHa2RuI0bwudcy38DhFJzGy+rlnh6XoVna5Z0emaFY2uV9HpmhWdrlnRmNl8vzOESlRW/SIiIiIixaUCWUREREQkj0gskEf4HSAC6ZoVja5X0emaFZ2uWdHoehWdrlnR6ZoVTdRer4i7SU9EREREJJQisQdZRERERCRkVCCLiIiIiOQRUQWymXUws9VmtsbMBvmdJ9yZ2atmtsXMlvudJRKYWT0z+8zMVprZCjO7w+9M4c7MEsxsrpktCV6zx/zOFAnMLNbMFpnZR35niQRm9qOZLTOzxdE8rVRpMrNkM5toZquCv9Na+50pXJnZ6cG/W4e2X83sTr9zhTszuyv4e3+5mY01swS/M5WmiBmDbGaxwLdAeyADmAf0cM6l+xosjJlZW2A3MNo5l+J3nnBnZrWAWs65hWZWFVgAXKW/YwUzMwMSnXO7zSwemAXc4Zz7xudoYc3M/h/QAqjmnOvsd55wZ2Y/Ai2cc1v9zhIpzOx14Evn3EgzqwBUds7t9DlW2AvWGj8D5zrn1vmdJ1yZWR283/dnOuf2mdl4YLJz7r/+Jis9kdSD3ApY45xb65w7AIwDuvqcKaw5574AtvudI1I45zY65xYGn+8CVgJ1/E0V3pxnd3A3PrhFxr+6fWJmdYErgJF+Z5HoZGbVgLbAKADn3AEVx4XWDvhexXGhxAGVzCwOqAxs8DlPqYqkArkO8FOe/QxUvEiImFl94Gxgjs9Rwl5wuMBiYAvwiXNO1+zYhgH3Ark+54gkDphuZgvMrLffYSJAA+AX4LXgUJ6RZpbod6gI0R0Y63eIcOec+xl4FlgPbAQynXPT/U1VuiKpQLZ8fqaeKil1ZlYFeAe40zn3q995wp1zLsc51wyoC7QyMw3nKYCZdQa2OOcW+J0lwlzgnGsOdAT6BoePScHigObAy865s4E9gO7bOY7gUJQuwAS/s4Q7MzsB71v8U4DaQKKZXe9vqtIVSQVyBlAvz35doqw7X/wXHEf7DjDGOfeu33kiSfAr3DSgg79JwtoFQJfgmNpxwCVm9qa/kcKfc25D8HEL8B7ekDspWAaQkefbnIl4BbMcW0dgoXNus99BIsClwA/OuV+ccweBd4Hzfc5UqiKpQJ4HNDSzU4L/yusOTPI5k0SR4A1no4CVzrl/+J0nEpjZ78wsOfi8Et4vzVW+hgpjzrn7nXN1nXP18X6HzXTORVWvS2kzs8TgTbMEhwlcBmhmnmNwzm0CfjKz04M/agfoZuPj64GGVxTWeuA8M6sc/Oxsh3ffTtSI8ztAYTnnss2sHzANiAVedc6t8DlWWDOzsUAqcKKZZQCPOudG+ZsqrF0A/BVYFhxTC/CAc26yf5HCXi3g9eCd3zHAeOecpi6T0lQTeM/7DCYOeMs5N9XfSBGhPzAm2KG0Fvibz3nCmplVxpsl6//8zhIJnHNzzGwisBDIBhYRZctOR8w0byIiIiIiZSGShliIiIiIiIScCmQRERERkTxUIIuIiIiI5KECWUREREQkDxXIIiIiIiJ5qEAWEREREclDBbKIiIiISB4qkEVEyoiZtTSzpWaWEFwhboWZpfidS0REjqSFQkREypCZPQEkAJWADOfc0z5HEhGRo6hAFhEpQ8Glf+cBWcD5zrkcnyOJiMhRNMRCRKRsVQeqAFXxepJFRCTMqAdZRKQMmdkkYBxwClDLOdfP50giInKUOL8DiIiUF2Z2A5DtnHvLzGKB2WZ2iXNupt/ZRETkf9SDLCIiIiKSh8Ygi4iIiIjkoQJZRERERCQPFcgiIiIiInmoQBYRERERyUMFsoiIiIhIHiqQRURERETyUIEsIiIiIpLH/wcCJdzifbr6zwAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "nq=2 #separacion entre vectores en quiver plot\n", "Nx=40\n", "Ny=8\n", "Lx=8.0\n", "Ly=2.0\n", "xp = np.linspace(0, Lx, Nx)\n", "yp = np.linspace(0, Ly, Ny)\n", "X, Y = np.meshgrid(xp, yp)\n", "\n", "def velU(x):\n", " return (1.0-1.0/(1.0+np.exp(-3*(x-3.0))))+0.5\n", "\n", "def dUdx(x):\n", " return -(3* np.exp(-3 *(-3 + x)))/(1 + np.exp(-3*(-3 + x)))**2\n", "\n", "t=0.0\n", "U = velU(X)\n", "V = np.zeros(np.shape(X))\n", "\n", "ypos=1.0\n", "XP=[0,ypos]\n", "\n", "fig, (ax,ax2) = plt.subplots(2,1,figsize=(10, 6))\n", "ax.contourf(X,Y,velU(X),256,cmap=\"Blues\")\n", "Q = ax.quiver(X[1:Ny-1,4:Nx-1:nq], Y[1:Ny-1,4:Nx-1:nq], U[1:Ny-1,4:Nx-1:nq], V[1:Ny-1,4:Nx-1:nq],alpha=0.4,scale=30,width=0.004)\n", "\n", "pt1, = ax.plot([], [], '.',color=\"tab:orange\", ms=20,markeredgecolor=\"k\")\n", "ax.set_xlabel(\"x\")\n", "ax.set_ylabel(\"y\")\n", "ax.set_ylim([-0.15*Ly, 1.15*Ly])\n", "ax.set_xlim([0, Lx])\n", "ax.plot([0,Lx],[0, 0], 'k-',linewidth=1.5)\n", "ax.plot([0,Lx],[Ly, Ly], 'k-',linewidth=1.5)\n", "rect1 = plt.Rectangle((0, 0), Lx/12+0.205*Lx/4, Ly, color='white')\n", "ax.add_patch(rect1)\n", "rect2 = plt.Rectangle((Lx/12, 0.03*Ly), 0.2*Lx/4, 0.95*Ly, color='gray')\n", "ax.add_patch(rect2)\n", "rect3 = plt.Rectangle((0, 1-0.1*Ly), Lx/12, 0.2*Ly, color='gray')\n", "ax.add_patch(rect3)\n", "ax.set_title(\"Campo de velocidades\")\n", "\n", "xp = np.linspace(Lx/12+0.2*Lx/4, Lx, 200)\n", "T1D=velU(xp)\n", "ax2.plot(xp, T1D, 'k')\n", "ax2.set_xlabel(\"x\")\n", "ax2.set_ylabel(\"u\")\n", "ax2.set_xlim([0, Lx])\n", "ax2.set_title(\"Distribución de velocidad en $x$\")\n", "\n", "axR = ax2.twinx()\n", "deriv=dUdx(xp)\n", "axR.plot(xp, deriv, color='tab:orange')\n", "axR.set_ylabel(\"$div(v)$\",color='tab:orange')\n", "\n", "xc=3.0\n", "yc=1.0\n", "\n", "colors=[\"r\",\"b\",\"m\",\"g\",\"y\"]\n", "sizes=[1,2,5,15]\n", "\n", "for i in range(0,4):\n", " delta=0.5/sizes[i]\n", " ax.plot([xc-delta,xc-delta,xc+delta,xc+delta,xc-delta],[yc-delta,yc+delta,yc+delta,yc-delta,yc-delta], '--',color=colors[i],linewidth=1.5)\n", " vr=velU(xc+delta)\n", " vl=velU(xc-delta)\n", " div=(vr-vl)/(2*delta)\n", " axR.plot(xc, div, '.',color=colors[i],ms=10)\n", "\n", "plt.tight_layout()\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Hemos visto que la divergencia de la velocidad se define como el límite del flujo neto por unidad de volumen que atraviesa la superficie de un volumen de control $V$ cuando éste tiende a cero. Para mostrar gráficamente el concepto de divergencia de la velocidad, hemos aproximado su valor en $x=3$ m utilizando los distintos volúmenes representados en la figura mediante el siguiente cálculo\n", "\n", "$$\n", "div(\\vec{\\bf{v}}) \\approx \\frac{1}{V} \\int_{\\partial V} \\vec{\\bf{v}} \\cdot \\hat{\\bf{n}} dS\n", "$$\n", "\n", "y su valor numérico se ha representado con el color correspondiente en la gráfica. Se observa que **conforme se disminuye el tamaño del volumen, el valor numérico se aproxima más al valor exacto** proporcionado en la curva naranja.\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Rotacional de la velocidad\n", "\n", "Como en la sección previa, vamos a ilustrar este concepto con un ejemplo. Supongamos que tenemos un flujo viscoso en movimiento entre dos placas paralelas en reposo, separadas una distancia de 2 m. Como veremos en el tema 3, el perfil de velocidad entre las placas es parabólico. El campo de velocidades viene dado por la siguiente expresión:\n", "\n", "$$ u= 1-(y-1)^2,\\quad v=w=0 $$\n", "\n", "existiendo un **gradiente transversal de velocidad** en dirección $y$.\n", "\n", "En la siguiente figura se muestra el sistema y se representa este campo de velocidad." ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "tags": [ "hide-cell" ] }, "outputs": [ { "data": { "application/papermill.record/image/png": "iVBORw0KGgoAAAANSUhEUgAAAsgAAAEYCAYAAABBfQDEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAABq90lEQVR4nO39d5gc2XnY+39P5zjdPTn29OQIzGC5DEtSFCXSNkVRlnzNxxZt2tfSveZPsmhJV5ZEU5JFUbJIRYqkRXK5XKZlWoYN3JwjiN1FzhkYhAEm59zp/P6oRqMnYXqADtPY9/M882C6urrwok71ed86daqgtNYIIYQQQgghDKZ8ByCEEEIIIcRWIgWyEEIIIYQQKaRAFkIIIYQQIoUUyEIIIYQQQqSQAlkIIYQQQogUUiALIYQQQgiRQgpkIYTYIpRS71VK9ef47wwppbRSynKL25lVSjWu895/UUrtvMnt5nyfCCGEFMhCiNuCUuo/KKX2Jgq1AaXUk0qpd+c7rjcLrbVHa30+33EIIUQmSIEshCh4Sqk/AD4PfAaoAILAl4FfzWNYQgghCpQUyEKIgqaU8gF/CfyO1vpBrfWc1jqitX5Ua/1HiXXeppR6TSk1mRhd/mellC1lG1op9d+UUmeUUjNKqb9SSjUlPjOtlPrRtfWvXfJXSv2JUmpUKXVBKfUfU+NRSt2nlBpRSl1USv2ZUmrNvlYp5VRKfUspNaGUOg68dcX71UqpBxLb6lNK/e4623mHUmpQKWVOWfZvlFKHE7+blFL/Uyl1Tik1lvj3FK+zrWql1CNKqXGl1Fml1H9Nec+c+HefS+ynfUqpupR92Jz4vSSxjWml1G6gacXf8QWl1OXE+/uUUj+XiX2SaOe9ie0OKaU+t9a/UQghNiIFshCi0N0FOICHbrBODPj/gNLE+u8D/tuKdT4AvAV4B/DHwD3AfwTqgG7gIynrVia2VQP838A9Sqm2xHv/B/ABjcDPA/8Z+I114voURvHYBPyrxLYAo6gFHgUOJf6e9wG/r5T6Vys3orV+HZgDfjFl8X8Avp/4/XeBX0vEUw1MAF9aJ6YfAP2J9T4MfEYp9b7Ee3+Q2A8fBIqA3wTm19jGl4BFoCqxzm+ueH8P0AsUJ2L8sVLKkXjvVvbJF4AvaK2LEp//0Tr/RiGEuDGttfzIj/zIT8H+YBSxg5v8zO8DD6W81sC7Ul7vAz6R8vofgc8nfn8vEAXcKe//CPhfgBlYAjpT3vv/AS+tE8d54AMprz8G9Cd+fztwacX6nwS+uc62/jfwjcTvXoyCuT7x+gTwvpR1q4AIYAFCiX+/BeNkIAZ4U9b9LPCtxO+ngF9d5+/XQHNiH0SA9pT3PgPsvEF7TAA9t7pPgFeATwOl+T4u5Ud+5Kewf2QEWQhR6MaA0hs9hUEp1aqUeiwxDWEao2ArXbHaUMrvC2u89qS8ntBaz6W8vogx4loK2BKvU9+rWSe0auDyinWvqQeqE9NCJpVSk8CfYMyxXsv3gf9LKWUH/i9gv9b62vbqgYdStnMCoxBeua1qYFxrPbNO/HXAuXX+/mvKMIrt9f5dKKX+h1LqhFJqKhGPj+vtcSv75P8BWoGTSqk9SqkPbRCrEEKsSQpkIUShew3jcv6v3WCdrwAngRZtXH7/E0Ddwt8ZUEq5U14HgavAKMboaf2K966ss50BjKIzdd1rLgN9Wmt/yo9Xa/3BtTaktT6OUUz+EsunV1zb1i+t2JZDa70yrqtAsVLKu078l1kxn3gNIxgj7Gv+uxLzjT8B/DsgoLX2A1Ncb4+b3ida6zNa648A5cDfAj9Z0U5CCJEWKZCFEAVNaz0F/DnwJaXUrymlXEopq1Lql5RSf5dYzQtMA7NKqXbgtzPwV39aKWVLFHwfAn6stY5hTLf4a6WUVylVjzFv97vrbONHwCeVUgGlVC3w31Pe2w1MK6U+kbhxzayU6lZKvXXtTQFGUfy7wHuAH6csvzsRUz2AUqpMKbXqCR9a68vALuCzSimHUmo7xqjs9xKr3Av8lVKqRRm2K6VKVmwjBjwI/EWiLTpJmUeM0RZRjELaopT6c4z5zLe8T5RSH1VKlWmt48Bk4jOxG+wvIYRYkxTIQoiCp7X+HEYh+mcYhddl4OPAw4lV/hBjVHUG+Brww1v8Kwcx5s1exSgef0trfTLx3n/HmP97HtiJUbR+Y53tfBpj1LcPeAb4Tsq/KQb8CsbNbH0Yo9P3YkxHWM8PMOZIv6C1Hk1Z/gXgEeAZpdQM8DrGfN61fARjXvJVjBsfP6W1fjbx3ucwCthnME44vg4419jGxzGmpAwC3wK+mfLe08CTwOnEv32R5VMqbmWffAA4ppSaTfybf11rvbjOv1MIIdaltNb5jkEIIQqGUuq9wHe11rV5DkUIIUSWyAiyEEIIIYQQKaRAFkIIIYQQIoVMsRBCCCGEECKFjCALIYQQQgiRYt0H629VpaWlOhQK5TsMIYQQQghRYPbt2zeqtS7baL2CK5BDoRB79+7NdxhCCCGEEKLAKKUubryWTLEQQgghhBBiGSmQhRBCCCGESCEFshBCCCGEECmkQBZCCCGEECKFFMhCCCGEEEKkkAJZCCGEEEKIFFIgCyGEEEIIkUIKZCGEEEIIIVJIgSyEEEIIIUQKKZCFEEIIIYRIIQWyEEIIIYQQKaRAFkIIIYQQIoUUyEIIIYQQQqSQAlkIIYQQQogUUiALIYQQQgiRQgpkIYQQQgghUkiBLIQQQgghRAopkIUQQgghhEghBbIQQgghhBAppEAWQgghhBAihRTIQgghhBBCpMhagayUqlNKvaiUOqGUOqaU+r011lFKqS8qpc4qpQ4rpe7IVjxCCCGEEEKkI5sjyFHgf2itO4B3AL+jlOpcsc4vAS2Jn48BX9loo1NTU2itMx3rpj399NMcOnQo32EwPDzMo48+yujoaL5DYf/+/Tz77LP5DoNYLMYTTzzB8ePH8x0K/f39PProo0xNTeU7FN544w1eeumlfIdBOBzmscce48yZM/kOhb6+Ph599FEWFhbyHQo7d+5k165d+Q6Dubk5Hn30US5evJjvUDh16hSPP/440Wg036HwwgsvsGfPnnyHwcTEBI8++igDAwP5DoWjR4/y5JNPSk5OITl5ta2Wk9NlyVYQWusBYCDx+4xS6gRQA6TuoV8F7tPGt+t1pZRfKVWV+Oyazp49i8kkM0OEEEIIIUR25KTSVEqFgB3AGyveqgEup7zuTyxb+fmPKaX2KqX2Zi1IIYQQQgghyOII8jVKKQ/wAPD7WuvplW+v8ZFV12q01vcA9wDc8ZY79Ss/253xOIUQQgghxO3N6zSntV5WC2SllBWjOP6e1vrBNVbpB+pSXtcCV2+0Ta01UR3PXJBCCCGEEEKkyFqBrJRSwNeBE1rrz62z2iPAx5VS9wNvB6ZuNP8YjOHlWCyjoQohhBBCCJGUzRHkdwH/CTiilDqYWPYnQBBAa3038ATwQeAsMA/8xkYb1Rqi8fzfMSuEEEIIIW5P2XyKxU7WnmOcuo4Gfmez247FZYqFEEIIIYTIjqzfpJdpWkNMRpCFEEIIIUSWFFyBDBCTAWQhhBBCCJElBVcgazRRmWIhhBBCCCGypPAKZA1xmWIhhBBCCCGypOAKZJA5yEIIIYQQInsKrkCWx7wJIYQQQohsKrwCGU1E7tITQgghhBBZUngFsoawjCALIYQQQogsKbwCGU1URpCFEEIIIUSWFGCBDBEtBbIQQgghhMiOwiuQNcwvLmGxWvMdCgDRSGRLxBKLRjGZzSh1w//dOye2yj6BrRNLNBLBbLFI+6TQWhOPxTBb8t8NSfusFo/H0VpjNpvzHcqW2SewdWKJRaMokwmTyZTvULbMPoGtE4vk5LVtpVg2kv/MtEkaTd+50zz94+/Ssq2X1m07qK5vzFsn8eQD32NiZJjWbTto6e7BV1yalzjCkTDf/OxfUR1qpHXbDhrbu7Da7HmJ5eSRA7z61CO0dBvtUxUM5a2TePg7X2NpcYGWbTto6erB6w/kJY65+Tm+/U+fIdTaQeu2XupbOrDabHmJ5cAbO9n/s5do3baD1m07KK+uzVv73P/Vz2O2WGnd1ktzVw9ub1Fe4piYGOcHX/4Hmjq20bptB8HmtrwV7q+9+DSnjxxIfn9KKqry0j5aa77zhc/iKfLTun0HTR3bcbrdOY8DYPBqPw9+8yu0buulpbuX2saWvBXuLzz+IFf6ziW/P4Gy8rzEEYvH+ebff5qyqhpauntp7OjG4XTlJZYLWykn/+S7TIyOGDl5Wy++QEle4thKOfnE4f3sfPrRRJ3SKzk5TUrrwrrhrbmrR//d/U/x3S98hktnTgLg9hbR1NlD87ZeGju2YbM7chbP5NgId//lHxOPxQCoqA3S3L2D5q4eqkNNOT0IX3vmMV585EcAWKw2Qq0dRizdPRTlsJPQWvP1v/kzhq9cBsDrC9C8rZfmrl5CbZ057SQG+y/yjb/5X8nXVfWNtHT30rxtBxU1wZy2zws//SGvP/s4ADa7g1BbFy3bemnq6sFT5M9ZHLFolLv/6o+ZGhsFwFdSSnOXUXgEWzpyenZ/8fQJvvfFzwKglKKmoZmW7h00dfdSVlWT0/Z54vtf5+CulwGwO500dmxLfpedbk/O4ggvLfKlP/8DFuZmAQiUVSSP2brG1pwW7icP7uHBe/8PACaTidqmVlq6d9Dc3UtJRVXO4gB44Gtf5NShvQA43R6aOrfT3L2Dxo5tOFy5KwznZqb58qf+B5HwEgCllTU0b+ulpXsHNQ3NOS0MD/zsJZ78wTcAMFssBJvbae7upXXbHfhKcjtYs1Vy8sToMF/9q0+syskt3b1U1TdKTuZ6Tm7p3kF9WydWa+4Ga7ZCTv6326v3aa3v3Gi9giuQq4IN+t/+1h8wfOUy544eWPW+yWwm2NJBU/cOmrqyN6I7PzPN/lefA+D4nl1MjY+uWseV6CSaunupb+vKWidx8dRxLp87SWRpib0vPb3mOuU1QZq6e2nq6qUy2JC1g3Dvi0+zuDDH1b5zXDx9bNX7FouVYGsnTd29NHf34vFl5+xxenyMw68bxc6hXS8xPzO9ah2vv5jGrh6aunqpb+3AkqVO4tyxgwxcPM/C7CwHf/bCmutUBhtp7u41CsPquqy1z2vPPEosGuHSmRNcOX9m1ftWm51Q+zaau3tp7NyOK0sjuuPDAxzf+xoA+15+lvDiwqp1fMWlxjHbvYO6puyN6J48sJvRgX6mJ8Y5tnvnGmsoahqbEwn/DoqzNKIbj8fZ9dTDAJw/fpihyxdWrWN3uAh1dNPc3UtDx/asFe5D/Rc5c3gfWmv2vPAksWh01TqBsspEn9JDbWMrpiyN6B59YyeTY8OMDw9y6sDuVe+bTGZqm1pp6jK+P4GyiqzEEV5aZPfzTwBw6uBexoeurlrH4XLTmOjzQ+3ZG9G9cv4MfSePEIvGEjGtzuMllTU0dRn9bFWoKWuF+8GdLzA7PbmlcvKx3T9jemJs1TqSkyUnA3xkR+3tWSAXFZfpxq7etNcvraqlsauXbe/8Bbz+4ozFMT40wH1/+ydpr2+2WKhr7qB5+1vouPNdGU32u554gN3PPZb2+u4iPw0d2+l827upbmjJWBwA3/irP1yzY1pPRW09oc4eet79PlyezBVjV/vO8KP/85m017fabNS1dNLS81ba7nhHRpPJCz+5j8O7Xkx7fa8/QENnL93veA/ltaGMxQHw5U/+NuGlxbTWVQoqgo00de1g+7t+EXsGk/35Ywd45OtfTHt9m91BfXs3rb1vo3n7nRlNJk/c9xVOH1xdeK3HV1JGY1cv3Xe9l5KK6ozFEY/F+OIf/b9pr69MiuqGVho7e9j+zl/AmsFkf3z3Tp65/+tpr293Ogm1b6ftLe+goaMno+3z4N1/z6XTx9Nev7i8koauXrbd9V78pZkrludnp7nnz38v7fVNJhM1TW00b3sLXW//uYwm+/0vPcUrj/ww7fWdbg8NnT20v+WdBFs7MxYHwPc/9xcM919Me/1s5eSxoat852//NO31JSevraK2noauXra/6xdv25z8G2+rS6tALrg5yKBJp6hXZjPVDa00dPYS6uzB4Q0QiWXuZCAaTy8OAIfLQ33HdkKdPQRbu4krM/E8xVJcUUOos4eGrl5Kahszuk8A4pq0YjGZLdQ2txPq7CXU0YPV6c1b+zi9RYQ6emjo7KWupZOYVsQyGEsszX0CUFoTTByzvfgrg1lon/T2i9lqo665w2ifzh5MNmdm2yeW/j5x+4wThlBHD7UtHUTjsNaI2c2KpblPwDhhCHUax4q3pDKj+yQeSz8Oi81OfVs3oc5e6ju2g8Wet++PN1BKQ1cvDZ29VDW2Zrx94vE0jxWlqAo1E+o0YnH5yzK6TyKbaB+b00WwrZuGzl7q27ahTdYMt0/63x9/WWVyn5TXN2W+T0nzWMl6Tt5E+0hOXu3NlJPTVXAjyLUtnfp3Pncfx157kUMvL790YXe6CLZvp76zh7rW7oyOeK0Ui0aZm54ArXn8G59namRo2fuB8irqO3uo7+iloj57l7cAFudnCS8uMDF0lSe/uXxUzmQ2U93YRn1HD/WdPRQVl2UtDoDZyXHi8RgHXnyCE2+8suw9p8dLsH0b9R291LZm7/IWQDQSZn5ming8ziN3/y3z01PL3i+prjP2SUcP5XXZu7wFsDA3Q2RpkaGL53j+B19b9p7ZYqGmuSMZiyeDIyprmZkYRWvNG0/8hHOH9y57z1Xko77DSF7VTe1ZnSseCS+xMDtNLBLhoS/9NeHF5aPaZXUh6jt6CHX0UpLFKScAC7PTRMJLXD51lFcf+u6y9yw2G7UtXcZ3uW07riJf1uLQWjMzYUzVeuWB++g/s3zU1OMvpr7T2CfVTW2YLdmbKx5eWmRxboal+Tke/vJnl0+xUIrK+qbkMRuoqM5q+8xNTxKLRjh74A12P/3QsvdsDgd1rd1Gn9+2Dafbm7U44vE4s5PGSNyz37ubkRVTYIpKygl1GvukMtSS1bniSwvzLC3MMTs5ziNf/Xvj8U4JyqSoamilvn079Z29+MsqsxYHwOzUBPFYdGvl5K//E1Ojw8veD5RXUd/VS317z5syJ+9/4XFO7n512XtGTt5OfUfPmyonf/zdodtzBNlktmBzF3Fq/2toNL6yqmQDV9Q3L5sHF83m/7hnMuPyl3LpxCEmRwZRJrPRKXX0UNfeg6/0+p3NcYyz7GyxONxYHG5ef/IBNBqHy0td+3aCHdupbenC5nAm183qPgEcRQEW52c5c3A3Gk1xZS3Bjh6CHT2U1TYs65SyGovZistfyul9u5ibnsRstlLV1E59Rw/Bju14/NdvkIhpliWYTLM6PVidHk48cB8ajdPrI9i+nWBHDzVNnVjt1wvRbLeP01fC7OQ4548dQKMprQkZ7dO+ndKa+mWdUjZjURYbLn8pR159hqXFBcwWG7UtnQQ7eqhr34475abFrLePy4vF6eH4np1oNG5fMcFER13V2Lbs0ni228flL2Vi6CqXE8VxeV1D4vvTS3Hl9ZsWdZZjMVntuPx2ju/eSTQawWKzU9vabfRvbdtwplx6zXb72D0+4rEYJ/Ya7eMtLkt8j3uoDC2/aTG77aNw+UsZvHCW4ct9gKKyoTWZf3xllTlrH7PdicvuZP9LT6F1HJvDRV1bd2LwoRu76/rTRrLe53v9RCPhrZWTR4ckJydcy8lnD63OyeV1jTnr87dSTk5X4Y0gt23X//5//j1jVy5S19FLUUl+HrFzzbGfPYuryE9Ncxe2PD1iB4wz1mM7n6G2bTtldfl7xA5A/6kjTI8PE2zvwRPIz2Pvrjn88hP4yqqobs7t0zNWmpsa59TuV6jr6KG0Jn+P2AG4cHQfS/Oz1LZtx52lGzLSobXm0IuPUVIdpKopezdkpGNqZJC+I3sJdvQQqMzfY+8Azh54DR2PUdu2fVkhmmuxWJRDLzxKZUMbFaGWrI5Yb2T0ygUGzp6grqMHX1l+Hnt3zandL2Ox2alp7cbhyt3TTVaKhpc49NLjVDd3Ul7fjNmcv/Guwb5TkpNX2Go5eWZ8hLr27ZKTgT/+hYbb8ya92rZt+uNf+Wm+wxBCCCGEEAXmk+9ruj2nWGgN0Zj8V9NCCCGEECI7Cq9AJvtzdoQQQgghxJtXwRXIaJ2Xx30IIYQQQog3h4IrkI0RZJliIYQQQgghsqPwCmRtPBBcCCGEEEKIbCjAAlkTicoIshBCCCGEyI7CK5CRm/SEEEIIIUT2FF6BLI95E0IIIYQQWVRwBTJoYlIgCyGEEEKILCm4Allr5DFvQgghhBAiawquQEYjI8hCCCGEECJrCq5A1qQ/gqy1RimV3YDSJLFs3Thg68SitXFsb5VYtkIcsHVi2SpxgMSyleMAiWUrxwESy1aOA7ZGLAVXIKM18TRHkCOL8xx78pv4qhspCXXhLa/L2w4fOXuQoVN7Ka7vpCTUid3jz0scACef/wEms4WSUBf+2hbMFmte4lianeLEM98hUNdKSagLd2l13tpn4NjrjF88QXHIaB+by5uXOLTWnHj6PmwuL8WhTvw1zZjM+fmazk8McfrFH1Nc30FJQxeuQEXe2ufygZeYGb5ESaiT4voOrA53XuKIx2Mce/wbuALlFIc68VU15K19pocu0ffaY5SEuiiu78AVKM9LHAB9bzzJ4vS40T7Bdix2Z17iiEXCHH3863grgpTUd1BUGUKZTHmJZfzSKfoPvkhJqIuSUBeOouK8xAFw9tWHiIWXKA51Uhxsw2y15yWOLZmTQ12U1HdITgaWZic58cx3JScnqGsjVhnfsFLfAD4EDGutu9d4/73AT4G+xKIHtdZ/udF2i+s79Ps/8c2047i4+yku73sOAKvTS3F9h1F41LbktJPQ8Rj77v97FqdGAXCX1lBc30lxqBNPWW1OD8LpwQscfuifATBZrPhrmpOx2Ny+nMUBcO6VBxk4tgsAu8dPoL6D4vpEYZjDTiIWCbP3e58lsjADSuEtrzP2SX0nrpKqnLbP+MXjHH/iGwCYrTb8dW2JWDqwOj05iwPg5LPfZfTsQQAcRcXJfVJU3ZjTwjCyOMfe736GWGQJlKKoMpQ8Zp3+8py2z9DJPZx58YcAWOxOAnVtBOo7CQTbcl64H330q0z2nwHA6S9L7hOjMDTnLI6l2Un2fv+z6FgMZTJTVNVwvX18pTmLA+DKoVfo2/UIABaHi+Jgok8JtmGxOXIWh9aaQw98gdmRfgBcxRWJfdKFtzyY08J9fnyQ/T/6R9AaZTbjr26mONRJoL4Dhze3hbvk5NUkJ6+WzZz849+5a5/W+s6N1stmgfweYBa47wYF8h9qrT+0me16K+r1tl/73bTXj4YXuLznqdXxmS34qpsIBDsJ1G9+RDe6NJ8sHNI12X+KiYvHVy23uooIBNsJBDvx1bZgttg2td2ZoYvMjV7Z1Gf6DzxHZH5m1XJ3aS2B+g4C9Z24S2o2fRCOnNlHLLyU9vrh+SmuHHhh1XKTxYqvpsUoPOo6sLmLNhVHeG6a8QtHN/WZ8QtHmbpyZtVym8dPIGjsE19V06Y7iemr55ifGNrUZy7teZJYeHH5QqXwlNUlirFOXMWVm26foZNvoGOxtNdfmBph8OjOVcvNVju+2tZE4bH5Ed2lmXEmLp3c1GdGzu5ndujiquX2omICQaPj9FZufkR3sv90MkmmQ+s4F19/DB1fsR+VoqiyIdmnOP1lm4pDa83Q8dc29Zm5sSsMn9y9arnZ5sBf1260T10bFrtrU9tdmBxZ87twI0MnXmd+fGDVcqe/PPn98VbUb7pwH794nPDsZNrrx6MRLu5+3LijO8W1wv1a+ziKSjYVRywaZuTU3k19Znqwj7FzB1cttzjcyX3ir2nFbNtcYTg3dpWZwQub+szAkVdYnB5btdxVXGX0+cFOPOXBTfcpo+cOEV2cS3t9yclr2zI5eW6KKwc3yMnBDmyuws3JD/3eO/NbIAMopULAY5kskO3eYh0IdmQkvlSukmoCwQ6KQ924S2s2XH9hcphDP/6HjMdhsljxVTfjD7ZT3LA9rcLj8p6n1jygb5XNVYQ/0XH6a9vSGvE4cP9nWZqZyHgsnrI6/MEOShq24QxUbLj+zNAFjj3y5YzHYbbaKKppMQqyUHdal5L7fvbQpgufdNi9gUQn0UVRdXNaHeeeb/0vYxQ2g5RSeMrrje9PwzYcaYwYTlw8zqlnvpXROCBRGNa24g8aI3XpjEidef57jJ0/lPFYHL7SZPt4Kxs2bB8dj/HG1z+Z8TiUyYS3siHZPnZPYMPPjJzey7mXf5TxWCwOF/7atmQRlE5iO/HE1zZdrKfDGSgnEOwikBjR3UhkYZZ9393wIuemKbOZosrGRPtsT2swYODIK1x8/bGMx2J1evDXtRMIduAPdqR1snnkoS9suhhMx6Zz8sQQh37yjxmP43pONr4/kpMNhZyTf/r/vTutAjnfc5DvUkodAq5iFMvH1lpJKfUx4GMAZrvLuFMvgyxON65AFc5AFTZPCfE0bgKMx3TG4wBwFJXiDFTh9FdjsjjTi0VnPhZltuAsrsbpr8bhr0RrhU4jFq3JeCxWV5ERS6AKi8uf3/bxleMKVOMMVKPM9rRi0fHMx2KyWHEm4rAXVaDjoNP4S7LSPm4fzkAVjkAVFqcvvfbJwj5BKZz+CmO/+KtAWdNrnyx8f8w2R/I4sReVp9U+2ThOAGzuQKJPqcJs8+SvfUymZPs4AlWgLGm2D5lvH7sTV6AGZ6AKu6c0r32K3VOCq9g4Vsw2d97aR5nNxnGSOG7BnLf2uamcnKXvTzInB6okJydcy8muQHVB5uR05XMEuQiIa61nlVIfBL6gtW7ZaJveqkZ9x3/8i7RjWJqdoO+VH65a7gxU4q/rwFfXjrukdtPzweLRCPPjVzf1mZFTuxk7t3/ZMmUy461qMmKpbb+pGwWWZieJzE+l/wEN5176PpGF6WWLrU4vvtp2/HXteKuabmo+2NzYFXQsmvb6CxODXHzt4VXLXcXV+Oo68Ne147qJy0qx8CILk5ub1jB49BUmLy2/3KbMxuiBr64DX23bpi8rASzNjBFZmE17fR2Pcfb57xCLLJ9iYXX58Cf2ibey8abmg82OXAad/mMSZ4YucGXfysuhCndpbfL74wxsfqpHdGmexamRTX3myv5nmRk8t2yZyWKjqKYVf107vpq2m5qjvTg1QnRpPu3149EwZ5779qopFnZPcfKY9VSENj3VQ2vN3MilTX1mqv8UA4dfXLFU4akIGfukth2Hr2zT7RNZmGVpZvXl+Bu59MajzI8tH0k0Wx34atvw13VQVNOy6akeYFyti4UX0l4/ujjH2Re+y8ps7PCVJfs3T/nmp3rEY9FV/76NjPcdZvjErmXLlDLhqWxI9vmbneoBEJ6fJjy7uVHBvld/wtLM8qlEFrsbX20bvrp2fNUtmG9ijvb8+ADxaDjt9bOVk2PRMAtrTPG5kbVzsgVvVeObNifPjw9y6fWHVy13ldQk9klbwefkJz7x3q09gqy1nk75/Qml1JeVUqVa6xtOBjSZrbjLNr4cds3I6b1oDSaTGW9VI77adnx17asuM272REGZLZuKIxYJM9l/Eq3B6nAbHVJdB0VVzZit1+c33cwJi83t29RE/omLRwnPG7vfVVyFr64df13HqoP+ZmJxFVdvav3Bo68a7WO2pJwotK3692w2FpPVvqn2iSzOMnXlDFobl7F8ieKiaMX8pptqH08xNk/6N8KMnN5DNDH/2ChEjWNlZSF6M7G4S2s3tX7/vqfROnEZq7ol8f1pw+pYXohuNhazzbmp9lmaGWdmqA+tjRtHjEK0Y1UhejP7xF5UymbSzsCRl4nHYiilcJcH8dca7bOyEL2p9tnEPtFac3HXw2gNFpuDopoWfLUd+GpbVxWim43F4nBj2cS88vmxq8nL7A5faTKpu8vqMZmvF6I3s08cvs3N5e7f+5TxiCiTCW9FKHHMdqwqRDfd55vMm2qfeCzG5Mv3G+1jdyYK0Q6Kqpux2K5fBr6ZfWJ1erE607+rf2bwPIvTRmp1+suTfb67tG5ZIXozsTgDlZtaP1s5ebO1QSwSZvLyCSMnOz3X2+dNn5Nfue1zcrryViArpSqBIa21Vkq9DTABaQ1Z6Hh6O+TaqFDjz3+Eourld8imu41Mmb56ltKWt+KrbTc6pdSDPsexzI1cIfj2f42vtn35Qa+ze7CtFJ6bwmxz0fQLH00c9CmdUq7bp/8slV3vSYyIVuWtfbTWLEwMUX/Xv8FX27Y8Cea4fRanRnD4yqnoeo8xYp1aiOa4faaunKG6533GiJu/Im/tE4/FCM9MEHrXh/HVtC4vInPcPnOj/XgqG6m984O4y0PLC9Fcf38GzlP7lg8kR6xT5bR9omGiSws0/Ny/o6imdXkhmuN9MjvYh79+G/7adtxly59aketYZgYvUvfWXzZGRFc8tSKXsWy1nFzW+naKatskJycYOdlN8y/+p8RVyjd3Ts7mUyx+ALwXKAWGgE8BVgCt9d1KqY8Dvw1EgQXgD7TWu9be2nW+mjZ913/7SlZiFkIIIYQQt6+n/+x9+Z1iobX+yAbv/zPwz5veLokJ8EIIIYQQQmRBvp9isXlao9P8n/SEEEIIIYTYrMIrkIH4Ju7CF0IIIYQQYjMKskCW+lgIIYQQQmRLwRXIGo2WClkIIYQQQmRJwRXIaIjLHGQhhBBCCJElhVcgk9vnAgohhBBCiDeXgiuQtdbE4zKCLIQQQgghsqPgCmSQEWQhhBBCCJE9BVkgk+P/8lAIIYQQQrx5FF6BrDXEo/mOQgghhBBC3KYKr0AGiMfyHYEQQgghhLhNFWCBrOEWb9LTOs7AwSexeUvxVjRj8xSjlMpQfJuzODXE2NndeCoa8ZQ3YrY58xIHwNjZ3USX5vBUNOEqrkGZzHmJIx6LcvXgEzj9VYn2CeQlDoC5sctMXTqMp6IJd1kIs9WRt1hGTu1Ex+N4KppwBqpQypSXOGKRRQYOPY2rpA5PRRM2ly8vcQDMDJ5lZvAM3kT7mCy2vMUydOxFTBYrnoomHL7KvPUp0cVZBo88h7u8AU95I1anNy9xAEz1H2d+vN/4/pTWYzLnJ+VorRk88ixWhwdPRRP2ovK8tU94boLhE6/gKW/EU9GExe7KSxwAExcOsjQ7lujza/PYPpKT1yI5ebVc5mRVaDe8ecobdc+//6tb3s7kpSMMHH4GAKvLh6e8EW9FE66S2pwfhBdf+yHzY/0AuIpr8FQ04aloxObObScRnp/i/IvfQOs4JqsdT1nIiKWsAbMtt4Xh2NndDJ98FQCbO5DcJ65ADcqUu8JQa03fq99haXoEpUw4i2vwJtsnt53E4vQwfa98BwCzzYmnvCFZeJit9pzGMnziFcbO7QHA7i01kklFE05/ZU4Ldx2Pce7FbxBZmEaZzLhK6pLtY3UW5SwOgLnRy1x6/UcAWOzulPYJ5rxwHzj8DJOXjgDg8JXjKTf2icNXkdM+JR4Nc/aFe4mFF1AmC+6y+kRh2IjV4clZHAAzA2fo3/cIABaHJ3GcNOEqqct5Ydi/9xFmBs8A4PRXJb8/dm9pTtsnujTPuRfuJR6LYDJbcZeFkoVhrgv3lTnZW9GEp7xRcrLk5GUykZN3/fNH92mt79xovYIrkF3FNbr5vb95y9vROsbVQ8+gV8xnNllsuMvq8ZY14C5vwLLO2WMsGmZ+9PItxwEwP3mV8fP7Vi23ufyJJNuIK1C9biexNDtGeHYyI7GMnd/DwuTg8oVK4QpUG4mtvBH7Dc4eZ0cuomO3Pkc8Hgtz9fAzxpzzFGar43qSLQutWxjGwgvMj1+95TgA5kYvMnHp8KrlNk8x3vJGPOUNOP1V63YSi9MjROanMxLL8OmfEZ4dX7ZMmcxGJ56I5UYjujPD5zNyk2s0PM/g0edXLTfbnHjKGvBUNBiF+zqFYWRxlsXJoVuOA2Bm6CxTV06sWm73lhonvuUNOPzrj+guTA4SXZzLSCyDx18iujizbJkymXGX1CXbZ70RXa01s0PnMxJHZGGKoROvrFqeLNzLG3GX1mEyW9f5/DSLUyMZiWXqynFmhs6tWu7wVSS/P/aisnXbZ37iKrGlhVuOQxNn8MjzxCKLy5YrsxV3aR3e8iY85SEsdvean4/HosyNXLzlOACWZkYZOfPaquVWpzd5nNxoRDc8N8nSzFhGYpm4eJC5sZW5TOH0VyaK5QbsnpJ122du7DLxSPiW49gwJ5c34i4Lvely8uj5PSxKTl7mVnPyrq/8xu1ZINucRdpT3pCbv0wlOonyBrzlxtnJtU5iaXac869+NzdxgHH2WBo0io+y0LKzx+HTryVH83LB5k50EmUNuAJVyzqJsy99i8hCZorBjSiTCWegGm8iFpvbn3xvfuIqF1//SU7iADDbHMbZfVkD7tLgsk5i8NiLTCRG83LB7inBUx5KdBLLR3RPPXs38eitJ7N0XC/cG4zCPWVEd2b4PP37HstJHHB9xN2baB+T5XpheOXgk0wPnMlZLI6isuQ+caRc6tfxOCef/uecxaHMFqNwL2vAUx5aNqI72X+CgSPP5iwWi8NjfH/KG3CvGNG9tOdh5kYv5SwWh78Cb5nRPqkjutGlec68cG/O4jBZrLhLgom+NrRsRHes70ByNC8XrM6i5DHrClQva5++n93P4vRwbgKRnLwmycmr3Sgn7/rq/5tWgVyAc5BzSF//0fH48jOnXJ9YaJ14/rNG6/zHsurn+ps5DMP4u3U8vsY+yVkY14JJxBNfY5/kOBRWtk1+2ofUOOI6v+0DiTbK/7Gik/tkK3yP4yk/+TpOuP53p36HVr6Xy1jy3LcZYWyNfjYRzPXjhDzGolN/8n+cSE5eGcbtlZMLbgTZFajWTe/5z7e+oXicq0efQ694IobJbMVdGkycedRjsa09DysWDa9xWermLEwOMH7h4KrlVmdR4kwstOHlnKW5yYzEMt63n4Wp1Ze+XYHq5Jmyze1f93Lb7MhF4hl4DJ+ORbh69PlVB7XJYsNTWm+cLZcG152gHwsvMjdx5ZbjAOMS4uTlo6uW29yBxHESwrXBFItwhs7gR868TnhuYtkypRSuQI0xalwWwubyr/v5meHzGfmPdmLhBQaPv7RqudnqSO4Td2kdZsval9sii3MsTA2u+d5mzQ6dZ2rg1Krl10bSvWUNN5x7uzA5RGRpNiOxDJ18leji8m1dG0n3Jr4/N5piMTOcmSkW0YUZhk7tXLXcYnMlRmpDuIvrlo2kpwovTLM4nakpFieZHelbtdxRVJbsUxwbTLGIhm99igUYV3NWTbEwmXGXBPGWh3CXhrA61p9iMTuamSkW4dkxRs7uXrXc4vDgTYx6uYprbjjFYnE2M1MsJi8dYW68f9Vyp68ieXXhxlMs+olFl249kA1ysresAXdZ8AY5eYm5sdX/jpuxlXLyWN9+FiUnL3OrOXnX1z52e44gmyxWijIwxWKy/3hyXo4x76sB71oHvV77iRlmsyUjcQBMXDxkHHSJy0feRAOnXj66USx2dwB7Bm4YM5LiMGhtXD4qqTMOttL6FTcErH825imtu+U4wLiEeO1pJTa3f/2Dfr32sdoy0j5aa8bO7QatjctH/iq85UYCWzXXd51YHN4SHN6SW45lcWY0Of/YbHMYnVJZCHdJ3fJ5X+vEAeAtC91yHGBcQrx2DNi9xXhKjfZx+iuW36S3TixWuxNrJtonHmP45M5k+7iKa5Mnt7ZlN+mtf8w6fWU4KbvlWObGrxBdMOYfW+yuRNJYoxBdZ58oyFifMnD8peS/11FUmvz+OFY+vWGdWGwOD7YM3EQXj0YYPPaC0T5mC+6S2uSxsrwQXb99XP7KW44DjJPDWKLQtjjceMqMk6dVheg6+8RkMmWsffqvnrre5/vKjX2yViG6Xvu4irC5bv0m1Gh4wZhKo/X1KR3JwaHUub7rt4+7uPqW44CVObkocXK7mZycmdoAtlZOXkrNyaVBo1+RnHxLOTldBVcgZ4LWceYnrlLW+g68ZQ2rD/ocWpwewWxzUr3t/bhLg+vegJALM4PnCNRtS5wdV+X1kTIL08OUt70TT1koIx3NzZqfuIrNXUxJwx24S4I5f1pEqpmhc5Q03IGnrD7nT4tIFYuGCc9PUdH+c4kR69w+LSLV7OglXMXVeMreaZwo5PExb7PDfZQ23omnfI1CNIeiS/PEluap7Pz5RCGa26dFpJoZPm/cYV4Wwl1cs+5NgdmmtWZ29BJlzW8z+pQcPy0iVXh+CoCqrl9YNbc412aGzuGrbjf6/OIaTHnq8yUnr21m8Kzk5BVymZMLboqFp6xe9/zqJ/MdhhBCCCGEKDC7vv7bt+cUC2NyfmEV9UIIIYQQonAUXoGMvuV5JUIIIYQQQqwnP5MYhRBCCCGE2KKkQBZCCCGEECJFAU6xQKZYCCGEEEKIrCnQAllu0hNCCCGEENkhUyyEEEIIIYRIISPIQgghhBBCpCi8Almv/18qCiGEEEIIcasKr0AGQG7SE0IIIYQQ2SFzkIUQQgghhEhRmCPIMsVCCCGEEEJkyZu6QNZaM3x+D3aXH09xLRa7KyPbvRnh+SnG+4/jKa3D5a/CZDLnLZbJgdNEI4t4iuuwu/0opfISh47HGTr3Bk5vGZ6SWsxWR17iAFiYGWV66ByekjpcvgpUHttnvP84WsfwlASxu3x5iyMeizJ0bjcuX6XRPhZb3mKZmxxkbuwyntIgzqIylMrfxbHRi4cwma14SuqwOb15iyMWDTN8bg/u4ho8xTWYzNa8xTIzdpnF6WE8JXU4vGV561MARvr2YbG58ZTUYXW48xZHZGme0QsH8JTU4Q5UYzLnLx1PDZ0nsjCNp6QOu6c4f33+FsrJS/NTTEhOXubNlpOz9o1USn0D+BAwrLXuXuN9BXwB+CAwD/wXrfX+jbecuZv0FGB3+hg4uRMAR1Ep3pI6o/BwB3J6ENqcRSzNTzJx6AQms8VIaiV1Ridhc+YsDgCXv4rzux9g5NxerE4PnpI6vCXBnBeGSimsdg9XT7wCCpxFFXhKavGWBLG5fDltH4e7mMGJnYxfPobJYsOTbJ+anHcSLl8FfXt/yvDZPdhcRXhKgnhKanEVVaBMuSsMTSYzZrONq8dfQplMOH0Vie9PHTZnUc7iAHB5Sxk4+Qpjl45gttrxFNcahUdxTc4Ld2dROZcOPsnQmdexu/3GcVJSl/PC3ZwoiK8cfQFlMuHyVyVjsTk8OYsDwO2rYODkq4xeOITF5sRTUptSGOa2cHd4Sug/+kLi9+LkPnF4S3Pap1htTmKRJfqPPIcym3H7qxLf5TqsOS4M3YEqzp3ayUjffiwON57iWrwlicIwh4X7VsrJdsnJq7zZcrLSWZquoJR6DzAL3LdOgfxB4L9jFMhvB76gtX77Rtt1+6t02899NGNxaq25fOQ54tHwsuUWhzuZ7F2+ylWdRDwWZWluPGNxAMxPDTN8bs/yhYrE2ZoRy1qdRGRxjmh4LqOxjPQdYG7i6rJlJosVd6DGSG7rdBKLs2PoeCxjccRjMS4ffRYdW75Nq9Ob0j6rO4lYNEJ4fiJjcQDMjvUzevHQ8oXKKFiThYdzdScRXpghFlnIaCxDZ3ezMD2ybFmykygN4gnUYLbaV33O+EzmvvPRyBL9R59btcnrhXsdrqLyVYV7LLJEeGEqY3EATA/3Md5/fNkyZTKltE9wzRHd8PwUsehSRmO5eupnhOcmly0zW+2JwjCIO1C9qnDXWrM4s7xNb1VkcY4rx19atdzuCSSS7LXCcHn7RMMLRBZnMhrL5MBpJgfOLFumTGZc/srkd9m6RuG+NDdJPBZetfxW9B97kejS/LJlFrvr+onVGiO6Oh5jcXYso3EszU0ycOpnq5Y7vCXXC3dPyeo+f2me6NJsRmMZu3yUmZGLy5YpswV3oBpvSR3u4to1C/fF2XF0PJqxOCQnr01y8mpr52SV6PNr183Ju77/x/u01ndutP0NC2Sl1MeB72mtN/0vU0qFgMfWKZC/Cryktf5B4vUp4L1a64EbbdPm8GhPSd1mQ7klJrMVd6AKT3EdnpIaLDYXS/NTnN/zUE7jALA6PMlO3OWvxGQyM9y3n7FLh3MbiFIpnUQtdpdx2efsGz8hspjZjnsjJost2Yl7imsxW+3MTw1z8eATOY0DjCsBRmdVh8tXjjKZGTzzOhNXT+Y2EKVwFV3vJK5NxTi183vEY5GchmK22BOjL0YnbrbYmBm7TP/R53MaB4DN5ceb2CfXRnSvHH+Z6ZG+nMZhFO6VyWPF5vSi43FOvnpfTuMAMFsdyT7FU2yM6E4OnmXg1M6cx2L3FOMtNvqUayO6lw4/s6owyDZlujaia8RitbuJhhc589r9OY0DwGJzJeNwJ0Z0x/qPrS7ccsDhvTaiW4vdbUzF6Nv3aMZPHDayZk6em+T83odzGgdITl7LVs/Ju37wP9MqkNO53lcJ7FFK/Ugp9QGVuTH0GuByyuv+xLJVlFIfU0rtVUrtjccyd6aarngswsLMGIuzYyzOTpCtUfd0RJbmEnGMEV3M7BnqpmjN0tyEEcvMWEZHEDYrHg0n41icy2/7hBdnjDhmx4iEMztqvClaszg3njxW8vG9uSYWXUq2z9L8ZN7iAIgsTCdjiYYX8xaHjsdZnB1PHiuZHOHZrFhkMXmchOen8xYHGKP5C7OjLM6OEYtkdlR/M66NFi/OjhojpDp/jxaNhueNOGbGcl7orLQ0N8HCjBFLrk+0U0lOXoPk5DUZOXn8pnJyWlMsEkXxvwR+A7gT+BHwda31uQ0+F2L9EeTHgc9qrXcmXj8P/LHWet+NtuksKtehOz60Yczp04z0HVh1OQduPP8pFlliavh8BuMwkvfKS8TAhvOfFqaHWZjJ7Bn89PB5FqaGVy23Ojx4Stef/zQ1eJZYJjtOrRnu27vqcs61+U/JOa8r5j9FluaZGb1IJi3NjjM5cHrV8o3mP81NDrI0l9lLS1MDp1mcXX05cfmc5PJV7TNx9VRGk72Oxxg+v2fVFIuN5iSHF2aYHe/PWBxgfA+mh1Z/Jzeakzw73k94IbPTCSauHF+z2LzRnGStdcavNMSjYUb6Vt/asdGc5KX5SeYmbngxb9PmJ64yM3pp1fKN5iTPjF4ispTZwmPs0uFVUyzgxnOS47Eok4NnVn3mVkTD84xdXD3SuHxOsjGCnWpxdoz5NfrnWzE7emnNkXqL3ZWcjrPWnOTp4T6ikUyebN5sTl5kajizV4IkJ6/hNsjJ6U6xSGv2vdZaK6UGgUEgCgSAnyilntVa/3E621hDP5A6V6IW2PA6mtlqo7im4yb/ytVmx/uTX0RltuAJVCcvUVhs698oYbbaMxoHYEx8T7A63MmOeqM7aJ1F5TiLyjMWRyw1qSpj+9c6SJvrxnfQ+iqbMxYHwNTQueQX0WSx4i6uSc6Hs9xgIr7V7sp4+1w6/Ezyd5vTm5zXeu2yzXrc/krc/sqMxRFZmr9+eTU536pu2VSK9QSq2zIWB8D4lePJ4thsteEuNm7Y2OjmOJvTm9H20VozPXT9fN3m9ic76o1ujvMU12YsDjDufh86+zqQOpXi2onC+k+1UEpl/JgduXAg+bvZ5khckq7FHajBbFn/5ji7y4/d5c9YHFrHmbhyvdCwe4qT7bPRzXHe0mDG4gCjeLlWHF8vROvwFN/4qRYmsyXj7TOYOE7geiHqKalLTqVYj8NTgsNTkrE44rHosikByakUpXXJqRTrKSpvyFgccCs52ZHx9rly4uXk71aHJxmH5OTCzsnp2rBAVkr9LvB/A6PAvcAfaa0jysg4Z4CbLZAfAT6ulLof4ya9qY3mHyciggzN8tBaMzl4lkBNu7FT/asn/udKeGGa8OIMZY1vWXfif65MDZ7BXVydLHRyfcfuNVrHmR7po7iuK6uPcknHwswoOh6jvPmt6078z5XJgdN4y+qN0aXitW/Gy4V4LMrs6GWKg93G92eNm/FyZX5yAJPZSkXL2/PyFI1UkwOn8FW24CmuzctTNK6JRcPMTw5SUt+DtzS/j1ebGb2M1VlEcW3Xujfj5crkwBn81a2JmyWr8vb4u8jSPIuz45Q27Fj3ZrxcmR7pM4rihjrcxbl/isY1Wyonz08RWZyVnJzizZaT07lJ7y8xplOsGhtXSnVorU+s87kfAO8FSoEh4FOAFUBrfXdi2sY/Ax/AeMzbb2it924UsKekTvd88Pc3Wi0t1/7t+Xwm5zVa6y0RB2ydWKR91rZVYtkqcYDEspXjAIllK8cBWycW6fPXtlViuV3aZ9d3/zAzUyy01n9+g/fWLI4T731kg+1q4Hc2+vuzaSs08jUSy2pbJQ6QWNayVeIAiWUtWyUOkFjWslXigK0Ty1aJAySWtWyVOCA3sRTm/6S3hRpJCCGEEELcXgqzQE7r6XRCCCGEEEJsXuEVyCpzN+kJIYQQQgixkgzFCiGEEEIIkaLwRpBBRpCFEEIIIUTWSIEshBBCCCFEigItkGVmiBBCCCGEyA6pNIUQQgghhEghBbIQQgghhBApCnCKhZIpFkIIIYQQImsKr0BWyE16QgghhBAia96UQ7Faxxk5u5vZ0cvE47G8xrI4M8Zo336WZsfRWuc1lskrJ5i6eopYeDGvccRjUYbPvMHceD86z+0zPznI2IWDhOcm8xoHwPilI0wPniUWWcprHLHIEsNn3mB+cgCt43mNZW7sMuOXDhNemM5rHABjFw4yM3SeeDSS1ziiS3OMnN3NwtRQ3vuUmeE+JvqPEVmczWscWmtGz+9jZuQC8Vg0r7GE56cYPbeHxemRvLfP1MAZJq+cILo0n9c4JCevTXLyarnMyYU3ggy3PIKslBllMnN5/6OYLFbcJUE8ZSE8ZfVYbM4MBZkeu7eYK0eeYeTM61idRXjKQ3jLQrgC1SiTOcexlHDh9Z+AUrj8VXjK6vGUhbC5A6gcjtqbLFZ0PMqlvY9gstrxlCbapzSI2erIWRwADl85Vw4/zfDpXdjc/sRxEsLlr0KZcnt+aXP7ubzvUZTJhNNfhbc8hKesAZvLl9M4zDYH0aVZLu5+CLPNgafUOE7cpUHMFltOY3H4Krhy+BmGTu7E7i3GU9aApyyE01eOyvFULIvDQ/+hp1AmE67iWjxlxnfZ6vTmPI7FmVFGz+/FYncZ7VPegLu4FpPFmtNYHL4Kzu38LoPHX8ZRVJbsZx1F5TntU5RSmG12+g88gTJbcJfUJvqUEFaHO2dxAFhdPmbHLjNybg8WhwfvtT6luAaTObcp2ekr59zPvp/8/Vr/ZveU5Lh9zCiTSXLyqlhW5mRjn0hOzk1OVvk+Q9osd0md7vzg79/yduLRMBde//GqsyGnvzKtTkLHY0SW5m45DoCZwXMMn/7ZsmUmsxV3aRBvWQPuDTqJWGSJWDQzo4pXDz/LwuTAsmU2l+/6QbhBJxFZnMnIWXdsaZ4Lux+A1G0lO4kGPOUh7O7Aup+Px6JEw5kZFZnqP87o+b3LlpmtdtyJwnCjTiIWXiQWC2cklv79j7E0O75smc0dSBRjDTj9lTfsJCILM2huvX0i81Nc2vvTZcuUMuEqrkkeKzcq3OOxCNHwwi3HATB+4QATl44sW2a2Oa8XhiV1Nyzco+H5zIwqas3FPQ8RXTFaaveUJJJsAw5fxfp9itZEFmduPQ5gcXqEKwefXLZMmcy4imvwJr4/Vsf6hXs8GiEayUz7jJx5nemB08uWWezuxAl4A+6SWkzm9Qv36NI88fitt4+Ox7j4xgPEIstH44zCvQFveQi7t+wG7RPP2Ej4/NhlBo69uGyZMltwF9fhLW8wCkP7+oV7LLqUsStJQydeYXbkwrJlVocn8T1u2LBwjyzOofWtjypunJMbsHuK34Q5+RkWJgeXLbuekxtwBaokJ7O5nLzrax/bp7W+c6O/p+AKZJuzSHvKG3Lyd1md3kTDN+AqrsZkut5JLM2Oc37n93ISByijkyg3OnGbe3knMXz6NcZWHCzZYrLYjE6ivAFPaQizbflBePblbxFZyEyS34jN5cdTvnYnMT8xwMU3fpKTOFAKV6DaaJ+yBmxu/7K3B4+/tKqAyxaz1WEUHuUNuEuCmK32Ze+feu7unE0BsHmKE8m+Aae/YtmI7sxwH/37H8tJHKkjup7yBmzOomXvXzn4FNODZ3ISi9nmNE5mEu2TOqKr43FOPvOlnMQBpIzohlYV7pNXTjBw5LmcxKFMiRHdcmP03+rwLHv/0p6HmRu7nJNYLA538iqEu6RuWWEYDc9z5oWv5yQOMEbKvIn8Y/eWLmufsQsHGD65MydxGIVhXXK/WOyuZe/37bqfxemRnMQiOXk1yclr2CAn77rnv6ZVIBfmFIsciSzMMHX1JNHIAjoew1PecP1LkNMbBTULkwPEwgvEwvMEgtuXN3gOY4lHw8wMnTdGRSNL+Ou6Voz+5C6W8PwkU1dOEg0voNF4SoP5CAO0Zn78CtHwArHwAoHg9pxfVr8mFllkevCsEUskjL+2Y8XoQg7bZ3acyfBCYqRY4yquyUcY6HicudFLRMPzRvvUb18+OpfDWGLhBaYHzxCLLBKLRvDVtF0/ccjxzceL0yNEw/NEwwv4TSacvoqUd3MXi45HmR25sOz7syzJ53C/RBfnmB44RSw8j45H8Va2pBQ+OW6fqWFi4UWikUX8dV04vKUp7+awz49FmBnuS/Qpi/iD21ZckcldLJKTV5OcvIYM5eSCK5DNNielLW+/5e1oDeN9+9FrXLqzunx4yxsTZ6k1a16+MNvdGYkDIDw3xfTAqdVvJM+CGvGUN2L3rH35wl0azNjcm5mh8yzNjK5absw7CuGpaMRTVr/u5YtAqJd4Bi4t6Xicsb59yy/nJNjcxXgqGvCWN+JcZ96RxenLWPsszYwxM3Ru1fJrl6w9ZQ14KhrXnVLgLm/EvGLU5WZNXz1NeH5y1XJjZLIBT0UD7tL6dacUlDTdmZGbLOKxKON9+9d8z+4txVPeiLe8AYe/cs1LojZPScbaZ2FyiLnRi6uWK5MZV0niknV547odpLeqFZunOCOxTPYfXzXFAhJTCsqNkS93aXDtKQVKZWyfxCJLTFw8tOZ7Dl9FYuSrEXvR2lMKHP7yjMUyP36F+fErq5arxMikt7wR9xojx9cU1XTgDFRlJJaJi4dXTbEAsDi8xnFS0YiruHbNKQUmqyNj+yS6OMdk/7E13kmMTFY0GlMKvGtP83MWV2csltmRiyxODa1aboxM1htXO8ob1p1S4A92E83A1IYb5WRjZLLhTZqTz7E0M7ZqudnqwF1Wb8QiORlIPyenq/AKZLuLsrZ33/J2Zof7GDu3B+O5yuAMVCeK4kZsN5jndI3F4clIHABXDjzBtdMrk9WeuBScOOjTuEHBXRbCXRa65ThikUXGLxxKxmJzB4yOurwxMfd44y98SdNbbzkOgKkrJzCmyirjprRADd5ELCsvl6zF5vZnrH0u7X6Qa/vEbHMkv3zu0vpVUxjW4q1sxlvZfMtxRBZmGDu/LxmL3VtiHCcVjcbc4zRuSittueuW4wASxbERhzKZcJXUJZOGzVV04w9jFNGZaB+tNRd2/SAZi8XuSiTSRqMQTeOmwaLq9luOA4xOe/Ran0JiCkPimL3R3ONrlDJl7JgdOb0rGYcyW3CXBhPt07BuIZrK4avE4au85Th0PM75V76djMXi9CROnhpxrZjCsB5/XfctxwEwP3GV0bMpfb6vMtk+K6cwrMVktWesfQaPvkCyz7dYjbmTiaJ45RSGtbiKa3EV195yHPFYlMnLx5KxWF1FRvskThTSuSktENpxy3GAMTijU3KyK1CT/C6/aXNyeEFy8hpuNSenq+AKZJQC863dSaq1ZvziAbw1bXgrmvCUN6R10GfD0swYizMjFDe9BU9F07pnx7kwce4wDn8FnoomPBWN2DM0qrZZOh5n4tJhfHWdRqFTHsr5nbLXzI9fJbI0S0nL2/BUNOEMVOX86QjXjF88gKs0aHSQFU05f3rFNfFYlMkrJ/AFu/FWNOEuq0+rEM2GuaHzaK0pbX0HnoqmdUesc2H84oHkd+dGI9bZFgsvMj10Fn+oJ5E01hmxzoHpgVOYbA7K6t6Fp6Jp3RHrXBi/cABvVUvi+9N4w5vgsimyMMPc+GUCjTsSff7aI9a5MHnpMFZPgEDTnXgrGrHl+OkV12itmbh4UHLyChOXjyRzsreiCds6I9bZ9mbNyQV3k56nokn3fOQzt7QNreOgdd4O+lTxWDRvneNKWyUWYwqAyvlj1NayVfYJbJ1YdDwGypS3QifVVtknsHViiceiKJNZ2ieF1hodj22JWKR9VpOcvLatEsvtlpN3feHXb+Ob9G7xS6TI/5fwGtMW6BCu2SqxbIVO8pqtsk9g68Qi7bO2rRLLVokDtk4sCmOqyVawVfYJbJ1YJCevbavE8mbt87dGj7EZSkGeLnELIYQQQojbX+EVyHDLI8hCCCGEEEKspyALZGXK/9wtIYQQQghxeyq4AlkphWkLTBQXQgghhBC3p4IrkIEtcfevEEIIIYS4PRVmgSxTLIQQQgghRJYUXIEsUyyEEEIIIUQ2FVyBDDKCLIQQQgghsqcgC2STPAdZCCGEEEJkSeEVyEpGkIUQQgghRPYUXIGsUFIgCyGEEEKIrCm4AhlF2jfpRZfmGe87hK+2HbsnkOXAbmxm4BzR8AJF1a2Yrba8xjJyejeu4ipcJbV5fWReeH6Kqf5T+GrasLl9eYsDYOrKadBxvJVNmCzWvMWhtWbk1Ot4yutxBqry2j6LUyPMDl/EV9uO1enJWxwAE5eOYbbY8FQ0YDLnr9uKx2KMnn4db1UzDl95XttnfnyAhYlBfLVtWOyuvMUBMN53CKvDg7s8hMmcv//pNB4NM3pmL0U1rTiKSvMWB8DsyCXCs5MU1bRgsTnzGsvY2f3Yi0pwl9ah8niT+5bLyZFFiqpaJCcnhOemmLpyCl9tGzaX5OSsZhql1AeALwBm4F6t9d+seP+9wE+BvsSiB7XWf7nhdtMcQbY63UxfPcPl3Y/hDFTgr23HV9eel07CESjn6AP/AFrjrWrEV9eex04izskn7sbq9OCrbcNX10FRVXPOOwmb28f4+QNcev2nuIqr8NW146/rwFVSk/NOwlFUzLGHP48ymSmqbk62j81VlNM4FIpYZJETj30Jm9uHr7YNf10H3srGnHcSDl8p5176Hpdefxh3aW1ynzgDlTlvH7vHz4nHvozZaqOouiURSxtWR24Ld7PJQnhukuOPfBG7J5A8Zo3CPbeFodNfxrkX7uPirgdwlwcT/VsHDl9ZztvH4nBx+tlvYLE5KKppNdqnpjXnhbvZZmd+/AqX9zyOw1eKrzbRPuVBlCnH7RMo59zz3yYWDeOtCOG71j5FJTmNA8BksXDqqXuw2J3JPt9X3YLZ5shpHFs/J3dg9/hzGodhi+Rkj4/xc/slJycorXV2NqyUGTgN/AugH9gDfERrfTxlnfcCf6i1/lC62/XVtul3/s6X045jfvQKJ5+8e9kyi8ONr8YoPIpqWjBb7Wlv7xqtNToe29RnLu95nJGTry9b5gxU4q/ruN5J3MRBqOMxNtOOOhbl6EP/RGRhOrlMmSx4qxrx13Xgr2vH5vZvOg6AeCy6qfWnr57l7PPfXrbM6ixKFIbteKubMVs230ncTPtc2PkTxvsOLVvmKqlJto+ruDon7RMLL3L0wX8kFllMLjOZrYlOogN/bTtWl3fTccDm22e87xAXdv5k2TKb258oPNpvunC/mfY5+/x3mL56OmWJwl1Wl0yyN1u4b7Z9IgszHH3wH5fFb7LY8dW0GIVHbRtWh3vzcdzEPhk5+TqX9zy+bJndW4I/kUw8FaGbGnHX8Thaxzf1mZNPfJX5sf7rC5QJT3l9sk9x+Mo2HQds/phdmh7l2E+/CFxvU7PNia+mNdnn30zhfjPtM3D4RQYOvbBsmcNXhq/W2Cc3W7hvun205tgjX2RpejS5SJnMeCsajD6lrg279+YK9822z5bKybsfZ+SU5ORU01fPcPb5+5YtszqL8NUlBmuqmgo+Jz/xiffu01rfudF62SyQ7wL+Qmv9rxKvPwmgtf5syjrvZZMFst1brP11HZmL02SmqLIBf7ADf7Az7RHdhclhjjz4uYzFAWB1uBNnbMboS7qdRP++p7l66MWMxuIqqcJf24E/2IG7NP3LPod+9DcszU5mLA6T2UJRdXOik2hLu5OYGbrAicfv3njFTbC5vEYcQePsPt3C8MKuhxlecWJ0q9yltcYxW9eBqzj9qRj7vvMpYpGljMVxbUTXnzhurc70CveJS8c589x9G6+4CXaPP9k+3srGtAvDsy9+n/G+wxmLQylwl9XjD3YQqOvA4U9vKoaOx9jzrT/NWBxgjKheKwz9te1YHOkVhqNn9nH+1R9nNBZHUUnie9yBp6I+7fY59dS9TF09m7E4lFJ4KxuSsTh86U3FiCzMcuAH/ztjcQBY7C58tUb7+Gpb056KMXj0VS7tfnzjFTfB6S9P9imesmDaI7rHfvpF5sauZiyOm8/JQxx58J8yFgdcz8mBTRbub56c3J729MitlJMf+6P3pFUgZ3OKRQ1wOeV1P/D2Nda7Syl1CLiKUSwfW7mCUupjwMfA6FAyOtKvY0wPnGVm+ALTV89Q3fMLeCsbNvyYyWzKbBxAdGmOsbP7mL56huKGbdT0vi+tuZ/KpDIey8L4AAvjA0wPnKG87W2Utb41rQ5TqczGouNRpvpPMjN4numrp6nufR+estoNP5eN9okszDByejdTV09T0thDdc8vYrFvnNCy0T7zY/3Mj19h+uoZKtrfQUnzjrQ6TKXIaCzxaJjJS8eYGTjL9MBZane8H2egYsPPmUyZb5/w3CTDJ19j+uppSpp2ULX959NKaNlon7mRi8yPXmb6ymkqu99NoL5rw/bRSmc8jnhkiYkLR5gZOMvM4Dlqdrwvrbm52dgnSzNjDB3fyfTV05S2vIXKrnenldAyH4tmZvA8s8MXmb56mspt78Ff27bhp7LRp8TC84yfP8j01bMUD3ZRveN9aV3iz0b7LE4NM3hkmOkrZyhrvZPyjnekdRKT6T7/pnNyFvoUycmrLcvJA2eo7vnFgsvJ6cpmgbzWrlg5XL0fqNdazyqlPgg8DLSs+pDW9wD3ALhLa3RF29vSDiIejzF6dv+a71mdXgLBdgLBTnw1zZu6rGOzO9lMHADzk0PMDl9a8z13STWB+k4CwU7cpZub7+Mtq9t0LBOXjhNZnFu13GS24KttJZAY/bK5Nzffp7S5l+jC6u2uJxZZYmyd0Tub20cg2EmgvgNf1eYm6jtc3k3vk7mxK+uOhHjKg8Y+CXbiKt7cpXxfZT1qk5eWxvoOrznSa7LY8Ne2GsdK3eZvnitvfQvxaPqX3CJLc0xcPL7me3ZvMYH6ToqDHXgrN3fznLMosOn2mRm+yMLk8JrveSsbCAQ7KK7v3PQc3EBNM9ZNXtIdObt/zcuFZpsDf10bxfVd+Gs3NwdXY9r0PgnPTzHZf3rN9xy+UgLBTorrO/FW1G/qUr7LX7bpWKYHz7M4PbZquVImiqoaCdQnRtTTHLG9JlDXjmMT92poHWfkzL4137M4XATqEn1+bSuWTczB1VbrpvfJ4swY0wPn13zPVVxp9G/BDjxlm5uD6ymp2nQsk1dOE56bWrVcmcz4qpuN9gl2bPq+mJKGbjylNWmvn7Wc7HBJTl6D5OSbl9cpFmt85gJwp9Z6dL11ioMd+v2f+GbacQwc28W5Vx9MvnaX1lBcbyQNT1nu7hjVWnPkp19ievACYMwp9dc2U5z4Ato9ubtjdGFqlP33/11yDpvN7aM42EFxqBN/TUtObwa7vP85Lu5+KvnaWx409kl9B+6Sm5tfdDN0PM6BH/8j8xNDgDF1wF/bmmifDmw3Oef3ZsyOXObgA19IvrZ7A5TUdxmdUnVTTp/icH7XI1w9/ErilaKost74/oS6cKY5dSAT4rEo+77/NyzNTQJgsTkThWgngeDNzfm9WZP9pzn62D3J105fabJP8Vbe3Jzfm3X6xfsZPrUXuF6IFoeMkxan/+bm/N6M6NICe7//WaJL84BxpS/Zp9S2ZnRUZyMjZw9y6rnvJl+7AhXJY9Zbnv7UgUw4/uQ3GE+cYBqFaFMilk4c3uKcxRGen2bv9z5LPBYBwOr0JI9Zf+3Nzfm9WZKTV9tSOXnfc1zcszonF9d34irJ3ZOVspmTf/zxu/I+xWIP0KKUagCuAL8O/IfUFZRSlcCQ1lorpd4GmIDVQxDLPgRmS3odXDwWZeDoq5SEjA6pJNSZpztUYeLyaZZmJ6jquouS0LVOKT+Plrly8Hm85bWJfdKFuzR3hWiqaHiRoROvU9rYTUmoi+L6zZ8dZ8rwmUPEY2Fqtr870Sk15+1xYv0HnsdX1ZA8ZrN1dryR8Nw0o+cOUN7Smyi68ve4t6ETezBZLdT2/jwloU6KqvLzuDetNf0Hnsdf02Qcs6FOXIHynMcBRlKdvHyKira3JNsnl4VoqisHd2F3F1HV9Q6jfSpDeXmcmI7HuXroRQLB1kSf0onTl/unRgDMDF9mduQylR1vpSTUhb9ucyPWmXT18Mu4isuNXFjfibcimJc+ZSvm5Oruu1JOFN7kOXlpgaGTr1PauC1xrLy5c3LWRpABEtMmPo/xmLdvaK3/Win1WwBa67uVUh8HfhuIAgvAH2itd91omyWhTv1Lf5bezT3XLlHn8ux4PZGFWSwOd16fcXhNeH4Wmyu/z7UFiC4tosxmzHl87vA14flZrM78t4/WmujiXN6fOwxGZ2myWPP63OFrtkr7xGNRYpEw1jRvdsumyOIcZpsDU44fX7aWrdKnxKIRdCyGxZ6fQjRVZHEOi82Z1+cOX7Nl2kdy8pq2Svu8WXLy9/7rW/P7FItsKQl16l/+88ze/S6EEEIIIW5/3/l/0iuQ8z80tElKgcWc/zNyIYQQQghxeyrIAjndOchCCCGEEEJsVsEVyKAwpflfTQshhBBCCLFZBVcgyxQLIYQQQgiRTYVXIAMWs4wgCyGEEEKI7Ci8AlkpbJb8P9ZICCGEEELcngquQEYhc5CFEEIIIUTWFFyBrACrFMhCCCGEECJLCq9AVgqLPOZNCCGEEEJkSeEVyIB5C/zXkEIIIYQQ4vZUeAWyPOZNCCGEEEJkUcEVyKCYGrxMJLxIebAZkzm/T7S4eGw/gcpaikrK8xrH4vwsA+dOUNPSjc3hzGssw5fOobWmrK4Rkym/JzN9R/ZQVteIx1+S1zjmpycZ7e+jqrkTq82e11gG+05httoorQmh8ng1RmvN+UNvUNXYjqvIn7c4AGbGR5gcGaCqsR2L1ZbXWK6ePY7DU0Sgoiav7ROLRblwZC/VzZ04PUV5iwNgcvgq89OTVDS0YjbnN21dPnkIb3EZvrKqvLZPNLzEpRMHqWntxu505y0OgLErFyUnr7DVcjJAaW2D5ORNKLgCWSkoCgT44d99ArPZSm1bN8GOHmpburG7ct9JRBdnefAfP4m/rIpgRw/Bjh7Kg0057yQ8Hg+n3niRV390L1WNrQTbe6hr76GopCyncQB4i4r48T/+KTani7q27QQ7eqhp6cJmd+Q8lvmJEX7yg7sprqxNtk9ZXWPOE5vX5+O5bz3My/d/laqmdiOW9h48/uKcxgHgdDp56IufxlXkp6490T5NHVhyXrgrpob6efVHX6O0NkSw3WifkupgztunyB/g6a//A4tz09Q0dxLsML4/Lq8vp3GAcYXskS9+Co+/JNk+VY1tOS/cLSYLw30n2fnjeykLNhJs206wo5dAZe4Ld1+ghCfv+VvisSi1rUafX9e2DYfbm9M4AIhHefjz/4uikvLEcbKdylArZktu06nFYefS0b28+uN7qQi1JL8//rLKnMYBWysnRxZmJCevjMVbxE8+Jzl5s5TWOt8xbEqwfbv+xL2P8voTP+bgy08llyuToirUSn1HD/WdvfhLK3ISTywa5f5/+BNmJsaSy+wuN8G2bdR39FDX2o3d6cpJLFfOneTRe/5+2bJAeRX1nb2EOnopD+ZuRPeln3yLk3teTb42mc1UN7ZT37GdUGcv3kBpTuKILC3y3b/5Y5bm55LLnG4vwY7tRvu0dGHNUSdx/sg+nvnul5ctK62uI9jeQ31HD+V1DTnrJJ6+70v0HduffG22Wqlt6qC+M1G4+wI5iWNhdprv/c0niEbCyWXuIj/Bjh5CHT3UNHfkrDA8sfsVXn7g28uWldWGqO/oIdTZS0lVXc7a56d3/y0DfaeTr602O7UtXcZx2749Z4X79PgI9//9nxCPx5PLvIESo5/t6KG6sQ2zxZqTWA68+ARvPPXA9QVKURlsSvT5PQTKq3PSPlprfvz5v2B8sD+5zOZwUNfaTX1HD8H27ThcnqzHATB69RI/+cKnly3zlZZT39FLfft2KkMtOSvct35O3k6os4falq43aU7+Jif37Ey+vp6Tewh19rypcvLHfy60T2t950brFVyB7Cst16133EU8GiUSXlp3PX9ZJaFOI7FVhTJ/2WdieJAH/vmvAYgsLRGPRddcz2Q2U9XQQqizl4bOHnxZ6CT2PvcYB195GmDZQbeSw+VOFqjBtuxc9vnh5z7FzOQ4sWiEaDi87nrFlTU0dPZS37mdimBTxjuJwYvneOzrnweML2Q8FltzPZPZQm1LB6Fk4Z75yz4/e/SHnNizE7RmaWF+3fVcXh/1Hdtp6OqltrkjK53Eff/7DwmHl4hFwkQjkXXXK6upp77T2CfltZmfinHx5BGe/f49AIQXF9ApBVgqi9VKbUsnoc5eQh09uH3+jMYB8MKPvsn5o/vR8TjhxYV11/P4i4326eylpjnzUzHisRjf+PTvA9ywfZRSlNc1GPukq4eSytqMt8+ZA2/w8kPfBSC8MM96ecJqsxNs6ybU2UN9x/asTMV48lv/zJXzp4jHYkSWFtddr6i41NgnndcK98wWhguz03zv7/4UMKY3xKJr9/lKKSpDzcn8EyjP/FSMI7te4I2nHgJu3Ofbna5E+/QSbN+GIwsjug9/5e8YHbgsOTlFIefkUGdPVgr3rZSTf+uu+rQK5IKbYqHjmkiiyDDdoNOZHh3i8CvPcPRnz9O8/U7e9aF/hzeDl7MtSiXjuGEs8TgD504xcO4Uh156ijt+4QP0vOv9Ge28dTSS1j4JL8xzZv/rnNn/OhXBRn7uV/491Y2tGYsDILK4kFYsk0NXOTB0lcOvPkvbHe/gnb/8YVwZTK5mSLN9YvSfOkr/qaMcfPFJ3vovfoWut/98RjuHdNtncXaaU3t2cmrvTmoa23j3r/x7KuoaMhYHGMXotSLjRrGMXb3E2NVLHH7lWbre9nO84wP/JqOjLiYdT+4TBesWEPFolEsnDnPpxGEOlpTxjn/5a7S95a6MFhzxSDit9pmfmuDE6y9z4o2XqW/bxs/961+nuKI6c3Fond4xC4xc7mPkch+HXn6Kbe/8Bd72/l/J7AlVPJZW+8QiYfqO7qfv6H4CFVXc9Uv/lqbuOzLaPrHwUlrtMzsxxtGfPc+x116ksauXd33o32V01DJiMqXdPkMXzjJ04SyHXnqK3vf8S+547wcye0IVi6a1TyKLC5w7tIdzh/ZQWh3kXb/8Yerbt2UuDiC6tLhFcnK6fb7k5LWk5uT2t9zFXR/8t7dtTk5XwRXIdrud5u4e5qYmGeq/uOY6Lo+Xxu5emjp7qW/Pzjwbr9tBc3cPAIOX+pifmV5zvfLaIE1dvTR191KRpUvoFdVVNHf3EI/FuHDy6JrrWKxWgq2dNHX10tjVi9efnUvoDe2dzM9MMzMxxsjV/jXX8fgDNHb20NTdS31rZ1YuofuKPMn2udp3lsV1zuIr6xuN9unqoawmO3Nfq2prWejuIRoOc+nMiTXXsdrthNq6aerupaFzO+4sXUJv6uwmGokwMTLExPDgmusUFZfQ3L2Dxq5eapvasFgzfwnd7/cl2+fy2ZNEllaPPCmlqAo10dTdS3P3HRRXZOemqOpgEB1dIry4QP+502uuY3M4aejoprGrl8bOHpzuzF9Cj5tNyX0yNnSVqdGRNdcLlFXQ1G18j2sasnMJvaS0JBnLxVPH1hwtVSYTdU1tNHYZ3+VAlua+1jY0YrdbWZibZeDCuTXXcbjdRp/S1Ut9ezeObFxCd1iT+2TkymVmJsfXXK2ksoam7l6aunqpCmX+6hhAWVk5zd09aK25cOLImiP8ZouZuuZ2Grt20NTdi684O5fQ65tb8AX8WyAnOyUnr+FaTp4eH2V04Mqa67zZcnK6Cm6KRVNXj/67HzzJT7/1FY7vez25vLy6jubuXpq39VJd35SznbowP8dXPvU/WEpcmjVbrITaOmnu6qG5ewdFgdzdhHV098949Dv3JF97fH6au3pp7u4l1Jbbpyf88Mv/wPkTR5Kvq4INRvt091JRW5+z9pmeGOfuT/8RscTlNqvNRqiti5Ztd9DUtR1PDp+esOelZ3juge8lXxcFSpL7JNjSjjVHc2211nz7Hz7NwKU+wChEq0NNNHf30tK9g9Kq3N2ENTp4hXs/86fJBG9zOGjs2E5zVw9NXT24PLm7CeuVxx/kZ0/9NPk6UFaRbJ+6xtzdhBWLxbj3rz/J+MgQkChEG1uTsZRUVOUkDoArfWe573N/lXztcLlp7NxOS3cvjR3bcbhyM5cT4Okf3cf+V59Pvi6trDb2SVcv1Q3NmHN0E1YkEuYrf/GHzE1PAWA2W6hrbqOl2yi6AqW5e3rC2aMH+fFX/yn52uUpoqlrO83dvTS0d2PP4dMTtkxOnpvlK3/xh6tzcuJYebPm5Pu/9Pf0pRTrRk7eQcu2XspzWIhuhZz84Z6a23OKhQmYGh7g7JH9tHT10LptB81dPfhLcjPBfKVdLz+DzWaj64630br9DhraOvNyZ2gsFuP1Zx6lOhiiddsOWrbtoKouP4/x6j9/hv5zp2jbvsOIpbsXb45u+lppz/OP4/X5aOneQeu2XupbO3JWiKaKRMLsfv4J6hqak+1TXp35uaPpOHPkIOPDA3TueGvy++P25ucxXq8//SiBkjJatvXSum0H9c3tOX8aABgnugd3vkCopZ2W7l5aunsprczNTV8rHd73Gotzs2y78y5at/XS2LkdVxZGrNPx2lM/payiipZtxne5trElZ4VoqumJMY7t+RlN7V00dxvHSnFZbm76WunAKy9DPE7vO95NS/cOmjpydyN2Kq01rz39Uyprg8lcWJ2lEeuNjAxc2To5+ZVnsdvtdL/l7bRs2yE5Gbh87jRXzp+mveeOZP/2Zs/J6Si4EeTW7h79l/d8H5fbk5eDfqWRwauUZunS72YsLswTXlzM6dnxeibHRnB7fVht+T/oRwau5K3QSTU/N0s8FsNTlPvHhq00PjxEUaA4K1MnNkNrzdjwICXllXlvn9npKUxmc94K0VRjw4P4i0vzcqKQKhaNMjk+Skl57h8bttLM5ARWmy0rN5lt1ujQAMVlFXl/nmw4vMT8zDT+PDw2bKXJ8VHJyStITl7bVsjJv9RReXs+xaKtu1d/5cHn8h2GEEIIIYQoMO9rK7s9p1goBVbT1nugtBBCCCGEuD0UXoGMwmrO76UtIYQQQghx+yq8AlmBRUmBLIQQQgghsqPwCmQUNhlBFkIIIYQQWVJ4BbICi8xBFkIIIYQQWVJwBTKA2SwFshBCCCGEyI6CK5AVYM7z8w2FEEIIIcTtq+AKZJSMIAshhBBCiOwpuAJZoWQEWQghhBBCZE3hFcgygiyEEEIIIbKo4ApkkKdYCCGEEEKI7Cm4AlkpMJvkOchCCCGEECI7slogK6U+AHwBMAP3aq3/ZsX7KvH+B4F54L9orfffcJuARepjIYQQQgiRJVkrkJVSZuBLwL8A+oE9SqlHtNbHU1b7JaAl8fN24CuJP2+0XcwyxUIIIYQQQmRJNkeQ3wac1VqfB1BK3Q/8KpBaIP8qcJ/WWgOvK6X8SqkqrfXAehs9sH8fRc6CmxkihBBCCCEKRDYnK9QAl1Ne9yeWbXYdlFIfU0rtVUrtzXiUQgghhBBCpMjmUOxa8yD0TayD1voe4B6AYDCoz5w5g91uv/UIb1IkEuGee+6hvr6eD33oQ3mLA+DUqVM8+eSTfOhDH6K5uTmvsTz88MMMDAzwsY99DLPZnLc4FhYW+NrXvkZnZyfvf//78xYHwMGDB3nppZf48Ic/TG1tbV5juf/++5mbm+M3f/M3UXl8lvjU1BTf/OY3ufPOO3n3u9+dtzgA3njjDV577TU++tGPUlpamtdYvv3tb2M2m/noRz+a1zgGBwe5//77efe7382dd96Z11hefvllDh48yG/+5m/i9XrzFofWmq997WsUFxfz4Q9/OG9xAFy4cIGHH36Y97///XR3d+c1lqeeeoozZ87wsY99THJywsmTJ3nqqackJ6fYajl5x44daa2rjNkNmaeUugv4C631v0q8/iSA1vqzKet8FXhJa/2DxOtTwHtvNMXizjvv1Hv3ykCyEEIIIYTYHKXUPq31hmf/2ZxisQdoUUo1KKVswK8Dj6xY5xHgPyvDO4CpGxXHQgghhBBCZFvWplhoraNKqY8DT2M85u0bWutjSqnfSrx/N/AExiPezmI85u03shWPEEIIIYQQ6cjq4yC01k9gFMGpy+5O+V0Dv5PNGIQQQgghhNgM+S83hBBCCCGESCEFshBCCCGEECmkQBZCCCGEECKFFMhCCCGEEEKkkAJZCCGEEEKIFFIgCyGEEEIIkUIKZCGEEEIIIVJIgSyEEEIIIUQKKZCFEEIIIYRIIQWyEEIIIYQQKaRAFkIIIYQQIoUUyEIIIYQQQqSQAlkIIYQQQogUUiALIYQQQgiRQgpkIYQQQgghUkiBLIQQQgghRAopkIUQQgghhEghBbIQQgghhBAppEAWQgghhBAihRTIQgghhBBCpFBa63zHsClKqRngVL7jEJtWCozmOwixadJuhUfarDBJuxUmabfC06a19m60kiUXkWTYKa31nfkOQmyOUmqvtFvhkXYrPNJmhUnarTBJuxUepdTedNaTKRZCCCGEEEKkkAJZCCGEEEKIFIVYIN+T7wDETZF2K0zSboVH2qwwSbsVJmm3wpNWmxXcTXpCCCGEEEJkUyGOIAshhBBCCJE1UiALIYQQQgiRoqAKZKXUB5RSp5RSZ5VS/zPf8YiNKaW+oZQaVkodzXcsIj1KqTql1ItKqRNKqWNKqd/Ld0xiY0oph1Jqt1LqUKLdPp3vmER6lFJmpdQBpdRj+Y5FpEcpdUEpdUQpdTDdx4aJ/FNK+ZVSP1FKnUzkuLvWXbdQ5iArpczAaeBfAP3AHuAjWuvjeQ1M3JBS6j3ALHCf1ro73/GIjSmlqoAqrfV+pZQX2Af8mnzXtjallALcWutZpZQV2An8ntb69TyHJjaglPoD4E6gSGv9oXzHIzamlLoA3Km1lv8kpIAopb4NvKq1vlcpZQNcWuvJtdYtpBHktwFntdbntdZh4H7gV/Mck9iA1voVYDzfcYj0aa0HtNb7E7/PACeAmvxGJTaiDbOJl9bET2GMgLyJKaVqgV8G7s13LELczpRSRcB7gK8DaK3D6xXHUFgFcg1wOeV1P5K0hcgqpVQI2AG8kedQRBoSl+oPAsPAs1prabet7/PAHwPxPMchNkcDzyil9imlPpbvYERaGoER4JuJKU33KqXc661cSAWyWmOZjI4IkSVKKQ/wAPD7WuvpfMcjNqa1jmmte4Fa4G1KKZnWtIUppT4EDGut9+U7FrFp79Ja3wH8EvA7iemEYmuzAHcAX9Fa7wDmgHXvZyukArkfqEt5XQtczVMsQtzWEnNYHwC+p7V+MN/xiM1JXDZ8CfhAfiMRG3gX8K8T81nvB35RKfXd/IYk0qG1vpr4cxh4CGMaqNja+oH+lCtrP8EomNdUSAXyHqBFKdWQmFj968AjeY5JiNtO4mavrwMntNafy3c8Ij1KqTKllD/xuxN4P3Ayr0GJG9Jaf1JrXau1DmHktBe01h/Nc1hiA0opd+IGZhKX6P8lIE9q2uK01oPAZaVUW2LR+4B1bz635CSqDNBaR5VSHweeBszAN7TWx/IcltiAUuoHwHuBUqVUP/AprfXX8xuV2MC7gP8EHEnMZwX4E631E/kLSaShCvh24ok/JuBHWmt5bJgQmVcBPGSMJWABvq+1fiq/IYk0/Xfge4mB1vPAb6y3YsE85k0IIYQQQohcKKQpFkIIIYQQQmSdFMhCCCGEEEKkkAJZCCGEEEKIFFIgCyGEEEIIkUIKZCGEEEIIIVJIgSyEEEIIIUQKKZCFEEIIIYRIIQWyEELcBpRSb1VKHVZKORL/09cxpVR3vuMSQohCJP9RiBBC3CaUUv8bcABOoF9r/dk8hySEEAVJCmQhhLhNJP771D3AIvBOrXUszyEJIURBkikWQghx+ygGPIAXYyRZCCHETZARZCGEuE0opR4B7gcagCqt9cfzHJIQQhQkS74DEEIIceuUUv8ZiGqtv6+UMgO7lFK/qLV+Id+xCSFEoZERZCGEEEIIIVLIHGQhhBBCCCFSSIEshBBCCCFECimQhRBCCCGESCEFshBCCCGEECmkQBZCCCGEECKFFMhCCCGEEEKkkAJZCCGEEEKIFP9/iTkzB2REL8IAAAAASUVORK5CYII=\n", "application/papermill.record/text/plain": "
" }, "metadata": { "scrapbook": { "mime_prefix": "application/papermill.record/", "name": "rot0_fig" } }, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsgAAAEYCAYAAABBfQDEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAABq90lEQVR4nO39d5gc2XnY+39P5zjdPTn29OQIzGC5DEtSFCXSNkVRlnzNxxZt2tfSveZPsmhJV5ZEU5JFUbJIRYqkRXK5XKZlWoYN3JwjiN1FzhkYhAEm59zp/P6oRqMnYXqADtPY9/M882C6urrwok71ed86daqgtNYIIYQQQgghDKZ8ByCEEEIIIcRWIgWyEEIIIYQQKaRAFkIIIYQQIoUUyEIIIYQQQqSQAlkIIYQQQogUUiALIYQQQgiRQgpkIYTYIpRS71VK9ef47wwppbRSynKL25lVSjWu895/UUrtvMnt5nyfCCGEFMhCiNuCUuo/KKX2Jgq1AaXUk0qpd+c7rjcLrbVHa30+33EIIUQmSIEshCh4Sqk/AD4PfAaoAILAl4FfzWNYQgghCpQUyEKIgqaU8gF/CfyO1vpBrfWc1jqitX5Ua/1HiXXeppR6TSk1mRhd/mellC1lG1op9d+UUmeUUjNKqb9SSjUlPjOtlPrRtfWvXfJXSv2JUmpUKXVBKfUfU+NRSt2nlBpRSl1USv2ZUmrNvlYp5VRKfUspNaGUOg68dcX71UqpBxLb6lNK/e4623mHUmpQKWVOWfZvlFKHE7+blFL/Uyl1Tik1lvj3FK+zrWql1CNKqXGl1Fml1H9Nec+c+HefS+ynfUqpupR92Jz4vSSxjWml1G6gacXf8QWl1OXE+/uUUj+XiX2SaOe9ie0OKaU+t9a/UQghNiIFshCi0N0FOICHbrBODPj/gNLE+u8D/tuKdT4AvAV4B/DHwD3AfwTqgG7gIynrVia2VQP838A9Sqm2xHv/B/ABjcDPA/8Z+I114voURvHYBPyrxLYAo6gFHgUOJf6e9wG/r5T6Vys3orV+HZgDfjFl8X8Avp/4/XeBX0vEUw1MAF9aJ6YfAP2J9T4MfEYp9b7Ee3+Q2A8fBIqA3wTm19jGl4BFoCqxzm+ueH8P0AsUJ2L8sVLKkXjvVvbJF4AvaK2LEp//0Tr/RiGEuDGttfzIj/zIT8H+YBSxg5v8zO8DD6W81sC7Ul7vAz6R8vofgc8nfn8vEAXcKe//CPhfgBlYAjpT3vv/AS+tE8d54AMprz8G9Cd+fztwacX6nwS+uc62/jfwjcTvXoyCuT7x+gTwvpR1q4AIYAFCiX+/BeNkIAZ4U9b9LPCtxO+ngF9d5+/XQHNiH0SA9pT3PgPsvEF7TAA9t7pPgFeATwOl+T4u5Ud+5Kewf2QEWQhR6MaA0hs9hUEp1aqUeiwxDWEao2ArXbHaUMrvC2u89qS8ntBaz6W8vogx4loK2BKvU9+rWSe0auDyinWvqQeqE9NCJpVSk8CfYMyxXsv3gf9LKWUH/i9gv9b62vbqgYdStnMCoxBeua1qYFxrPbNO/HXAuXX+/mvKMIrt9f5dKKX+h1LqhFJqKhGPj+vtcSv75P8BWoGTSqk9SqkPbRCrEEKsSQpkIUShew3jcv6v3WCdrwAngRZtXH7/E0Ddwt8ZUEq5U14HgavAKMboaf2K966ss50BjKIzdd1rLgN9Wmt/yo9Xa/3BtTaktT6OUUz+EsunV1zb1i+t2JZDa70yrqtAsVLKu078l1kxn3gNIxgj7Gv+uxLzjT8B/DsgoLX2A1Ncb4+b3ida6zNa648A5cDfAj9Z0U5CCJEWKZCFEAVNaz0F/DnwJaXUrymlXEopq1Lql5RSf5dYzQtMA7NKqXbgtzPwV39aKWVLFHwfAn6stY5hTLf4a6WUVylVjzFv97vrbONHwCeVUgGlVC3w31Pe2w1MK6U+kbhxzayU6lZKvXXtTQFGUfy7wHuAH6csvzsRUz2AUqpMKbXqCR9a68vALuCzSimHUmo7xqjs9xKr3Av8lVKqRRm2K6VKVmwjBjwI/EWiLTpJmUeM0RZRjELaopT6c4z5zLe8T5RSH1VKlWmt48Bk4jOxG+wvIYRYkxTIQoiCp7X+HEYh+mcYhddl4OPAw4lV/hBjVHUG+Brww1v8Kwcx5s1exSgef0trfTLx3n/HmP97HtiJUbR+Y53tfBpj1LcPeAb4Tsq/KQb8CsbNbH0Yo9P3YkxHWM8PMOZIv6C1Hk1Z/gXgEeAZpdQM8DrGfN61fARjXvJVjBsfP6W1fjbx3ucwCthnME44vg4419jGxzGmpAwC3wK+mfLe08CTwOnEv32R5VMqbmWffAA4ppSaTfybf11rvbjOv1MIIdaltNb5jkEIIQqGUuq9wHe11rV5DkUIIUSWyAiyEEIIIYQQKaRAFkIIIYQQIoVMsRBCCCGEECKFjCALIYQQQgiRYt0H629VpaWlOhQK5TsMIYQQQghRYPbt2zeqtS7baL2CK5BDoRB79+7NdxhCCCGEEKLAKKUubryWTLEQQgghhBBiGSmQhRBCCCGESCEFshBCCCGEECmkQBZCCCGEECKFFMhCCCGEEEKkkAJZCCGEEEKIFFIgCyGEEEIIkUIKZCGEEEIIIVJIgSyEEEIIIUQKKZCFEEIIIYRIIQWyEEIIIYQQKaRAFkIIIYQQIoUUyEIIIYQQQqSQAlkIIYQQQogUUiALIYQQQgiRQgpkIYQQQgghUkiBLIQQQgghRAopkIUQQgghhEghBbIQQgghhBAppEAWQgghhBAihRTIQgghhBBCpMhagayUqlNKvaiUOqGUOqaU+r011lFKqS8qpc4qpQ4rpe7IVjxCCCGEEEKkI5sjyFHgf2itO4B3AL+jlOpcsc4vAS2Jn48BX9loo1NTU2itMx3rpj399NMcOnQo32EwPDzMo48+yujoaL5DYf/+/Tz77LP5DoNYLMYTTzzB8ePH8x0K/f39PProo0xNTeU7FN544w1eeumlfIdBOBzmscce48yZM/kOhb6+Ph599FEWFhbyHQo7d+5k165d+Q6Dubk5Hn30US5evJjvUDh16hSPP/440Wg036HwwgsvsGfPnnyHwcTEBI8++igDAwP5DoWjR4/y5JNPSk5OITl5ta2Wk9NlyVYQWusBYCDx+4xS6gRQA6TuoV8F7tPGt+t1pZRfKVWV+Oyazp49i8kkM0OEEEIIIUR25KTSVEqFgB3AGyveqgEup7zuTyxb+fmPKaX2KqX2Zi1IIYQQQgghyOII8jVKKQ/wAPD7WuvplW+v8ZFV12q01vcA9wDc8ZY79Ss/253xOIUQQgghxO3N6zSntV5WC2SllBWjOP6e1vrBNVbpB+pSXtcCV2+0Ta01UR3PXJBCCCGEEEKkyFqBrJRSwNeBE1rrz62z2iPAx5VS9wNvB6ZuNP8YjOHlWCyjoQohhBBCCJGUzRHkdwH/CTiilDqYWPYnQBBAa3038ATwQeAsMA/8xkYb1Rqi8fzfMSuEEEIIIW5P2XyKxU7WnmOcuo4Gfmez247FZYqFEEIIIYTIjqzfpJdpWkNMRpCFEEIIIUSWFFyBDBCTAWQhhBBCCJElBVcgazRRmWIhhBBCCCGypPAKZA1xmWIhhBBCCCGypOAKZJA5yEIIIYQQInsKrkCWx7wJIYQQQohsKrwCGU1E7tITQgghhBBZUngFsoawjCALIYQQQogsKbwCGU1URpCFEEIIIUSWFGCBDBEtBbIQQgghhMiOwiuQNcwvLmGxWvMdCgDRSGRLxBKLRjGZzSh1w//dOye2yj6BrRNLNBLBbLFI+6TQWhOPxTBb8t8NSfusFo/H0VpjNpvzHcqW2SewdWKJRaMokwmTyZTvULbMPoGtE4vk5LVtpVg2kv/MtEkaTd+50zz94+/Ssq2X1m07qK5vzFsn8eQD32NiZJjWbTto6e7BV1yalzjCkTDf/OxfUR1qpHXbDhrbu7Da7HmJ5eSRA7z61CO0dBvtUxUM5a2TePg7X2NpcYGWbTto6erB6w/kJY65+Tm+/U+fIdTaQeu2XupbOrDabHmJ5cAbO9n/s5do3baD1m07KK+uzVv73P/Vz2O2WGnd1ktzVw9ub1Fe4piYGOcHX/4Hmjq20bptB8HmtrwV7q+9+DSnjxxIfn9KKqry0j5aa77zhc/iKfLTun0HTR3bcbrdOY8DYPBqPw9+8yu0buulpbuX2saWvBXuLzz+IFf6ziW/P4Gy8rzEEYvH+ebff5qyqhpauntp7OjG4XTlJZYLWykn/+S7TIyOGDl5Wy++QEle4thKOfnE4f3sfPrRRJ3SKzk5TUrrwrrhrbmrR//d/U/x3S98hktnTgLg9hbR1NlD87ZeGju2YbM7chbP5NgId//lHxOPxQCoqA3S3L2D5q4eqkNNOT0IX3vmMV585EcAWKw2Qq0dRizdPRTlsJPQWvP1v/kzhq9cBsDrC9C8rZfmrl5CbZ057SQG+y/yjb/5X8nXVfWNtHT30rxtBxU1wZy2zws//SGvP/s4ADa7g1BbFy3bemnq6sFT5M9ZHLFolLv/6o+ZGhsFwFdSSnOXUXgEWzpyenZ/8fQJvvfFzwKglKKmoZmW7h00dfdSVlWT0/Z54vtf5+CulwGwO500dmxLfpedbk/O4ggvLfKlP/8DFuZmAQiUVSSP2brG1pwW7icP7uHBe/8PACaTidqmVlq6d9Dc3UtJRVXO4gB44Gtf5NShvQA43R6aOrfT3L2Dxo5tOFy5KwznZqb58qf+B5HwEgCllTU0b+ulpXsHNQ3NOS0MD/zsJZ78wTcAMFssBJvbae7upXXbHfhKcjtYs1Vy8sToMF/9q0+syskt3b1U1TdKTuZ6Tm7p3kF9WydWa+4Ga7ZCTv6326v3aa3v3Gi9giuQq4IN+t/+1h8wfOUy544eWPW+yWwm2NJBU/cOmrqyN6I7PzPN/lefA+D4nl1MjY+uWseV6CSaunupb+vKWidx8dRxLp87SWRpib0vPb3mOuU1QZq6e2nq6qUy2JC1g3Dvi0+zuDDH1b5zXDx9bNX7FouVYGsnTd29NHf34vFl5+xxenyMw68bxc6hXS8xPzO9ah2vv5jGrh6aunqpb+3AkqVO4tyxgwxcPM/C7CwHf/bCmutUBhtp7u41CsPquqy1z2vPPEosGuHSmRNcOX9m1ftWm51Q+zaau3tp7NyOK0sjuuPDAxzf+xoA+15+lvDiwqp1fMWlxjHbvYO6puyN6J48sJvRgX6mJ8Y5tnvnGmsoahqbEwn/DoqzNKIbj8fZ9dTDAJw/fpihyxdWrWN3uAh1dNPc3UtDx/asFe5D/Rc5c3gfWmv2vPAksWh01TqBsspEn9JDbWMrpiyN6B59YyeTY8OMDw9y6sDuVe+bTGZqm1pp6jK+P4GyiqzEEV5aZPfzTwBw6uBexoeurlrH4XLTmOjzQ+3ZG9G9cv4MfSePEIvGEjGtzuMllTU0dRn9bFWoKWuF+8GdLzA7PbmlcvKx3T9jemJs1TqSkyUnA3xkR+3tWSAXFZfpxq7etNcvraqlsauXbe/8Bbz+4ozFMT40wH1/+ydpr2+2WKhr7qB5+1vouPNdGU32u554gN3PPZb2+u4iPw0d2+l827upbmjJWBwA3/irP1yzY1pPRW09oc4eet79PlyezBVjV/vO8KP/85m017fabNS1dNLS81ba7nhHRpPJCz+5j8O7Xkx7fa8/QENnL93veA/ltaGMxQHw5U/+NuGlxbTWVQoqgo00de1g+7t+EXsGk/35Ywd45OtfTHt9m91BfXs3rb1vo3n7nRlNJk/c9xVOH1xdeK3HV1JGY1cv3Xe9l5KK6ozFEY/F+OIf/b9pr69MiuqGVho7e9j+zl/AmsFkf3z3Tp65/+tpr293Ogm1b6ftLe+goaMno+3z4N1/z6XTx9Nev7i8koauXrbd9V78pZkrludnp7nnz38v7fVNJhM1TW00b3sLXW//uYwm+/0vPcUrj/ww7fWdbg8NnT20v+WdBFs7MxYHwPc/9xcM919Me/1s5eSxoat852//NO31JSevraK2noauXra/6xdv25z8G2+rS6tALrg5yKBJp6hXZjPVDa00dPYS6uzB4Q0QiWXuZCAaTy8OAIfLQ33HdkKdPQRbu4krM/E8xVJcUUOos4eGrl5Kahszuk8A4pq0YjGZLdQ2txPq7CXU0YPV6c1b+zi9RYQ6emjo7KWupZOYVsQyGEsszX0CUFoTTByzvfgrg1lon/T2i9lqo665w2ifzh5MNmdm2yeW/j5x+4wThlBHD7UtHUTjsNaI2c2KpblPwDhhCHUax4q3pDKj+yQeSz8Oi81OfVs3oc5e6ju2g8Wet++PN1BKQ1cvDZ29VDW2Zrx94vE0jxWlqAo1E+o0YnH5yzK6TyKbaB+b00WwrZuGzl7q27ahTdYMt0/63x9/WWVyn5TXN2W+T0nzWMl6Tt5E+0hOXu3NlJPTVXAjyLUtnfp3Pncfx157kUMvL790YXe6CLZvp76zh7rW7oyOeK0Ui0aZm54ArXn8G59namRo2fuB8irqO3uo7+iloj57l7cAFudnCS8uMDF0lSe/uXxUzmQ2U93YRn1HD/WdPRQVl2UtDoDZyXHi8RgHXnyCE2+8suw9p8dLsH0b9R291LZm7/IWQDQSZn5ming8ziN3/y3z01PL3i+prjP2SUcP5XXZu7wFsDA3Q2RpkaGL53j+B19b9p7ZYqGmuSMZiyeDIyprmZkYRWvNG0/8hHOH9y57z1Xko77DSF7VTe1ZnSseCS+xMDtNLBLhoS/9NeHF5aPaZXUh6jt6CHX0UpLFKScAC7PTRMJLXD51lFcf+u6y9yw2G7UtXcZ3uW07riJf1uLQWjMzYUzVeuWB++g/s3zU1OMvpr7T2CfVTW2YLdmbKx5eWmRxboal+Tke/vJnl0+xUIrK+qbkMRuoqM5q+8xNTxKLRjh74A12P/3QsvdsDgd1rd1Gn9+2Dafbm7U44vE4s5PGSNyz37ubkRVTYIpKygl1GvukMtSS1bniSwvzLC3MMTs5ziNf/Xvj8U4JyqSoamilvn079Z29+MsqsxYHwOzUBPFYdGvl5K//E1Ojw8veD5RXUd/VS317z5syJ+9/4XFO7n512XtGTt5OfUfPmyonf/zdodtzBNlktmBzF3Fq/2toNL6yqmQDV9Q3L5sHF83m/7hnMuPyl3LpxCEmRwZRJrPRKXX0UNfeg6/0+p3NcYyz7GyxONxYHG5ef/IBNBqHy0td+3aCHdupbenC5nAm183qPgEcRQEW52c5c3A3Gk1xZS3Bjh6CHT2U1TYs65SyGovZistfyul9u5ibnsRstlLV1E59Rw/Bju14/NdvkIhpliWYTLM6PVidHk48cB8ajdPrI9i+nWBHDzVNnVjt1wvRbLeP01fC7OQ4548dQKMprQkZ7dO+ndKa+mWdUjZjURYbLn8pR159hqXFBcwWG7UtnQQ7eqhr34475abFrLePy4vF6eH4np1oNG5fMcFER13V2Lbs0ni228flL2Vi6CqXE8VxeV1D4vvTS3Hl9ZsWdZZjMVntuPx2ju/eSTQawWKzU9vabfRvbdtwplx6zXb72D0+4rEYJ/Ya7eMtLkt8j3uoDC2/aTG77aNw+UsZvHCW4ct9gKKyoTWZf3xllTlrH7PdicvuZP9LT6F1HJvDRV1bd2LwoRu76/rTRrLe53v9RCPhrZWTR4ckJydcy8lnD63OyeV1jTnr87dSTk5X4Y0gt23X//5//j1jVy5S19FLUUl+HrFzzbGfPYuryE9Ncxe2PD1iB4wz1mM7n6G2bTtldfl7xA5A/6kjTI8PE2zvwRPIz2Pvrjn88hP4yqqobs7t0zNWmpsa59TuV6jr6KG0Jn+P2AG4cHQfS/Oz1LZtx52lGzLSobXm0IuPUVIdpKopezdkpGNqZJC+I3sJdvQQqMzfY+8Azh54DR2PUdu2fVkhmmuxWJRDLzxKZUMbFaGWrI5Yb2T0ygUGzp6grqMHX1l+Hnt3zandL2Ox2alp7cbhyt3TTVaKhpc49NLjVDd3Ul7fjNmcv/Guwb5TkpNX2Go5eWZ8hLr27ZKTgT/+hYbb8ya92rZt+uNf+Wm+wxBCCCGEEAXmk+9ruj2nWGgN0Zj8V9NCCCGEECI7Cq9AJvtzdoQQQgghxJtXwRXIaJ2Xx30IIYQQQog3h4IrkI0RZJliIYQQQgghsqPwCmRtPBBcCCGEEEKIbCjAAlkTicoIshBCCCGEyI7CK5CRm/SEEEIIIUT2FF6BLI95E0IIIYQQWVRwBTJoYlIgCyGEEEKILCm4Allr5DFvQgghhBAiawquQEYjI8hCCCGEECJrCq5A1qQ/gqy1RimV3YDSJLFs3Thg68SitXFsb5VYtkIcsHVi2SpxgMSyleMAiWUrxwESy1aOA7ZGLAVXIKM18TRHkCOL8xx78pv4qhspCXXhLa/L2w4fOXuQoVN7Ka7vpCTUid3jz0scACef/wEms4WSUBf+2hbMFmte4lianeLEM98hUNdKSagLd2l13tpn4NjrjF88QXHIaB+by5uXOLTWnHj6PmwuL8WhTvw1zZjM+fmazk8McfrFH1Nc30FJQxeuQEXe2ufygZeYGb5ESaiT4voOrA53XuKIx2Mce/wbuALlFIc68VU15K19pocu0ffaY5SEuiiu78AVKM9LHAB9bzzJ4vS40T7Bdix2Z17iiEXCHH3863grgpTUd1BUGUKZTHmJZfzSKfoPvkhJqIuSUBeOouK8xAFw9tWHiIWXKA51Uhxsw2y15yWOLZmTQ12U1HdITgaWZic58cx3JScnqGsjVhnfsFLfAD4EDGutu9d4/73AT4G+xKIHtdZ/udF2i+s79Ps/8c2047i4+yku73sOAKvTS3F9h1F41LbktJPQ8Rj77v97FqdGAXCX1lBc30lxqBNPWW1OD8LpwQscfuifATBZrPhrmpOx2Ny+nMUBcO6VBxk4tgsAu8dPoL6D4vpEYZjDTiIWCbP3e58lsjADSuEtrzP2SX0nrpKqnLbP+MXjHH/iGwCYrTb8dW2JWDqwOj05iwPg5LPfZfTsQQAcRcXJfVJU3ZjTwjCyOMfe736GWGQJlKKoMpQ8Zp3+8py2z9DJPZx58YcAWOxOAnVtBOo7CQTbcl64H330q0z2nwHA6S9L7hOjMDTnLI6l2Un2fv+z6FgMZTJTVNVwvX18pTmLA+DKoVfo2/UIABaHi+Jgok8JtmGxOXIWh9aaQw98gdmRfgBcxRWJfdKFtzyY08J9fnyQ/T/6R9AaZTbjr26mONRJoL4Dhze3hbvk5NUkJ6+WzZz849+5a5/W+s6N1stmgfweYBa47wYF8h9qrT+0me16K+r1tl/73bTXj4YXuLznqdXxmS34qpsIBDsJ1G9+RDe6NJ8sHNI12X+KiYvHVy23uooIBNsJBDvx1bZgttg2td2ZoYvMjV7Z1Gf6DzxHZH5m1XJ3aS2B+g4C9Z24S2o2fRCOnNlHLLyU9vrh+SmuHHhh1XKTxYqvpsUoPOo6sLmLNhVHeG6a8QtHN/WZ8QtHmbpyZtVym8dPIGjsE19V06Y7iemr55ifGNrUZy7teZJYeHH5QqXwlNUlirFOXMWVm26foZNvoGOxtNdfmBph8OjOVcvNVju+2tZE4bH5Ed2lmXEmLp3c1GdGzu5ndujiquX2omICQaPj9FZufkR3sv90MkmmQ+s4F19/DB1fsR+VoqiyIdmnOP1lm4pDa83Q8dc29Zm5sSsMn9y9arnZ5sBf1260T10bFrtrU9tdmBxZ87twI0MnXmd+fGDVcqe/PPn98VbUb7pwH794nPDsZNrrx6MRLu5+3LijO8W1wv1a+ziKSjYVRywaZuTU3k19Znqwj7FzB1cttzjcyX3ir2nFbNtcYTg3dpWZwQub+szAkVdYnB5btdxVXGX0+cFOPOXBTfcpo+cOEV2cS3t9yclr2zI5eW6KKwc3yMnBDmyuws3JD/3eO/NbIAMopULAY5kskO3eYh0IdmQkvlSukmoCwQ6KQ924S2s2XH9hcphDP/6HjMdhsljxVTfjD7ZT3LA9rcLj8p6n1jygb5XNVYQ/0XH6a9vSGvE4cP9nWZqZyHgsnrI6/MEOShq24QxUbLj+zNAFjj3y5YzHYbbaKKppMQqyUHdal5L7fvbQpgufdNi9gUQn0UVRdXNaHeeeb/0vYxQ2g5RSeMrrje9PwzYcaYwYTlw8zqlnvpXROCBRGNa24g8aI3XpjEidef57jJ0/lPFYHL7SZPt4Kxs2bB8dj/HG1z+Z8TiUyYS3siHZPnZPYMPPjJzey7mXf5TxWCwOF/7atmQRlE5iO/HE1zZdrKfDGSgnEOwikBjR3UhkYZZ9393wIuemKbOZosrGRPtsT2swYODIK1x8/bGMx2J1evDXtRMIduAPdqR1snnkoS9suhhMx6Zz8sQQh37yjxmP43pONr4/kpMNhZyTf/r/vTutAjnfc5DvUkodAq5iFMvH1lpJKfUx4GMAZrvLuFMvgyxON65AFc5AFTZPCfE0bgKMx3TG4wBwFJXiDFTh9FdjsjjTi0VnPhZltuAsrsbpr8bhr0RrhU4jFq3JeCxWV5ERS6AKi8uf3/bxleMKVOMMVKPM9rRi0fHMx2KyWHEm4rAXVaDjoNP4S7LSPm4fzkAVjkAVFqcvvfbJwj5BKZz+CmO/+KtAWdNrnyx8f8w2R/I4sReVp9U+2ThOAGzuQKJPqcJs8+SvfUymZPs4AlWgLGm2D5lvH7sTV6AGZ6AKu6c0r32K3VOCq9g4Vsw2d97aR5nNxnGSOG7BnLf2uamcnKXvTzInB6okJydcy8muQHVB5uR05XMEuQiIa61nlVIfBL6gtW7ZaJveqkZ9x3/8i7RjWJqdoO+VH65a7gxU4q/rwFfXjrukdtPzweLRCPPjVzf1mZFTuxk7t3/ZMmUy461qMmKpbb+pGwWWZieJzE+l/wEN5176PpGF6WWLrU4vvtp2/HXteKuabmo+2NzYFXQsmvb6CxODXHzt4VXLXcXV+Oo68Ne147qJy0qx8CILk5ub1jB49BUmLy2/3KbMxuiBr64DX23bpi8rASzNjBFZmE17fR2Pcfb57xCLLJ9iYXX58Cf2ibey8abmg82OXAad/mMSZ4YucGXfysuhCndpbfL74wxsfqpHdGmexamRTX3myv5nmRk8t2yZyWKjqKYVf107vpq2m5qjvTg1QnRpPu3149EwZ5779qopFnZPcfKY9VSENj3VQ2vN3MilTX1mqv8UA4dfXLFU4akIGfukth2Hr2zT7RNZmGVpZvXl+Bu59MajzI8tH0k0Wx34atvw13VQVNOy6akeYFyti4UX0l4/ujjH2Re+y8ps7PCVJfs3T/nmp3rEY9FV/76NjPcdZvjErmXLlDLhqWxI9vmbneoBEJ6fJjy7uVHBvld/wtLM8qlEFrsbX20bvrp2fNUtmG9ijvb8+ADxaDjt9bOVk2PRMAtrTPG5kbVzsgVvVeObNifPjw9y6fWHVy13ldQk9klbwefkJz7x3q09gqy1nk75/Qml1JeVUqVa6xtOBjSZrbjLNr4cds3I6b1oDSaTGW9VI77adnx17asuM272REGZLZuKIxYJM9l/Eq3B6nAbHVJdB0VVzZit1+c33cwJi83t29RE/omLRwnPG7vfVVyFr64df13HqoP+ZmJxFVdvav3Bo68a7WO2pJwotK3692w2FpPVvqn2iSzOMnXlDFobl7F8ieKiaMX8pptqH08xNk/6N8KMnN5DNDH/2ChEjWNlZSF6M7G4S2s3tX7/vqfROnEZq7ol8f1pw+pYXohuNhazzbmp9lmaGWdmqA+tjRtHjEK0Y1UhejP7xF5UymbSzsCRl4nHYiilcJcH8dca7bOyEL2p9tnEPtFac3HXw2gNFpuDopoWfLUd+GpbVxWim43F4nBj2cS88vmxq8nL7A5faTKpu8vqMZmvF6I3s08cvs3N5e7f+5TxiCiTCW9FKHHMdqwqRDfd55vMm2qfeCzG5Mv3G+1jdyYK0Q6Kqpux2K5fBr6ZfWJ1erE607+rf2bwPIvTRmp1+suTfb67tG5ZIXozsTgDlZtaP1s5ebO1QSwSZvLyCSMnOz3X2+dNn5Nfue1zcrryViArpSqBIa21Vkq9DTABaQ1Z6Hh6O+TaqFDjz3+Eourld8imu41Mmb56ltKWt+KrbTc6pdSDPsexzI1cIfj2f42vtn35Qa+ze7CtFJ6bwmxz0fQLH00c9CmdUq7bp/8slV3vSYyIVuWtfbTWLEwMUX/Xv8FX27Y8Cea4fRanRnD4yqnoeo8xYp1aiOa4faaunKG6533GiJu/Im/tE4/FCM9MEHrXh/HVtC4vInPcPnOj/XgqG6m984O4y0PLC9Fcf38GzlP7lg8kR6xT5bR9omGiSws0/Ny/o6imdXkhmuN9MjvYh79+G/7adtxly59aketYZgYvUvfWXzZGRFc8tSKXsWy1nFzW+naKatskJycYOdlN8y/+p8RVyjd3Ts7mUyx+ALwXKAWGgE8BVgCt9d1KqY8Dvw1EgQXgD7TWu9be2nW+mjZ913/7SlZiFkIIIYQQt6+n/+x9+Z1iobX+yAbv/zPwz5veLokJ8EIIIYQQQmRBvp9isXlao9P8n/SEEEIIIYTYrMIrkIH4Ju7CF0IIIYQQYjMKskCW+lgIIYQQQmRLwRXIGo2WClkIIYQQQmRJwRXIaIjLHGQhhBBCCJElhVcgk9vnAgohhBBCiDeXgiuQtdbE4zKCLIQQQgghsqPgCmSQEWQhhBBCCJE9BVkgk+P/8lAIIYQQQrx5FF6BrDXEo/mOQgghhBBC3KYKr0AGiMfyHYEQQgghhLhNFWCBrOEWb9LTOs7AwSexeUvxVjRj8xSjlMpQfJuzODXE2NndeCoa8ZQ3YrY58xIHwNjZ3USX5vBUNOEqrkGZzHmJIx6LcvXgEzj9VYn2CeQlDoC5sctMXTqMp6IJd1kIs9WRt1hGTu1Ex+N4KppwBqpQypSXOGKRRQYOPY2rpA5PRRM2ly8vcQDMDJ5lZvAM3kT7mCy2vMUydOxFTBYrnoomHL7KvPUp0cVZBo88h7u8AU95I1anNy9xAEz1H2d+vN/4/pTWYzLnJ+VorRk88ixWhwdPRRP2ovK8tU94boLhE6/gKW/EU9GExe7KSxwAExcOsjQ7lujza/PYPpKT1yI5ebVc5mRVaDe8ecobdc+//6tb3s7kpSMMHH4GAKvLh6e8EW9FE66S2pwfhBdf+yHzY/0AuIpr8FQ04aloxObObScRnp/i/IvfQOs4JqsdT1nIiKWsAbMtt4Xh2NndDJ98FQCbO5DcJ65ADcqUu8JQa03fq99haXoEpUw4i2vwJtsnt53E4vQwfa98BwCzzYmnvCFZeJit9pzGMnziFcbO7QHA7i01kklFE05/ZU4Ldx2Pce7FbxBZmEaZzLhK6pLtY3UW5SwOgLnRy1x6/UcAWOzulPYJ5rxwHzj8DJOXjgDg8JXjKTf2icNXkdM+JR4Nc/aFe4mFF1AmC+6y+kRh2IjV4clZHAAzA2fo3/cIABaHJ3GcNOEqqct5Ydi/9xFmBs8A4PRXJb8/dm9pTtsnujTPuRfuJR6LYDJbcZeFkoVhrgv3lTnZW9GEp7xRcrLk5GUykZN3/fNH92mt79xovYIrkF3FNbr5vb95y9vROsbVQ8+gV8xnNllsuMvq8ZY14C5vwLLO2WMsGmZ+9PItxwEwP3mV8fP7Vi23ufyJJNuIK1C9biexNDtGeHYyI7GMnd/DwuTg8oVK4QpUG4mtvBH7Dc4eZ0cuomO3Pkc8Hgtz9fAzxpzzFGar43qSLQutWxjGwgvMj1+95TgA5kYvMnHp8KrlNk8x3vJGPOUNOP1V63YSi9MjROanMxLL8OmfEZ4dX7ZMmcxGJ56I5UYjujPD5zNyk2s0PM/g0edXLTfbnHjKGvBUNBiF+zqFYWRxlsXJoVuOA2Bm6CxTV06sWm73lhonvuUNOPzrj+guTA4SXZzLSCyDx18iujizbJkymXGX1CXbZ70RXa01s0PnMxJHZGGKoROvrFqeLNzLG3GX1mEyW9f5/DSLUyMZiWXqynFmhs6tWu7wVSS/P/aisnXbZ37iKrGlhVuOQxNn8MjzxCKLy5YrsxV3aR3e8iY85SEsdvean4/HosyNXLzlOACWZkYZOfPaquVWpzd5nNxoRDc8N8nSzFhGYpm4eJC5sZW5TOH0VyaK5QbsnpJ122du7DLxSPiW49gwJ5c34i4Lvely8uj5PSxKTl7mVnPyrq/8xu1ZINucRdpT3pCbv0wlOonyBrzlxtnJtU5iaXac869+NzdxgHH2WBo0io+y0LKzx+HTryVH83LB5k50EmUNuAJVyzqJsy99i8hCZorBjSiTCWegGm8iFpvbn3xvfuIqF1//SU7iADDbHMbZfVkD7tLgsk5i8NiLTCRG83LB7inBUx5KdBLLR3RPPXs38eitJ7N0XC/cG4zCPWVEd2b4PP37HstJHHB9xN2baB+T5XpheOXgk0wPnMlZLI6isuQ+caRc6tfxOCef/uecxaHMFqNwL2vAUx5aNqI72X+CgSPP5iwWi8NjfH/KG3CvGNG9tOdh5kYv5SwWh78Cb5nRPqkjutGlec68cG/O4jBZrLhLgom+NrRsRHes70ByNC8XrM6i5DHrClQva5++n93P4vRwbgKRnLwmycmr3Sgn7/rq/5tWgVyAc5BzSF//0fH48jOnXJ9YaJ14/rNG6/zHsurn+ps5DMP4u3U8vsY+yVkY14JJxBNfY5/kOBRWtk1+2ofUOOI6v+0DiTbK/7Gik/tkK3yP4yk/+TpOuP53p36HVr6Xy1jy3LcZYWyNfjYRzPXjhDzGolN/8n+cSE5eGcbtlZMLbgTZFajWTe/5z7e+oXicq0efQ694IobJbMVdGkycedRjsa09DysWDa9xWermLEwOMH7h4KrlVmdR4kwstOHlnKW5yYzEMt63n4Wp1Ze+XYHq5Jmyze1f93Lb7MhF4hl4DJ+ORbh69PlVB7XJYsNTWm+cLZcG152gHwsvMjdx5ZbjAOMS4uTlo6uW29yBxHESwrXBFItwhs7gR868TnhuYtkypRSuQI0xalwWwubyr/v5meHzGfmPdmLhBQaPv7RqudnqSO4Td2kdZsval9sii3MsTA2u+d5mzQ6dZ2rg1Krl10bSvWUNN5x7uzA5RGRpNiOxDJ18leji8m1dG0n3Jr4/N5piMTOcmSkW0YUZhk7tXLXcYnMlRmpDuIvrlo2kpwovTLM4nakpFieZHelbtdxRVJbsUxwbTLGIhm99igUYV3NWTbEwmXGXBPGWh3CXhrA61p9iMTuamSkW4dkxRs7uXrXc4vDgTYx6uYprbjjFYnE2M1MsJi8dYW68f9Vyp68ieXXhxlMs+olFl249kA1ysresAXdZ8AY5eYm5sdX/jpuxlXLyWN9+FiUnL3OrOXnX1z52e44gmyxWijIwxWKy/3hyXo4x76sB71oHvV77iRlmsyUjcQBMXDxkHHSJy0feRAOnXj66USx2dwB7Bm4YM5LiMGhtXD4qqTMOttL6FTcErH825imtu+U4wLiEeO1pJTa3f/2Dfr32sdoy0j5aa8bO7QatjctH/iq85UYCWzXXd51YHN4SHN6SW45lcWY0Of/YbHMYnVJZCHdJ3fJ5X+vEAeAtC91yHGBcQrx2DNi9xXhKjfZx+iuW36S3TixWuxNrJtonHmP45M5k+7iKa5Mnt7ZlN+mtf8w6fWU4KbvlWObGrxBdMOYfW+yuRNJYoxBdZ58oyFifMnD8peS/11FUmvz+OFY+vWGdWGwOD7YM3EQXj0YYPPaC0T5mC+6S2uSxsrwQXb99XP7KW44DjJPDWKLQtjjceMqMk6dVheg6+8RkMmWsffqvnrre5/vKjX2yViG6Xvu4irC5bv0m1Gh4wZhKo/X1KR3JwaHUub7rt4+7uPqW44CVObkocXK7mZycmdoAtlZOXkrNyaVBo1+RnHxLOTldBVcgZ4LWceYnrlLW+g68ZQ2rD/ocWpwewWxzUr3t/bhLg+vegJALM4PnCNRtS5wdV+X1kTIL08OUt70TT1koIx3NzZqfuIrNXUxJwx24S4I5f1pEqpmhc5Q03IGnrD7nT4tIFYuGCc9PUdH+c4kR69w+LSLV7OglXMXVeMreaZwo5PExb7PDfZQ23omnfI1CNIeiS/PEluap7Pz5RCGa26dFpJoZPm/cYV4Wwl1cs+5NgdmmtWZ29BJlzW8z+pQcPy0iVXh+CoCqrl9YNbc412aGzuGrbjf6/OIaTHnq8yUnr21m8Kzk5BVymZMLboqFp6xe9/zqJ/MdhhBCCCGEKDC7vv7bt+cUC2NyfmEV9UIIIYQQonAUXoGMvuV5JUIIIYQQQqwnP5MYhRBCCCGE2KKkQBZCCCGEECJFAU6xQKZYCCGEEEKIrCnQAllu0hNCCCGEENkhUyyEEEIIIYRIISPIQgghhBBCpCi8Almv/18qCiGEEEIIcasKr0AGQG7SE0IIIYQQ2SFzkIUQQgghhEhRmCPIMsVCCCGEEEJkyZu6QNZaM3x+D3aXH09xLRa7KyPbvRnh+SnG+4/jKa3D5a/CZDLnLZbJgdNEI4t4iuuwu/0opfISh47HGTr3Bk5vGZ6SWsxWR17iAFiYGWV66ByekjpcvgpUHttnvP84WsfwlASxu3x5iyMeizJ0bjcuX6XRPhZb3mKZmxxkbuwyntIgzqIylMrfxbHRi4cwma14SuqwOb15iyMWDTN8bg/u4ho8xTWYzNa8xTIzdpnF6WE8JXU4vGV561MARvr2YbG58ZTUYXW48xZHZGme0QsH8JTU4Q5UYzLnLx1PDZ0nsjCNp6QOu6c4f33+FsrJS/NTTEhOXubNlpOz9o1USn0D+BAwrLXuXuN9BXwB+CAwD/wXrfX+jbecuZv0FGB3+hg4uRMAR1Ep3pI6o/BwB3J6ENqcRSzNTzJx6AQms8VIaiV1Ridhc+YsDgCXv4rzux9g5NxerE4PnpI6vCXBnBeGSimsdg9XT7wCCpxFFXhKavGWBLG5fDltH4e7mMGJnYxfPobJYsOTbJ+anHcSLl8FfXt/yvDZPdhcRXhKgnhKanEVVaBMuSsMTSYzZrONq8dfQplMOH0Vie9PHTZnUc7iAHB5Sxk4+Qpjl45gttrxFNcahUdxTc4Ld2dROZcOPsnQmdexu/3GcVJSl/PC3ZwoiK8cfQFlMuHyVyVjsTk8OYsDwO2rYODkq4xeOITF5sRTUptSGOa2cHd4Sug/+kLi9+LkPnF4S3Pap1htTmKRJfqPPIcym3H7qxLf5TqsOS4M3YEqzp3ayUjffiwON57iWrwlicIwh4X7VsrJdsnJq7zZcrLSWZquoJR6DzAL3LdOgfxB4L9jFMhvB76gtX77Rtt1+6t02899NGNxaq25fOQ54tHwsuUWhzuZ7F2+ylWdRDwWZWluPGNxAMxPDTN8bs/yhYrE2ZoRy1qdRGRxjmh4LqOxjPQdYG7i6rJlJosVd6DGSG7rdBKLs2PoeCxjccRjMS4ffRYdW75Nq9Ob0j6rO4lYNEJ4fiJjcQDMjvUzevHQ8oXKKFiThYdzdScRXpghFlnIaCxDZ3ezMD2ybFmykygN4gnUYLbaV33O+EzmvvPRyBL9R59btcnrhXsdrqLyVYV7LLJEeGEqY3EATA/3Md5/fNkyZTKltE9wzRHd8PwUsehSRmO5eupnhOcmly0zW+2JwjCIO1C9qnDXWrM4s7xNb1VkcY4rx19atdzuCSSS7LXCcHn7RMMLRBZnMhrL5MBpJgfOLFumTGZc/srkd9m6RuG+NDdJPBZetfxW9B97kejS/LJlFrvr+onVGiO6Oh5jcXYso3EszU0ycOpnq5Y7vCXXC3dPyeo+f2me6NJsRmMZu3yUmZGLy5YpswV3oBpvSR3u4to1C/fF2XF0PJqxOCQnr01y8mpr52SV6PNr183Ju77/x/u01ndutP0NC2Sl1MeB72mtN/0vU0qFgMfWKZC/Cryktf5B4vUp4L1a64EbbdPm8GhPSd1mQ7klJrMVd6AKT3EdnpIaLDYXS/NTnN/zUE7jALA6PMlO3OWvxGQyM9y3n7FLh3MbiFIpnUQtdpdx2efsGz8hspjZjnsjJost2Yl7imsxW+3MTw1z8eATOY0DjCsBRmdVh8tXjjKZGTzzOhNXT+Y2EKVwFV3vJK5NxTi183vEY5GchmK22BOjL0YnbrbYmBm7TP/R53MaB4DN5ceb2CfXRnSvHH+Z6ZG+nMZhFO6VyWPF5vSi43FOvnpfTuMAMFsdyT7FU2yM6E4OnmXg1M6cx2L3FOMtNvqUayO6lw4/s6owyDZlujaia8RitbuJhhc589r9OY0DwGJzJeNwJ0Z0x/qPrS7ccsDhvTaiW4vdbUzF6Nv3aMZPHDayZk6em+T83odzGgdITl7LVs/Ju37wP9MqkNO53lcJ7FFK/Ugp9QGVuTH0GuByyuv+xLJVlFIfU0rtVUrtjccyd6aarngswsLMGIuzYyzOTpCtUfd0RJbmEnGMEV3M7BnqpmjN0tyEEcvMWEZHEDYrHg0n41icy2/7hBdnjDhmx4iEMztqvClaszg3njxW8vG9uSYWXUq2z9L8ZN7iAIgsTCdjiYYX8xaHjsdZnB1PHiuZHOHZrFhkMXmchOen8xYHGKP5C7OjLM6OEYtkdlR/M66NFi/OjhojpDp/jxaNhueNOGbGcl7orLQ0N8HCjBFLrk+0U0lOXoPk5DUZOXn8pnJyWlMsEkXxvwR+A7gT+BHwda31uQ0+F2L9EeTHgc9qrXcmXj8P/LHWet+NtuksKtehOz60Yczp04z0HVh1OQduPP8pFlliavh8BuMwkvfKS8TAhvOfFqaHWZjJ7Bn89PB5FqaGVy23Ojx4Stef/zQ1eJZYJjtOrRnu27vqcs61+U/JOa8r5j9FluaZGb1IJi3NjjM5cHrV8o3mP81NDrI0l9lLS1MDp1mcXX05cfmc5PJV7TNx9VRGk72Oxxg+v2fVFIuN5iSHF2aYHe/PWBxgfA+mh1Z/Jzeakzw73k94IbPTCSauHF+z2LzRnGStdcavNMSjYUb6Vt/asdGc5KX5SeYmbngxb9PmJ64yM3pp1fKN5iTPjF4ispTZwmPs0uFVUyzgxnOS47Eok4NnVn3mVkTD84xdXD3SuHxOsjGCnWpxdoz5NfrnWzE7emnNkXqL3ZWcjrPWnOTp4T6ikUyebN5sTl5kajizV4IkJ6/hNsjJ6U6xSGv2vdZaK6UGgUEgCgSAnyilntVa/3E621hDP5A6V6IW2PA6mtlqo7im4yb/ytVmx/uTX0RltuAJVCcvUVhs698oYbbaMxoHYEx8T7A63MmOeqM7aJ1F5TiLyjMWRyw1qSpj+9c6SJvrxnfQ+iqbMxYHwNTQueQX0WSx4i6uSc6Hs9xgIr7V7sp4+1w6/Ezyd5vTm5zXeu2yzXrc/krc/sqMxRFZmr9+eTU536pu2VSK9QSq2zIWB8D4lePJ4thsteEuNm7Y2OjmOJvTm9H20VozPXT9fN3m9ic76o1ujvMU12YsDjDufh86+zqQOpXi2onC+k+1UEpl/JgduXAg+bvZ5khckq7FHajBbFn/5ji7y4/d5c9YHFrHmbhyvdCwe4qT7bPRzXHe0mDG4gCjeLlWHF8vROvwFN/4qRYmsyXj7TOYOE7geiHqKalLTqVYj8NTgsNTkrE44rHosikByakUpXXJqRTrKSpvyFgccCs52ZHx9rly4uXk71aHJxmH5OTCzsnp2rBAVkr9LvB/A6PAvcAfaa0jysg4Z4CbLZAfAT6ulLof4ya9qY3mHyciggzN8tBaMzl4lkBNu7FT/asn/udKeGGa8OIMZY1vWXfif65MDZ7BXVydLHRyfcfuNVrHmR7po7iuK6uPcknHwswoOh6jvPmt6078z5XJgdN4y+qN0aXitW/Gy4V4LMrs6GWKg93G92eNm/FyZX5yAJPZSkXL2/PyFI1UkwOn8FW24CmuzctTNK6JRcPMTw5SUt+DtzS/j1ebGb2M1VlEcW3Xujfj5crkwBn81a2JmyWr8vb4u8jSPIuz45Q27Fj3ZrxcmR7pM4rihjrcxbl/isY1Wyonz08RWZyVnJzizZaT07lJ7y8xplOsGhtXSnVorU+s87kfAO8FSoEh4FOAFUBrfXdi2sY/Ax/AeMzbb2it924UsKekTvd88Pc3Wi0t1/7t+Xwm5zVa6y0RB2ydWKR91rZVYtkqcYDEspXjAIllK8cBWycW6fPXtlViuV3aZ9d3/zAzUyy01n9+g/fWLI4T731kg+1q4Hc2+vuzaSs08jUSy2pbJQ6QWNayVeIAiWUtWyUOkFjWslXigK0Ty1aJAySWtWyVOCA3sRTm/6S3hRpJCCGEEELcXgqzQE7r6XRCCCGEEEJsXuEVyCpzN+kJIYQQQgixkgzFCiGEEEIIkaLwRpBBRpCFEEIIIUTWSIEshBBCCCFEigItkGVmiBBCCCGEyA6pNIUQQgghhEghBbIQQgghhBApCnCKhZIpFkIIIYQQImsKr0BWyE16QgghhBAia96UQ7Faxxk5u5vZ0cvE47G8xrI4M8Zo336WZsfRWuc1lskrJ5i6eopYeDGvccRjUYbPvMHceD86z+0zPznI2IWDhOcm8xoHwPilI0wPniUWWcprHLHIEsNn3mB+cgCt43mNZW7sMuOXDhNemM5rHABjFw4yM3SeeDSS1ziiS3OMnN3NwtRQ3vuUmeE+JvqPEVmczWscWmtGz+9jZuQC8Vg0r7GE56cYPbeHxemRvLfP1MAZJq+cILo0n9c4JCevTXLyarnMyYU3ggy3PIKslBllMnN5/6OYLFbcJUE8ZSE8ZfVYbM4MBZkeu7eYK0eeYeTM61idRXjKQ3jLQrgC1SiTOcexlHDh9Z+AUrj8VXjK6vGUhbC5A6gcjtqbLFZ0PMqlvY9gstrxlCbapzSI2erIWRwADl85Vw4/zfDpXdjc/sRxEsLlr0KZcnt+aXP7ubzvUZTJhNNfhbc8hKesAZvLl9M4zDYH0aVZLu5+CLPNgafUOE7cpUHMFltOY3H4Krhy+BmGTu7E7i3GU9aApyyE01eOyvFULIvDQ/+hp1AmE67iWjxlxnfZ6vTmPI7FmVFGz+/FYncZ7VPegLu4FpPFmtNYHL4Kzu38LoPHX8ZRVJbsZx1F5TntU5RSmG12+g88gTJbcJfUJvqUEFaHO2dxAFhdPmbHLjNybg8WhwfvtT6luAaTObcp2ekr59zPvp/8/Vr/ZveU5Lh9zCiTSXLyqlhW5mRjn0hOzk1OVvk+Q9osd0md7vzg79/yduLRMBde//GqsyGnvzKtTkLHY0SW5m45DoCZwXMMn/7ZsmUmsxV3aRBvWQPuDTqJWGSJWDQzo4pXDz/LwuTAsmU2l+/6QbhBJxFZnMnIWXdsaZ4Lux+A1G0lO4kGPOUh7O7Aup+Px6JEw5kZFZnqP87o+b3LlpmtdtyJwnCjTiIWXiQWC2cklv79j7E0O75smc0dSBRjDTj9lTfsJCILM2huvX0i81Nc2vvTZcuUMuEqrkkeKzcq3OOxCNHwwi3HATB+4QATl44sW2a2Oa8XhiV1Nyzco+H5zIwqas3FPQ8RXTFaaveUJJJsAw5fxfp9itZEFmduPQ5gcXqEKwefXLZMmcy4imvwJr4/Vsf6hXs8GiEayUz7jJx5nemB08uWWezuxAl4A+6SWkzm9Qv36NI88fitt4+Ox7j4xgPEIstH44zCvQFveQi7t+wG7RPP2Ej4/NhlBo69uGyZMltwF9fhLW8wCkP7+oV7LLqUsStJQydeYXbkwrJlVocn8T1u2LBwjyzOofWtjypunJMbsHuK34Q5+RkWJgeXLbuekxtwBaokJ7O5nLzrax/bp7W+c6O/p+AKZJuzSHvKG3Lyd1md3kTDN+AqrsZkut5JLM2Oc37n93ISByijkyg3OnGbe3knMXz6NcZWHCzZYrLYjE6ivAFPaQizbflBePblbxFZyEyS34jN5cdTvnYnMT8xwMU3fpKTOFAKV6DaaJ+yBmxu/7K3B4+/tKqAyxaz1WEUHuUNuEuCmK32Ze+feu7unE0BsHmKE8m+Aae/YtmI7sxwH/37H8tJHKkjup7yBmzOomXvXzn4FNODZ3ISi9nmNE5mEu2TOqKr43FOPvOlnMQBpIzohlYV7pNXTjBw5LmcxKFMiRHdcmP03+rwLHv/0p6HmRu7nJNYLA538iqEu6RuWWEYDc9z5oWv5yQOMEbKvIn8Y/eWLmufsQsHGD65MydxGIVhXXK/WOyuZe/37bqfxemRnMQiOXk1yclr2CAn77rnv6ZVIBfmFIsciSzMMHX1JNHIAjoew1PecP1LkNMbBTULkwPEwgvEwvMEgtuXN3gOY4lHw8wMnTdGRSNL+Ou6Voz+5C6W8PwkU1dOEg0voNF4SoP5CAO0Zn78CtHwArHwAoHg9pxfVr8mFllkevCsEUskjL+2Y8XoQg7bZ3acyfBCYqRY4yquyUcY6HicudFLRMPzRvvUb18+OpfDWGLhBaYHzxCLLBKLRvDVtF0/ccjxzceL0yNEw/NEwwv4TSacvoqUd3MXi45HmR25sOz7syzJ53C/RBfnmB44RSw8j45H8Va2pBQ+OW6fqWFi4UWikUX8dV04vKUp7+awz49FmBnuS/Qpi/iD21ZckcldLJKTV5OcvIYM5eSCK5DNNielLW+/5e1oDeN9+9FrXLqzunx4yxsTZ6k1a16+MNvdGYkDIDw3xfTAqdVvJM+CGvGUN2L3rH35wl0azNjcm5mh8yzNjK5absw7CuGpaMRTVr/u5YtAqJd4Bi4t6Xicsb59yy/nJNjcxXgqGvCWN+JcZ96RxenLWPsszYwxM3Ru1fJrl6w9ZQ14KhrXnVLgLm/EvGLU5WZNXz1NeH5y1XJjZLIBT0UD7tL6dacUlDTdmZGbLOKxKON9+9d8z+4txVPeiLe8AYe/cs1LojZPScbaZ2FyiLnRi6uWK5MZV0niknV547odpLeqFZunOCOxTPYfXzXFAhJTCsqNkS93aXDtKQVKZWyfxCJLTFw8tOZ7Dl9FYuSrEXvR2lMKHP7yjMUyP36F+fErq5arxMikt7wR9xojx9cU1XTgDFRlJJaJi4dXTbEAsDi8xnFS0YiruHbNKQUmqyNj+yS6OMdk/7E13kmMTFY0GlMKvGtP83MWV2csltmRiyxODa1aboxM1htXO8ob1p1S4A92E83A1IYb5WRjZLLhTZqTz7E0M7ZqudnqwF1Wb8QiORlIPyenq/AKZLuLsrZ33/J2Zof7GDu3B+O5yuAMVCeK4kZsN5jndI3F4clIHABXDjzBtdMrk9WeuBScOOjTuEHBXRbCXRa65ThikUXGLxxKxmJzB4yOurwxMfd44y98SdNbbzkOgKkrJzCmyirjprRADd5ELCsvl6zF5vZnrH0u7X6Qa/vEbHMkv3zu0vpVUxjW4q1sxlvZfMtxRBZmGDu/LxmL3VtiHCcVjcbc4zRuSittueuW4wASxbERhzKZcJXUJZOGzVV04w9jFNGZaB+tNRd2/SAZi8XuSiTSRqMQTeOmwaLq9luOA4xOe/Ran0JiCkPimL3R3ONrlDJl7JgdOb0rGYcyW3CXBhPt07BuIZrK4avE4au85Th0PM75V76djMXi9CROnhpxrZjCsB5/XfctxwEwP3GV0bMpfb6vMtk+K6cwrMVktWesfQaPvkCyz7dYjbmTiaJ45RSGtbiKa3EV195yHPFYlMnLx5KxWF1FRvskThTSuSktENpxy3GAMTijU3KyK1CT/C6/aXNyeEFy8hpuNSenq+AKZJQC863dSaq1ZvziAbw1bXgrmvCUN6R10GfD0swYizMjFDe9BU9F07pnx7kwce4wDn8FnoomPBWN2DM0qrZZOh5n4tJhfHWdRqFTHsr5nbLXzI9fJbI0S0nL2/BUNOEMVOX86QjXjF88gKs0aHSQFU05f3rFNfFYlMkrJ/AFu/FWNOEuq0+rEM2GuaHzaK0pbX0HnoqmdUesc2H84oHkd+dGI9bZFgsvMj10Fn+oJ5E01hmxzoHpgVOYbA7K6t6Fp6Jp3RHrXBi/cABvVUvi+9N4w5vgsimyMMPc+GUCjTsSff7aI9a5MHnpMFZPgEDTnXgrGrHl+OkV12itmbh4UHLyChOXjyRzsreiCds6I9bZ9mbNyQV3k56nokn3fOQzt7QNreOgdd4O+lTxWDRvneNKWyUWYwqAyvlj1NayVfYJbJ1YdDwGypS3QifVVtknsHViiceiKJNZ2ieF1hodj22JWKR9VpOcvLatEsvtlpN3feHXb+Ob9G7xS6TI/5fwGtMW6BCu2SqxbIVO8pqtsk9g68Qi7bO2rRLLVokDtk4sCmOqyVawVfYJbJ1YJCevbavE8mbt87dGj7EZSkGeLnELIYQQQojbX+EVyHDLI8hCCCGEEEKspyALZGXK/9wtIYQQQghxeyq4AlkphWkLTBQXQgghhBC3p4IrkIEtcfevEEIIIYS4PRVmgSxTLIQQQgghRJYUXIEsUyyEEEIIIUQ2FVyBDDKCLIQQQgghsqcgC2STPAdZCCGEEEJkSeEVyEpGkIUQQgghRPYUXIGsUFIgCyGEEEKIrCm4AhlF2jfpRZfmGe87hK+2HbsnkOXAbmxm4BzR8AJF1a2Yrba8xjJyejeu4ipcJbV5fWReeH6Kqf5T+GrasLl9eYsDYOrKadBxvJVNmCzWvMWhtWbk1Ot4yutxBqry2j6LUyPMDl/EV9uO1enJWxwAE5eOYbbY8FQ0YDLnr9uKx2KMnn4db1UzDl95XttnfnyAhYlBfLVtWOyuvMUBMN53CKvDg7s8hMmcv//pNB4NM3pmL0U1rTiKSvMWB8DsyCXCs5MU1bRgsTnzGsvY2f3Yi0pwl9ah8niT+5bLyZFFiqpaJCcnhOemmLpyCl9tGzaX5OSsZhql1AeALwBm4F6t9d+seP+9wE+BvsSiB7XWf7nhdtMcQbY63UxfPcPl3Y/hDFTgr23HV9eel07CESjn6AP/AFrjrWrEV9eex04izskn7sbq9OCrbcNX10FRVXPOOwmb28f4+QNcev2nuIqr8NW146/rwFVSk/NOwlFUzLGHP48ymSmqbk62j81VlNM4FIpYZJETj30Jm9uHr7YNf10H3srGnHcSDl8p5176Hpdefxh3aW1ynzgDlTlvH7vHz4nHvozZaqOouiURSxtWR24Ld7PJQnhukuOPfBG7J5A8Zo3CPbeFodNfxrkX7uPirgdwlwcT/VsHDl9ZztvH4nBx+tlvYLE5KKppNdqnpjXnhbvZZmd+/AqX9zyOw1eKrzbRPuVBlCnH7RMo59zz3yYWDeOtCOG71j5FJTmNA8BksXDqqXuw2J3JPt9X3YLZ5shpHFs/J3dg9/hzGodhi+Rkj4/xc/slJycorXV2NqyUGTgN/AugH9gDfERrfTxlnfcCf6i1/lC62/XVtul3/s6X045jfvQKJ5+8e9kyi8ONr8YoPIpqWjBb7Wlv7xqtNToe29RnLu95nJGTry9b5gxU4q/ruN5J3MRBqOMxNtOOOhbl6EP/RGRhOrlMmSx4qxrx13Xgr2vH5vZvOg6AeCy6qfWnr57l7PPfXrbM6ixKFIbteKubMVs230ncTPtc2PkTxvsOLVvmKqlJto+ruDon7RMLL3L0wX8kFllMLjOZrYlOogN/bTtWl3fTccDm22e87xAXdv5k2TKb258oPNpvunC/mfY5+/x3mL56OmWJwl1Wl0yyN1u4b7Z9IgszHH3wH5fFb7LY8dW0GIVHbRtWh3vzcdzEPhk5+TqX9zy+bJndW4I/kUw8FaGbGnHX8Thaxzf1mZNPfJX5sf7rC5QJT3l9sk9x+Mo2HQds/phdmh7l2E+/CFxvU7PNia+mNdnn30zhfjPtM3D4RQYOvbBsmcNXhq/W2Cc3W7hvun205tgjX2RpejS5SJnMeCsajD6lrg279+YK9822z5bKybsfZ+SU5ORU01fPcPb5+5YtszqL8NUlBmuqmgo+Jz/xiffu01rfudF62SyQ7wL+Qmv9rxKvPwmgtf5syjrvZZMFst1brP11HZmL02SmqLIBf7ADf7Az7RHdhclhjjz4uYzFAWB1uBNnbMboS7qdRP++p7l66MWMxuIqqcJf24E/2IG7NP3LPod+9DcszU5mLA6T2UJRdXOik2hLu5OYGbrAicfv3njFTbC5vEYcQePsPt3C8MKuhxlecWJ0q9yltcYxW9eBqzj9qRj7vvMpYpGljMVxbUTXnzhurc70CveJS8c589x9G6+4CXaPP9k+3srGtAvDsy9+n/G+wxmLQylwl9XjD3YQqOvA4U9vKoaOx9jzrT/NWBxgjKheKwz9te1YHOkVhqNn9nH+1R9nNBZHUUnie9yBp6I+7fY59dS9TF09m7E4lFJ4KxuSsTh86U3FiCzMcuAH/ztjcQBY7C58tUb7+Gpb056KMXj0VS7tfnzjFTfB6S9P9imesmDaI7rHfvpF5sauZiyOm8/JQxx58J8yFgdcz8mBTRbub56c3J729MitlJMf+6P3pFUgZ3OKRQ1wOeV1P/D2Nda7Syl1CLiKUSwfW7mCUupjwMfA6FAyOtKvY0wPnGVm+ALTV89Q3fMLeCsbNvyYyWzKbBxAdGmOsbP7mL56huKGbdT0vi+tuZ/KpDIey8L4AAvjA0wPnKG87W2Utb41rQ5TqczGouNRpvpPMjN4numrp6nufR+estoNP5eN9okszDByejdTV09T0thDdc8vYrFvnNCy0T7zY/3Mj19h+uoZKtrfQUnzjrQ6TKXIaCzxaJjJS8eYGTjL9MBZane8H2egYsPPmUyZb5/w3CTDJ19j+uppSpp2ULX959NKaNlon7mRi8yPXmb6ymkqu99NoL5rw/bRSmc8jnhkiYkLR5gZOMvM4Dlqdrwvrbm52dgnSzNjDB3fyfTV05S2vIXKrnenldAyH4tmZvA8s8MXmb56mspt78Ff27bhp7LRp8TC84yfP8j01bMUD3ZRveN9aV3iz0b7LE4NM3hkmOkrZyhrvZPyjnekdRKT6T7/pnNyFvoUycmrLcvJA2eo7vnFgsvJ6cpmgbzWrlg5XL0fqNdazyqlPgg8DLSs+pDW9wD3ALhLa3RF29vSDiIejzF6dv+a71mdXgLBdgLBTnw1zZu6rGOzO9lMHADzk0PMDl9a8z13STWB+k4CwU7cpZub7+Mtq9t0LBOXjhNZnFu13GS24KttJZAY/bK5Nzffp7S5l+jC6u2uJxZZYmyd0Tub20cg2EmgvgNf1eYm6jtc3k3vk7mxK+uOhHjKg8Y+CXbiKt7cpXxfZT1qk5eWxvoOrznSa7LY8Ne2GsdK3eZvnitvfQvxaPqX3CJLc0xcPL7me3ZvMYH6ToqDHXgrN3fznLMosOn2mRm+yMLk8JrveSsbCAQ7KK7v3PQc3EBNM9ZNXtIdObt/zcuFZpsDf10bxfVd+Gs3NwdXY9r0PgnPTzHZf3rN9xy+UgLBTorrO/FW1G/qUr7LX7bpWKYHz7M4PbZquVImiqoaCdQnRtTTHLG9JlDXjmMT92poHWfkzL4137M4XATqEn1+bSuWTczB1VbrpvfJ4swY0wPn13zPVVxp9G/BDjxlm5uD6ymp2nQsk1dOE56bWrVcmcz4qpuN9gl2bPq+mJKGbjylNWmvn7Wc7HBJTl6D5OSbl9cpFmt85gJwp9Z6dL11ioMd+v2f+GbacQwc28W5Vx9MvnaX1lBcbyQNT1nu7hjVWnPkp19ievACYMwp9dc2U5z4Ato9ubtjdGFqlP33/11yDpvN7aM42EFxqBN/TUtObwa7vP85Lu5+KvnaWx409kl9B+6Sm5tfdDN0PM6BH/8j8xNDgDF1wF/bmmifDmw3Oef3ZsyOXObgA19IvrZ7A5TUdxmdUnVTTp/icH7XI1w9/ErilaKost74/oS6cKY5dSAT4rEo+77/NyzNTQJgsTkThWgngeDNzfm9WZP9pzn62D3J105fabJP8Vbe3Jzfm3X6xfsZPrUXuF6IFoeMkxan/+bm/N6M6NICe7//WaJL84BxpS/Zp9S2ZnRUZyMjZw9y6rnvJl+7AhXJY9Zbnv7UgUw4/uQ3GE+cYBqFaFMilk4c3uKcxRGen2bv9z5LPBYBwOr0JI9Zf+3Nzfm9WZKTV9tSOXnfc1zcszonF9d34irJ3ZOVspmTf/zxu/I+xWIP0KKUagCuAL8O/IfUFZRSlcCQ1lorpd4GmIDVQxDLPgRmS3odXDwWZeDoq5SEjA6pJNSZpztUYeLyaZZmJ6jquouS0LVOKT+Plrly8Hm85bWJfdKFuzR3hWiqaHiRoROvU9rYTUmoi+L6zZ8dZ8rwmUPEY2Fqtr870Sk15+1xYv0HnsdX1ZA8ZrN1dryR8Nw0o+cOUN7Smyi68ve4t6ETezBZLdT2/jwloU6KqvLzuDetNf0Hnsdf02Qcs6FOXIHynMcBRlKdvHyKira3JNsnl4VoqisHd2F3F1HV9Q6jfSpDeXmcmI7HuXroRQLB1kSf0onTl/unRgDMDF9mduQylR1vpSTUhb9ucyPWmXT18Mu4isuNXFjfibcimJc+ZSvm5Oruu1JOFN7kOXlpgaGTr1PauC1xrLy5c3LWRpABEtMmPo/xmLdvaK3/Win1WwBa67uVUh8HfhuIAgvAH2itd91omyWhTv1Lf5bezT3XLlHn8ux4PZGFWSwOd16fcXhNeH4Wmyu/z7UFiC4tosxmzHl87vA14flZrM78t4/WmujiXN6fOwxGZ2myWPP63OFrtkr7xGNRYpEw1jRvdsumyOIcZpsDU44fX7aWrdKnxKIRdCyGxZ6fQjRVZHEOi82Z1+cOX7Nl2kdy8pq2Svu8WXLy9/7rW/P7FItsKQl16l/+88ze/S6EEEIIIW5/3/l/0iuQ8z80tElKgcWc/zNyIYQQQghxeyrIAjndOchCCCGEEEJsVsEVyKAwpflfTQshhBBCCLFZBVcgyxQLIYQQQgiRTYVXIAMWs4wgCyGEEEKI7Ci8AlkpbJb8P9ZICCGEEELcngquQEYhc5CFEEIIIUTWFFyBrACrFMhCCCGEECJLCq9AVgqLPOZNCCGEEEJkSeEVyIB5C/zXkEIIIYQQ4vZUeAWyPOZNCCGEEEJkUcEVyKCYGrxMJLxIebAZkzm/T7S4eGw/gcpaikrK8xrH4vwsA+dOUNPSjc3hzGssw5fOobWmrK4Rkym/JzN9R/ZQVteIx1+S1zjmpycZ7e+jqrkTq82e11gG+05httoorQmh8ng1RmvN+UNvUNXYjqvIn7c4AGbGR5gcGaCqsR2L1ZbXWK6ePY7DU0Sgoiav7ROLRblwZC/VzZ04PUV5iwNgcvgq89OTVDS0YjbnN21dPnkIb3EZvrKqvLZPNLzEpRMHqWntxu505y0OgLErFyUnr7DVcjJAaW2D5ORNKLgCWSkoCgT44d99ArPZSm1bN8GOHmpburG7ct9JRBdnefAfP4m/rIpgRw/Bjh7Kg0057yQ8Hg+n3niRV390L1WNrQTbe6hr76GopCyncQB4i4r48T/+KTani7q27QQ7eqhp6cJmd+Q8lvmJEX7yg7sprqxNtk9ZXWPOE5vX5+O5bz3My/d/laqmdiOW9h48/uKcxgHgdDp56IufxlXkp6490T5NHVhyXrgrpob6efVHX6O0NkSw3WifkupgztunyB/g6a//A4tz09Q0dxLsML4/Lq8vp3GAcYXskS9+Co+/JNk+VY1tOS/cLSYLw30n2fnjeykLNhJs206wo5dAZe4Ld1+ghCfv+VvisSi1rUafX9e2DYfbm9M4AIhHefjz/4uikvLEcbKdylArZktu06nFYefS0b28+uN7qQi1JL8//rLKnMYBWysnRxZmJCevjMVbxE8+Jzl5s5TWOt8xbEqwfbv+xL2P8voTP+bgy08llyuToirUSn1HD/WdvfhLK3ISTywa5f5/+BNmJsaSy+wuN8G2bdR39FDX2o3d6cpJLFfOneTRe/5+2bJAeRX1nb2EOnopD+ZuRPeln3yLk3teTb42mc1UN7ZT37GdUGcv3kBpTuKILC3y3b/5Y5bm55LLnG4vwY7tRvu0dGHNUSdx/sg+nvnul5ctK62uI9jeQ31HD+V1DTnrJJ6+70v0HduffG22Wqlt6qC+M1G4+wI5iWNhdprv/c0niEbCyWXuIj/Bjh5CHT3UNHfkrDA8sfsVXn7g28uWldWGqO/oIdTZS0lVXc7a56d3/y0DfaeTr602O7UtXcZx2749Z4X79PgI9//9nxCPx5PLvIESo5/t6KG6sQ2zxZqTWA68+ARvPPXA9QVKURlsSvT5PQTKq3PSPlprfvz5v2B8sD+5zOZwUNfaTX1HD8H27ThcnqzHATB69RI/+cKnly3zlZZT39FLfft2KkMtOSvct35O3k6os4falq43aU7+Jif37Ey+vp6Tewh19rypcvLHfy60T2t950brFVyB7Cst16133EU8GiUSXlp3PX9ZJaFOI7FVhTJ/2WdieJAH/vmvAYgsLRGPRddcz2Q2U9XQQqizl4bOHnxZ6CT2PvcYB195GmDZQbeSw+VOFqjBtuxc9vnh5z7FzOQ4sWiEaDi87nrFlTU0dPZS37mdimBTxjuJwYvneOzrnweML2Q8FltzPZPZQm1LB6Fk4Z75yz4/e/SHnNizE7RmaWF+3fVcXh/1Hdtp6OqltrkjK53Eff/7DwmHl4hFwkQjkXXXK6upp77T2CfltZmfinHx5BGe/f49AIQXF9ApBVgqi9VKbUsnoc5eQh09uH3+jMYB8MKPvsn5o/vR8TjhxYV11/P4i4326eylpjnzUzHisRjf+PTvA9ywfZRSlNc1GPukq4eSytqMt8+ZA2/w8kPfBSC8MM96ecJqsxNs6ybU2UN9x/asTMV48lv/zJXzp4jHYkSWFtddr6i41NgnndcK98wWhguz03zv7/4UMKY3xKJr9/lKKSpDzcn8EyjP/FSMI7te4I2nHgJu3Ofbna5E+/QSbN+GIwsjug9/5e8YHbgsOTlFIefkUGdPVgr3rZSTf+uu+rQK5IKbYqHjmkiiyDDdoNOZHh3i8CvPcPRnz9O8/U7e9aF/hzeDl7MtSiXjuGEs8TgD504xcO4Uh156ijt+4QP0vOv9Ge28dTSS1j4JL8xzZv/rnNn/OhXBRn7uV/491Y2tGYsDILK4kFYsk0NXOTB0lcOvPkvbHe/gnb/8YVwZTK5mSLN9YvSfOkr/qaMcfPFJ3vovfoWut/98RjuHdNtncXaaU3t2cmrvTmoa23j3r/x7KuoaMhYHGMXotSLjRrGMXb3E2NVLHH7lWbre9nO84wP/JqOjLiYdT+4TBesWEPFolEsnDnPpxGEOlpTxjn/5a7S95a6MFhzxSDit9pmfmuDE6y9z4o2XqW/bxs/961+nuKI6c3Fond4xC4xc7mPkch+HXn6Kbe/8Bd72/l/J7AlVPJZW+8QiYfqO7qfv6H4CFVXc9Uv/lqbuOzLaPrHwUlrtMzsxxtGfPc+x116ksauXd33o32V01DJiMqXdPkMXzjJ04SyHXnqK3vf8S+547wcye0IVi6a1TyKLC5w7tIdzh/ZQWh3kXb/8Yerbt2UuDiC6tLhFcnK6fb7k5LWk5uT2t9zFXR/8t7dtTk5XwRXIdrud5u4e5qYmGeq/uOY6Lo+Xxu5emjp7qW/Pzjwbr9tBc3cPAIOX+pifmV5zvfLaIE1dvTR191KRpUvoFdVVNHf3EI/FuHDy6JrrWKxWgq2dNHX10tjVi9efnUvoDe2dzM9MMzMxxsjV/jXX8fgDNHb20NTdS31rZ1YuofuKPMn2udp3lsV1zuIr6xuN9unqoawmO3Nfq2prWejuIRoOc+nMiTXXsdrthNq6aerupaFzO+4sXUJv6uwmGokwMTLExPDgmusUFZfQ3L2Dxq5eapvasFgzfwnd7/cl2+fy2ZNEllaPPCmlqAo10dTdS3P3HRRXZOemqOpgEB1dIry4QP+502uuY3M4aejoprGrl8bOHpzuzF9Cj5tNyX0yNnSVqdGRNdcLlFXQ1G18j2sasnMJvaS0JBnLxVPH1hwtVSYTdU1tNHYZ3+VAlua+1jY0YrdbWZibZeDCuTXXcbjdRp/S1Ut9ezeObFxCd1iT+2TkymVmJsfXXK2ksoam7l6aunqpCmX+6hhAWVk5zd09aK25cOLImiP8ZouZuuZ2Grt20NTdi684O5fQ65tb8AX8WyAnOyUnr+FaTp4eH2V04Mqa67zZcnK6Cm6KRVNXj/67HzzJT7/1FY7vez25vLy6jubuXpq39VJd35SznbowP8dXPvU/WEpcmjVbrITaOmnu6qG5ewdFgdzdhHV098949Dv3JF97fH6au3pp7u4l1Jbbpyf88Mv/wPkTR5Kvq4INRvt091JRW5+z9pmeGOfuT/8RscTlNqvNRqiti5Ztd9DUtR1PDp+esOelZ3juge8lXxcFSpL7JNjSjjVHc2211nz7Hz7NwKU+wChEq0NNNHf30tK9g9Kq3N2ENTp4hXs/86fJBG9zOGjs2E5zVw9NXT24PLm7CeuVxx/kZ0/9NPk6UFaRbJ+6xtzdhBWLxbj3rz/J+MgQkChEG1uTsZRUVOUkDoArfWe573N/lXztcLlp7NxOS3cvjR3bcbhyM5cT4Okf3cf+V59Pvi6trDb2SVcv1Q3NmHN0E1YkEuYrf/GHzE1PAWA2W6hrbqOl2yi6AqW5e3rC2aMH+fFX/yn52uUpoqlrO83dvTS0d2PP4dMTtkxOnpvlK3/xh6tzcuJYebPm5Pu/9Pf0pRTrRk7eQcu2XspzWIhuhZz84Z6a23OKhQmYGh7g7JH9tHT10LptB81dPfhLcjPBfKVdLz+DzWaj64630br9DhraOvNyZ2gsFuP1Zx6lOhiiddsOWrbtoKouP4/x6j9/hv5zp2jbvsOIpbsXb45u+lppz/OP4/X5aOneQeu2XupbO3JWiKaKRMLsfv4J6hqak+1TXp35uaPpOHPkIOPDA3TueGvy++P25ucxXq8//SiBkjJatvXSum0H9c3tOX8aABgnugd3vkCopZ2W7l5aunsprczNTV8rHd73Gotzs2y78y5at/XS2LkdVxZGrNPx2lM/payiipZtxne5trElZ4VoqumJMY7t+RlN7V00dxvHSnFZbm76WunAKy9DPE7vO95NS/cOmjpydyN2Kq01rz39Uyprg8lcWJ2lEeuNjAxc2To5+ZVnsdvtdL/l7bRs2yE5Gbh87jRXzp+mveeOZP/2Zs/J6Si4EeTW7h79l/d8H5fbk5eDfqWRwauUZunS72YsLswTXlzM6dnxeibHRnB7fVht+T/oRwau5K3QSTU/N0s8FsNTlPvHhq00PjxEUaA4K1MnNkNrzdjwICXllXlvn9npKUxmc94K0VRjw4P4i0vzcqKQKhaNMjk+Skl57h8bttLM5ARWmy0rN5lt1ujQAMVlFXl/nmw4vMT8zDT+PDw2bKXJ8VHJyStITl7bVsjJv9RReXs+xaKtu1d/5cHn8h2GEEIIIYQoMO9rK7s9p1goBVbT1nugtBBCCCGEuD0UXoGMwmrO76UtIYQQQghx+yq8AlmBRUmBLIQQQgghsqPwCmQUNhlBFkIIIYQQWVJ4BbICi8xBFkIIIYQQWVJwBTKA2SwFshBCCCGEyI6CK5AVYM7z8w2FEEIIIcTtq+AKZJSMIAshhBBCiOwpuAJZoWQEWQghhBBCZE3hFcgygiyEEEIIIbKo4ApkkKdYCCGEEEKI7Cm4AlkpMJvkOchCCCGEECI7slogK6U+AHwBMAP3aq3/ZsX7KvH+B4F54L9orfffcJuARepjIYQQQgiRJVkrkJVSZuBLwL8A+oE9SqlHtNbHU1b7JaAl8fN24CuJP2+0XcwyxUIIIYQQQmRJNkeQ3wac1VqfB1BK3Q/8KpBaIP8qcJ/WWgOvK6X8SqkqrfXAehs9sH8fRc6CmxkihBBCCCEKRDYnK9QAl1Ne9yeWbXYdlFIfU0rtVUrtzXiUQgghhBBCpMjmUOxa8yD0TayD1voe4B6AYDCoz5w5g91uv/UIb1IkEuGee+6hvr6eD33oQ3mLA+DUqVM8+eSTfOhDH6K5uTmvsTz88MMMDAzwsY99DLPZnLc4FhYW+NrXvkZnZyfvf//78xYHwMGDB3nppZf48Ic/TG1tbV5juf/++5mbm+M3f/M3UXl8lvjU1BTf/OY3ufPOO3n3u9+dtzgA3njjDV577TU++tGPUlpamtdYvv3tb2M2m/noRz+a1zgGBwe5//77efe7382dd96Z11hefvllDh48yG/+5m/i9XrzFofWmq997WsUFxfz4Q9/OG9xAFy4cIGHH36Y97///XR3d+c1lqeeeoozZ87wsY99THJywsmTJ3nqqackJ6fYajl5x44daa2rjNkNmaeUugv4C631v0q8/iSA1vqzKet8FXhJa/2DxOtTwHtvNMXizjvv1Hv3ykCyEEIIIYTYHKXUPq31hmf/2ZxisQdoUUo1KKVswK8Dj6xY5xHgPyvDO4CpGxXHQgghhBBCZFvWplhoraNKqY8DT2M85u0bWutjSqnfSrx/N/AExiPezmI85u03shWPEEIIIYQQ6cjq4yC01k9gFMGpy+5O+V0Dv5PNGIQQQgghhNgM+S83hBBCCCGESCEFshBCCCGEECmkQBZCCCGEECKFFMhCCCGEEEKkkAJZCCGEEEKIFFIgCyGEEEIIkUIKZCGEEEIIIVJIgSyEEEIIIUQKKZCFEEIIIYRIIQWyEEIIIYQQKaRAFkIIIYQQIoUUyEIIIYQQQqSQAlkIIYQQQogUUiALIYQQQgiRQgpkIYQQQgghUkiBLIQQQgghRAopkIUQQgghhEghBbIQQgghhBAppEAWQgghhBAihRTIQgghhBBCpFBa63zHsClKqRngVL7jEJtWCozmOwixadJuhUfarDBJuxUmabfC06a19m60kiUXkWTYKa31nfkOQmyOUmqvtFvhkXYrPNJmhUnarTBJuxUepdTedNaTKRZCCCGEEEKkkAJZCCGEEEKIFIVYIN+T7wDETZF2K0zSboVH2qwwSbsVJmm3wpNWmxXcTXpCCCGEEEJkUyGOIAshhBBCCJE1UiALIYQQQgiRoqAKZKXUB5RSp5RSZ5VS/zPf8YiNKaW+oZQaVkodzXcsIj1KqTql1ItKqRNKqWNKqd/Ld0xiY0oph1Jqt1LqUKLdPp3vmER6lFJmpdQBpdRj+Y5FpEcpdUEpdUQpdTDdx4aJ/FNK+ZVSP1FKnUzkuLvWXbdQ5iArpczAaeBfAP3AHuAjWuvjeQ1M3JBS6j3ALHCf1ro73/GIjSmlqoAqrfV+pZQX2Af8mnzXtjallALcWutZpZQV2An8ntb69TyHJjaglPoD4E6gSGv9oXzHIzamlLoA3Km1lv8kpIAopb4NvKq1vlcpZQNcWuvJtdYtpBHktwFntdbntdZh4H7gV/Mck9iA1voVYDzfcYj0aa0HtNb7E7/PACeAmvxGJTaiDbOJl9bET2GMgLyJKaVqgV8G7s13LELczpRSRcB7gK8DaK3D6xXHUFgFcg1wOeV1P5K0hcgqpVQI2AG8kedQRBoSl+oPAsPAs1prabet7/PAHwPxPMchNkcDzyil9imlPpbvYERaGoER4JuJKU33KqXc661cSAWyWmOZjI4IkSVKKQ/wAPD7WuvpfMcjNqa1jmmte4Fa4G1KKZnWtIUppT4EDGut9+U7FrFp79Ja3wH8EvA7iemEYmuzAHcAX9Fa7wDmgHXvZyukArkfqEt5XQtczVMsQtzWEnNYHwC+p7V+MN/xiM1JXDZ8CfhAfiMRG3gX8K8T81nvB35RKfXd/IYk0qG1vpr4cxh4CGMaqNja+oH+lCtrP8EomNdUSAXyHqBFKdWQmFj968AjeY5JiNtO4mavrwMntNafy3c8Ij1KqTKllD/xuxN4P3Ayr0GJG9Jaf1JrXau1DmHktBe01h/Nc1hiA0opd+IGZhKX6P8lIE9q2uK01oPAZaVUW2LR+4B1bz635CSqDNBaR5VSHweeBszAN7TWx/IcltiAUuoHwHuBUqVUP/AprfXX8xuV2MC7gP8EHEnMZwX4E631E/kLSaShCvh24ok/JuBHWmt5bJgQmVcBPGSMJWABvq+1fiq/IYk0/Xfge4mB1vPAb6y3YsE85k0IIYQQQohcKKQpFkIIIYQQQmSdFMhCCCGEEEKkkAJZCCGEEEKIFFIgCyGEEEIIkUIKZCGEEEIIIVJIgSyEEEIIIUQKKZCFEEIIIYRIIQWyEELcBpRSb1VKHVZKORL/09cxpVR3vuMSQohCJP9RiBBC3CaUUv8bcABOoF9r/dk8hySEEAVJCmQhhLhNJP771D3AIvBOrXUszyEJIURBkikWQghx+ygGPIAXYyRZCCHETZARZCGEuE0opR4B7gcagCqt9cfzHJIQQhQkS74DEEIIceuUUv8ZiGqtv6+UMgO7lFK/qLV+Id+xCSFEoZERZCGEEEIIIVLIHGQhhBBCCCFSSIEshBBCCCFECimQhRBCCCGESCEFshBCCCGEECmkQBZCCCGEECKFFMhCCCGEEEKkkAJZCCGEEEKIFP9/iTkzB2REL8IAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "nq=1 #separacion entre vectores en quiver plot\n", "Nx=20\n", "Ny=9\n", "Lx=6.0\n", "Ly=2.0\n", "xp = np.linspace(0, Lx, Nx)\n", "yp = np.linspace(0, Ly, Ny)\n", "X, Y = np.meshgrid(xp, yp)\n", "\n", "def velU(y):\n", " return 1-(y-1)**2\n", "\n", "\n", "t=0.0\n", "U = velU(Y)\n", "V = np.zeros(np.shape(X))\n", "\n", "ypos=1.0\n", "XP=[0,ypos]\n", "\n", "fig, (ax) = plt.subplots(figsize=(10, 4))\n", "ax.contourf(X,Y,velU(Y),256,cmap=\"Blues\",alpha=0.8)\n", "Q = ax.quiver(X, Y, U, V,alpha=0.7,scale=20,width=0.004)\n", "\n", "ax.set_xlabel(\"x\")\n", "ax.set_ylabel(\"y\")\n", "ax.set_ylim([-0.15*Ly, 1.15*Ly])\n", "ax.set_xlim([0, Lx])\n", "ax.plot([0,Lx],[0, 0], 'k-',linewidth=2)\n", "ax.plot([0,Lx],[Ly, Ly], 'k-',linewidth=2)\n", "\n", "ax.set_title(\"Campo de velocidades\")\n", "\n", "plt.tight_layout()\n", "glue(\"rot0_fig\", fig, display=False)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "En la figura anterior se observa que la velocidad es máxima en el centro del dominio ($y=1$ m) y es nula junto a las placas. El gradiente transversal de velocidad involucra la rotación del fluido. Para ello, vamos a soltar unos objetos en forma de *molinillo* en distintos puntos del dominio y vamos a ver cómo se mueven." ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "tags": [ "hide-cell" ] }, "outputs": [ { "data": { "application/papermill.record/image/png": "iVBORw0KGgoAAAANSUhEUgAAAjgAAAEYCAYAAABRMYxdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAABWYElEQVR4nO3deZxN9R/H8ddnxm5G2bPvLVKW0KKxZGaYYWwJ2SI1ZQmlJEqylgpFZSkUsmTfhllsSbJUqCxJYlAoMUOF8f39cQ6/a8wwmDvn3juf5+Mxj7n3fM85933v3POdzz3n3O8RYwxKKaWUUr7Ez+kASimllFLpTQscpZRSSvkcLXCUUkop5XO0wFFKKaWUz9ECRymllFI+RwscpZRSSvkcLXAyEREpLCLrRCRBRN4Vkf4i8rHdVlpEjIhkSeO6porIUPcmvuIxB4nI9JtcRzsRib5K+xoReeoG153hr4nK3ERkv4gE27cvbc/KWdfbV9l9b3l3ZkrhMS+9d25iHVEi8kQqbdf1PyWF5W/6NbmhB1YZR0T2A4WBJOA0sBx4zhiTeAOriwSOA3lMJh0AyRgzA5jhdA7l+0SkDfA8UAlr2/0V+BT4yB3bnzFmeHqsR0RKY2XNaow5n9HLK+9hjAlzOsPV6B4c7xBhjAkAqgE1gFevZ2Gx+AGlgJ8ya3GjVEYRkT7Ae8DbwG1YH1KeBWoB2VJZxj/DAjrsRj/VZyRvyKiuTgscL2KMOQREYX0iREQeEJENIvK3iGwTkboX57UPtQwTka+AM8BnwBNAXxFJFJHg69mNKiJVReRb+/DWbCBHsvbGIvK9nWWDiNybynrGi8g7yaYtEpEX7NtFRWSeiBwTkV9FpOdVMjURkR/tx1wjIne5tJUQkfn2ev4UkXH29E4ist5lvhAR2SUiJ+15xKWtnIisspc/LiIzROTW9HhNRORlETlkL7tbROqn9jyVdxGRW4DBQDdjzFxjTIKxfGeMaWeM+c+eb6qIfCQiy0XkNFBPRBqJyHcickpEDorIoGTr7iAiv9nvyQHJ2i7bntPQPwwRka/s92C0iBSwm9fZv/+2+4oH7WWeFJGdInJCRFaKSKlUXoIrlre3u69EZLSI/AUMSsP2tV9EXhSR7fb2OVtEcthtBURkqf3c/hKRL0XET0T6icjcZK/LeyLy/sW/jYh8IiJH7O1vqNiFZSoZy4vIWvvxj9vbuet6D9p/q60iEpTK63EFEXnJznBYRJ5M1pZdRN4RkQMi8odYfWbOFNaR3X7+lVymFRSRf0SkkH0/rf1ydhEZY+c5bN/O7tLe1F7PKRH5RUQa2tMvHdIXEX8793ER2Qc0SvYYne33T4KI7BORZ9L6mtwwY4z+ePAPsB8Itm+XAH4EhgDFgD+BcKxCNcS+X9Cedw1wALgb61BkVmAqMNRl3YOA6fbt0oABsqSQIRvwG9bu9qxAS+DcxXVh7Vk6CtwP+GMVUvuB7CmsqzZwEBD7fl7gH6Co/Ty2AgPtxywL7AMapJD3dqzd/iF2pr7AXns5f2AbMBrIjVV4PGwv1wlYb98uAJyyn09W+/mdB56y28vb688OFMTquMfc7GsC3GG/BkVdXvtyTr/X9CfdttmG9vvoim0p2XxTgZNYe3X87PdpXeAe+/69wB9AM3v+ikCivQ1lB0bZj3Oxf3DdPtLSP/xib0c57ftvurwfL+sLgGb29nUXVn/yKrAhleeV0vKd7KzP2cvnvNr2ZS+zH9iE1TfkA3YCz9ptI4Dx9raXFQjC+nBSCusDXR57Pn/gCPCAfX8hMAGrXyhkr/+Zq2ScCQxw+fs87JKvPZDfnrcP8DuQI/nfIpX3xx9YH1RzA5/br1d5u30MsNh+zoHAEmBEKuuaDAxzud8dWGHfvmq/zOX/WwYDG+3XpCCwARhit9XEep+G2K9DMeBOl/fRxf7yWWAX1v+pfMBq1/cBVsFTzv471bH/TtXS8prc8LbodGegP9f4A1lvwkTgb6x/qB/aG97LwLRk864EnnB54w1O1j6VGytwagOHsYsSe9oG/v/P/KOLG4NL+26gTgrrEqzCq7Z9/2lglX37fuBAsvlfAaakkPc1YI7LfH7AIax/EA8Cx1J5Lp34f4HTEdiYLFv8xQ02hWWbAd/d7GuC1bEfBYKxzlNw/H2mP+n3g/WP7/dk0zbY2/A/Lu/9qcBn11jXGGC0fXsgMMulLTdwlpQLnLT0D6+6tHXj//8Yr+gLsPYcd3G574f1D6pUCplTWr5T8m07heUubV/2/f1Ae5f7I4Hx9u3BwCJS+AcIrAc62rdDgF/s24WB/4CcLvM+DqxOLSPWnu+JQPE0/N1PAJWT/y1SmG8ydjFp37/dfr3KY/VBp3H5wIPVn/2ayrqCgX0u979yee5X7Ze5vMD5BQh3ma8BsN++PeHiezCFx1/D/wucVdgFqH0/NPn7INmyC4Fe13pNrmfbS/6jh6i8QzNjzK3GmFLGmG7GmH+wPqk8Zu96/FtE/gYeBoq4LHcwnR6/KHDI2O88228ut0sBfZJlKWEvdxl7HbOwOhaAtvz/pN9SQNFk6+mP1TGllOlSBmPMBaznW8x+7N/MtU9wLIrLa2Rnu3RfRAqJyCx7V/YpYDrWXp+Ly97Qa2KM2Qv0xuoEj9qPccVrpbzWn0ABcTmHwxjzkDHmVrvNtd+9bBsVkftFZLVYh1ZPYn0qdn3Pub5fT9vrS0la+offXW6fAQKu8pxKAe+5rOsvrH/Gxa6yTHLJn+vVtq9rZXwba49StH24o5/LfJ9zef/yuctzyAoccXkeE7D2WqSYEWvPsACbxDocfunQiYj0sQ+5nLTXdUsK+VNy2d+Ry/uNgkAuYKtLxhX29JSsAnLa75tSQBVggcvzTVO/TLL+1L59cb4SWAXQzTwvRCRMRDaKdUjxb6y9iym+t5Mve6O0wPFeB7E+od3q8pPbGPOmyzwmtYWv0xGgmIiIy7SSybIMS5YllzFmZirrmwm0tDfI+4F5Luv5Ndl6Ao0x4Sms4zDWBgxYJ1JjbYiH7PWUlGufJHjEXib5Oi4agfUa3muMyYP1yVxclr3h18QY87kx5mH7ORjgrWtkVd7ja6w9BU3TMG/ybfRzrMMTJYwxt2AdhnF9z7m+X3NhHSJJSVr6h7Rmuri+Z5KtL6cxZkMal09p+tW2r6sHtM5r6mOMKQtEAC/I/89j+wKoKyLFgeb8v8A5iPV3KeDyHPIYY+5OLaMx5ndjzNPGmKLAM8CHYp2XE4S1l6wVkNcuXk+mMf9lf0cu7zeOY+3lu9sl4y3G+pJJSq/DBWAOVkHXFlhqjElweb5p7Zcv60/tTIdd1lPuZp6XfT7PPOAdoLD9ei0nlfc2l78mN0wLHO81HYgQkQb2yV05ROTiRp3evsY6Nt1TRLKISAus47IXTQKetT9FiIjkFutkycCUVmaM+Q7rENLHwEpjzN920ybglFgn4Oa0n1clEamRwmrmAI1EpL6IZMU6Bv4f1qGATVgbzJt2lhwiUiuFdSwD7haRFnYx1BPrGy8XBWIfHhSRYsBL6fGaiMgdIvKIvdH/i9WhJaX0WinvY7+f38D6Z9hSRALEOgG2CtZhpasJBP4yxvwrIjWx/mldNBdoLCIPi0g2rMM0qfXhN9M/HAMuYJ0Dd9F44BURuRsunaz72HUsn5KrbV9XJdbJs+XtDxinsLafJABjzDGsQydTsD4w7bSnHwGigXdFJI/9NyknInWu8jiPubxmJ7AKoCQ7+3n7uWYRkYFAnjTGnwN0EpGKdpH6+sUGu2CZBIyW/58oXExEGlxlfZ8DrYF2/L+Yg+vrl2cCr4p1knIBrMOhF09Y/wTobPe1fnaeO1N5Xj1FpLiI5AVc96plwzrX6hhwXkTCsA5hXfM1uRla4HgpY8xBrE+I/bHeNAexOoh0/5saY84CLbCOUZ/A2pjmu7RvwTqXZpzdvtee92pmYh0/vrRBGmOSsD6NVcEaR+M4VhF0SwqZdmN94htrzxeB9XX6sy7rKY91vk+8nTn5Oo4DjwFvYu3qr4B1DPuiN7BO1DuJVQy5PuebeU2y2495HGsXfCGsv6PyEcaYkcALWIc4jmKdQDkB61N/Sns9LuoGDBaRBKx/MnNc1vkj1kmkn2MV8Cew3tspPf4N9w/GmDPAMOAr+9DGA8aYBVh7GWeJdTjpByDFMVBSWj6Vh0p1+0qDCkAsVoH0NfChMWaNS/vnJOtfbB2x/tn+hPX6zeXyw3bJ1QC+EZFErD1rvYwxv2KdzxQF7ME6nPIvaTwlwBgThXVu1SqsfmFVslletqdvtF/rWKwvJqS2vm+wztspame6OP16+uWhwBZgO7AD+NaehjFmE9AZ60sbJ4G1XL6356JJWK/LNnt51/4wAesD5Bw7S1us1/Ni+7Vekxty8ZssSimllFI+Q/fgKKWUUsrnuK3AEWugtdVinWX+o4j0SmEeEZH3RWSvWIM5VXNpayjWAGh75fIz5JVS6hLta5RSKXHnHpzzQB9jzF3AA0B3EamYbJ4wrGOpFbCuk/QRXBqy/AO7vSLweArLKqUUaF+jlEqB2wocY8wRY8y39u0ErFEok4+Z0BRroCtjjNkI3CoiRbC+jbLXGLPPPplzFmn7yqVSKpPRvkYplZIMuZiYWFeXrQp8k6ypGJefeR5vT0tp+v2prDsS6xMZuXPnvu/OO1P69tr//fjjj/z777/4+fkRGBhInjx5yJMnDzly5Ljqckqp67N169bjxpjUBihzC3f1NdfbzyQkJLBnzx5uvfVWypYti0iahndRSt2A1Poatxc4IhKANcBPb2PMqeTNKSxirjL9yonGTMQaSpvq1aubLVu2XDXPiRMnWL16NbGxscTGxvLzzz8DUKRIEYKDgwkJCSE4OJgiRa72zUGl1LWISLqMRnodj+e2vuZ6+xmAMWPG8Pzzz3PPPfcwefJk/Pz0Ox1KuUNqfY1bCxyxBmCbB8wwxqQ0xkE8l49eWBxr9MRsqUy/aXnz5qVFixa0aNECgN9+++1SsRMVFcW0adMAuOeeewgNDSU0NJSgoCBy5rziYq5KKQ/hiX1N7969OXXqFK+//jqBgYG8//77uidHqQzkzm9RCdYIiDuNMaNSmW0x0NH+hsMDwEl7tMnNQAURKWOP2NkGl0GB0lOpUqXo0qULM2fO5I8//uC7777jrbfeolChQowdO5YGDRqQL18+GjRowKhRo/jhhx8uXgxMKeUBPLmvee211+jTpw/jxo1jwIAB6bVapVQauHMPTi2gA7BDRL63p/XHvsaEMWY81rUowrFGLjyDNVoixpjzItIDa1REf2CyPYqnW/n5+VGlShWqVKlC3759OXPmDGvXriU6OpqVK1fSp08fAIoWLXpp705ISAgFCqTl+mpKKTfx2L5GRHj77bdJSEhgxIgRBAYG8sorr6TX6pVSV+FTIxmn9dj4jTp48CDR0dFER0cTExPDiRMnEBGqVatGgwYNCA0N5cEHHyRbtmxuy6CUtxCRrcaY6k7nSG830s8kJSXRsWNHPv/8c8aNG0f37t3dlE6pzCe1vkYLnBuUlJTE1q1bWblyJdHR0Xz99dckJSUREBBAvXr1CA8PJywsjFKlUrpkh1K+Twucy507d47HHnuMRYsWMXXqVJ544gk3pFMq89ECx81OnjzJ6tWriY6OJioqiv379wNQsWLFS8XOww8/rHt3VKahBc6V/v33XyIiIli1ahVz5szh0UcfTed0SmU+WuBkIGMMu3fvJioqiuXLl7Nu3TrOnj1LQEAAwcHBlwqe4sWLOx1VKbfRAidlp0+fJjQ0lM2bN7N48WIaNmyYjumUyny0wHFQYmIiq1atulTwHDhwALC+ih4WFkZ4eDgPPfQQWbNmdTipUulHC5zU/f333zzyyCPs3LmTlStXUrt27XRKp1TmowWOhzDG8NNPPxEVFUVUVBRffvkl586dI0+ePISEhBAWFkajRo247bbbnI6q1E3RAufqjh07Ru3atTl06BBxcXHUqFEjHdIplflogeOhEhISiIuLY/ny5URFRREfHw9AjRo1iIiIICIigsqVK+sAYcrraIFzbYcOHSIoKIiTJ0+ydu1aKlWqlC7rVSoz0QLHCxhj2LFjB0uXLmXJkiV88803GGMoXrw4jRs3JiIigkceeUSvm6W8ghY4abNv3z6CgoK4cOECX375JeXLl0+3dSuVGaTW1+jFUTyIiHDvvffSv39/vv76a44cOcLkyZOpUaMG06ZNo1GjRuTPn59mzZrxySef8PvvvzsdWSl1k8qWLUtMTAznz5+nfv36HDx48NoLKaWuSQscD1a4cGE6d+7M/PnzOX78OFFRUXTu3JnvvvuOp556iiJFilCzZk2GDBnC999/r5eQUMpLVaxYkZUrV/L3338THBzMH3/84XQkpbyeFjheIkeOHDRs2JBx48axf/9+tm3bxtChQ/Hz8+P111+natWqlCpVip49e7Jq1SrOnz/vdGSl1HWoVq0ay5cvJz4+ntDQUE6cOOF0JKW8mhY4XujioawBAwawceNGjhw5wieffEK1atWYNGkS9evXp3DhwnTq1ImFCxdy5swZpyMrpdKgVq1aLFy4kF27dhEWFkZCQoLTkZTyWlrg+IDChQvz5JNPsnDhQo4fP878+fNp1KgRixYtonnz5hQoUIDmzZvz2Wef8ddffzkdVyl1FSEhIcyePZstW7bQtGlT/vnnH6cjKeWVtMDxMblz575UzBw9epTY2FiefPJJNm/ezBNPPEGhQoWoX78+48aN05MZlfJQzZo1Y+rUqaxZs4bHHnuMc+fOOR1JKa+jBY4Py5o166Vi5sCBA2zatIm+ffty+PBhnnvuOUqWLEmNGjUYPnw4e/bscTquUspF+/bt+eijj1i2bBkdOnQgKSnJ6UhKeRUtcDIJPz+/S8XMzp072blzJyNGjMDf358BAwZwxx13ULlyZYYMGcKuXbucjquUAp555hnefvttZs+eTWRkJBcuXHA6klJeQwucTOrOO++kX79+bNy4kQMHDjBmzBgCAwMZOHAgd911F5UqVeKNN97gp59+cjqqUpnaiy++yGuvvcbkyZN54YUXdDgIpdJICxxFiRIl6NWrF+vXryc+Pp7333+ffPny8cYbb3D33XdTsWJFXn/9dX744QftXJVywBtvvEGvXr147733GDRokNNxlPIKWuCoyxQrVoznnnuOdevWER8fz7hx4yhUqBBDhgzhnnvu4a677uK1115j27ZtWuwolUFEhNGjR9OlSxcGDx7MO++843QkpTyeFjgqVUWLFqV79+6sWbOGw4cP8+GHH1K0aFGGDx9OlSpVqFixIoMHD+bnn392OqpSPk9EmDBhAq1ateKll15iwoQJTkdSyqO5rcARkckiclREfkil/SUR+d7++UFEkkQkn922X0R22G3ee/VMH3LbbbfRtWtXVq1axZEjR/joo48oVKgQgwYN4vbbb6d69eq8++67l66GrlRGyUx9jb+//6Xr0nXt2pUZM2Y4HUkpj+W2q4mLSG0gEfjMGFPpGvNGAM8bYx6x7+8Hqhtjjl/PY3r71cS9UXx8PLNnz2bmzJls3boVESEoKIjHH3+cli1bUqBAAacjKodk1NXEM7qv8YR+5p9//qFRo0asW7eOuXPn0qxZM0fzKOWkDL+auDFmHZDWYXMfB2a6K4tyn+LFi9OnTx+2bNnC7t27GTRoEH/88Qddu3alSJEiNGrUiOnTp+uQ88ptMmNfkzNnThYtWkT16tVp3bo1MTExTkdSyuM4fg6OiOQCGgLzXCYbIFpEtopI5DWWjxSRLSKy5dixY+6Mqq7h9ttvZ+DAgezcuZNvv/2W559/nh07dtChQwcKFy5M69atWbp0qY7KqhxxM32NJ/YzgYGBLF++nDvvvJNmzZrx1VdfOR1JKY/ieIEDRABfGWNcP4HVMsZUA8KA7vYu6BQZYyYaY6obY6oXLFjQ3VlVGogIVatWZeTIkezfv58vv/ySzp07ExcXR0REBMWKFaN379589913+k0slZFuuK/x1H4mX758REdHU7x4ccLDw/n222+djqSUx/CEAqcNyXYZG2MO27+PAguAmg7kUunAz8+Phx9+mA8++IDDhw+zaNEiateuzUcffUS1atW49957efvttzl8+LDTUZXv88m+pnDhwsTGxnLrrbcSGhpK/MiRULo0+PlZv/VEZJVJOVrgiMgtQB1gkcu03CISePE2EAqk+O0I5V2yZctGkyZNmDt37qVvYgUGBtK3b19KlChBgwYNmDFjBqdPn3Y6qvIxvt7XlChRgri4OFqdO0e+fv3gt9/AGOt3ZKQWOSpTyuKuFYvITKAuUEBE4oHXgawAxpjx9mzNgWhjjOt/tMLAAhG5mO9zY8yKdA1Xt+6V01q1gm7d4MwZCA+/sr1TJ+vn+HFo2fLK9q5doXVrOHgQOnS4sr1PH4iIgN274Zlnrmx/9VUIDobvv4feva9sHz4cHnoINmyA/v2vbB8zBqpUgdhYGDr0yvYJE+COO2DJEnj33Svbp02DEiVg9mz46KMr2+fOhQIFYOpU6ye55cshVy748EOYM+fK9jVrrN/vvANLl5IPeBZ4Nls2TgcF8Vbdunz22Wfsat+eb/38KFiwIL/PmkXt2rXx8/OEHY3KU3l0X5OBypcvz5jcucl26tTlDWfOwIAB0K6dM8GUcojbChxjzONpmGcqMDXZtH1AZfekUp4od+7cDB48mEGDBnHg6af5b/lyjh47Rr169ShbtixdunShU6dOFC1a1OmoygNpX/N/2X7/PeWGAwcyNohSHsBt4+A4wRPGp1Dp48yZM8yfP59PPvmENWvW4OfnR6NGjejSpQvh4eFkzZrV6YjqGjJqHJyM5tH9TOnS1mGp5EqVgv37MzqNUhkiw8fBUepm5MqVi/bt27N69Wp+/vlnXn75ZTZv3kyzZs0oWbIk/fr100tEKJXcsGHWoWIX//j58e/AgQ4FUso5WuAoj1e+fHmGDx/OwYMHWbRoETVq1OCdd97h9ttvp27dukybNo0zZ844HVMp57VrBxMnWntsRDhdoABPXbhAxMyZ/Pvvv06nUypDaYGjvEaWLFlo0qQJixcv5sCBAwwfPpz4+Hg6duxI0aJF6dmzJ7t27XI6plLOatfOOhx14QK5jx0jdOpUYmNjadOmjQ6yqTIVLXCUVypatCivvPIKe/bsYfXq1YSHhzN+/Hjuuusu6tevz7x587QzVwp44oknGDt2LIsWLaJTp05cuHDB6UhKZQgtcJRX8/Pzo27dunz++efEx8czfPhw9u7dS8uWLSldujSDBg3i0KFDTsdUylE9evRg+PDhfP7553Tr1k1HEFeZghY4ymcUKlSIV155hX379rFkyRIqV67M4MGDKVWqFC1btmTVqlXasatM65VXXuGVV15hwoQJvPTSS7otKJ+nBY7yOf7+/jRu3Jjly5fz888/88ILL7B69Wrq169PxYoVef/99/Xq5ipTGjZsGN27d+fdd99laEoDgirlQ7TAUT6tXLlyjBw5kvj4eD799FPy5MlDr169KF68OC+++CK/pTRmiFI+SkR4//33eeKJJxg4cCBjxoxxOpJSbqMFjsoUcubMSceOHfnmm2/45ptvCA8PZ8yYMZQtW5ZWrVrx9ddfOx1RqQzh5+fHxx9/zKOPPsrzzz/Pxx9/7HQkpdxCCxyV6dSsWZOZM2fy66+/8uKLLxITE8NDDz3EAw88wOzZszl//rzTEZVyqyxZsjBjxgwaNmxIZGQks2fPdjqSUulOCxyVaZUoUYK33nqLgwcPMm7cOP7880/atGlD2bJlefvtt/n777+djqiU22TPnp158+YRFBRE+/btWbp0qdORlEpXWuCoTC8gIIDu3buze/duFi9eTPny5enbty8lSpTgpZde4siRI05HVMotcuXKxZIlS6hSpcqlbxoq5Su0wFHK5ufnR0REBKtWreK7776jSZMmjBo1itKlS/PMM8/wyy+/OB1RqXSXJ08eVqxYQfny5WnSpAkbN250OpJS6UILHKVSUKVKFWbMmMGePXvo3LkzU6dO5fbbb6dt27Zs377d6XhKpav8+fMTExPDbbfdRlhYGNu2bXM6klI3TQscpa6iXLlyjB8/nv3799OnT59LAwg2btyYr776yul4SqWbIkWKEBcXR0BAACEhIezevdvpSErdFC1wlEqDIkWKMHLkSA4cOMDgwYPZuHEjDz/8MLVr1yYuLk5HhVU+oVSpUsTFxSEiBAcHs3//fqcjKXXDtMBR6jrkzZuX1157jd9++40xY8awb98+goODqVOnDmvWrHE6nlI37fbbbyc6OprExESCg4P1JHvltdxW4IjIZBE5KiI/pNJeV0ROisj39s9Al7aGIrJbRPaKSD93ZVTqRuXOnZtevXqxd+9exo4dyy+//EK9evWoV68e69atczpepqJ9TfqrXLkyUVFR/P7774SEhHD8+HGnIyl13dy5B2cq0PAa83xpjKli/wwGEBF/4AMgDKgIPC4iFd2YU6kbliNHDnr06MHevXsZM2YMu3btok6dOtSvX58NGzY4HS+zmIr2NenugQceYMmSJezdu5eGDRty6tQppyMpdV3cVuAYY9YBf93AojWBvcaYfcaYs8AsoGm6hlMqneXMmZNevXrxyy+/8O677/LDDz9Qq1YtmjZtyo8//uh0PJ+mfY371KtXj7lz57Jt2zYaN27MmTNnnI6kVJo5fQ7OgyKyTUSiRORue1ox4KDLPPH2tBSJSKSIbBGRLceOHXNnVqWuKVeuXLzwwgvs27ePYcOGsWbNGu699146d+7MgQMHnI6Xmd1UX5OZ+5nGjRszffp0vvrqK1q0aMF///3ndCSl0sTJAudboJQxpjIwFlhoT5cU5k31KyrGmInGmOrGmOoFCxZM/5RK3YDcuXPTv39/9u3bR+/evfn888+5/fbbefHFF/nzzz+djpfZ3HRfk9n7mdatWzNp0iRWrlxJ27Zt9Xptyis4VuAYY04ZYxLt28uBrCJSAOtTVAmXWYsDhx2IqNRNy58/P++++y4///wzjz/+OKNHj6ZcuXKMGjWKs2fPOh0vU9C+Jn08+eSTjB49mvnz59OlSxcuXLjgdCSlrsqxAkdEbhMRsW/XtLP8CWwGKohIGRHJBrQBFjuVU6n0ULJkSaZMmcK2bdt48MEH6dOnD5UqVWLJkiU6ho6baV+Tfnr37s3gwYP57LPP6Nmzp753lUdz59fEZwJfA3eISLyIdBGRZ0XkWXuWlsAPIrINeB9oYyzngR7ASmAnMMcYo2dpKp9QqVIloqKiWL58Of7+/jRp0oTQ0FB27NjhdDSvpX1Nxnr11Vd56aWX+OCDD+jfv7/TcZRKlfhSBV69enWzZcsWp2MolSbnzp1j/PjxvP7665w8eZJnnnmGYcOGkTdvXqejpQsR2WqMqe50jvSm/QwYY+jWrRvjx49n+PDhvPLKK05HUplYan2N09+iUirTypo1K8899xx79+6lW7duTJgwgTvuuIPPPvtMd/0rjyYifPDBB7Rr147+/fszbtw4pyMpdQUtcJRyWL58+Rg7dixbt26lXLlyPPHEE9StW1fHz1Eezc/PjylTptC0aVOee+45pk6d6nQkpS6jBY5SHqJKlSp89dVXTJgwgR07dlClShX69eung6spj5U1a1Zmz55NSEgIXbp0Ye7cuU5HUuoSLXCU8iB+fn5ERkaye/duOnTowFtvvUXlypX1+lbKY2XPnp0FCxbwwAMP0LZtW6KiopyOpBSgBY5SHqlgwYJMnjyZuLg4kpKSqFOnDj169CAxMdHpaEpdIXfu3CxbtoxKlSrRokUL1q5d63QkpbTAUcqTPfLII+zYsYOePXvy4YcfUqlSJWJjY52OpdQVbr31VlauXEmZMmWIiIhg8+bNTkdSmZwWOEp5uNy5c/Pee++xbt06smfPTkhICM899xz//POP09GUukzBggWJiYmhQIECNGjQQMd3Uo7SAkcpL/Hwww/z/fff07t3b8aNG0f16tXZtm2b07GUukyxYsWIi4sjZ86chISE8PPPPzsdSWVSWuAo5UVy5szJ6NGjWblyJSdOnKBmzZqMGjVKrwukPEqZMmWIjY0lKSmJ4OBgDhw44HQklQlpgaOUFwoNDWX79u2EhYXRp08fwsLCOHbsmNOxlLrkrrvuIjo6mpMnTxIcHMwff/zhdCSVyWiBo5SXKlCgAAsWLGDChAmsW7eOatWqsXHjRqdjKXVJ1apVWbZsGYcOHSIkJIS//vrL6UgqE9ECRykvJiJERkayYcMGsmXLRu3atRk7dqxe6kF5jFq1arFo0SJ2795NWFgYCQkJTkdSmYQWOEr5gKpVq7JlyxYaNmxIz549adu2LadPn3Y6llIABAcHM2fOHLZu3UqTJk30G4AqQ2iBo5SPyJs3LwsXLmTYsGHMnj2bOnXqcPjwYadjKQVA06ZN+fTTT1m7di2PPfYYZ8+edTqS8nFa4CjlQ/z8/Ojfvz+LFi1i165d1KxZk++++87pWEoB0K5dO8aPH8+yZcvo0KEDSUlJTkdSPkwLHKV8UEREBOvXr0dECAoKYvHixU5HUgqAyMhI3nnnHebMmcPTTz+tQxwot9ECRykfVaVKFTZt2sRdd91Fs2bNmDRpktORlAKgT58+DBw4kClTpvD888/rSfHKLbI4HUAp5T5FihRh7dq1PProo0RGRnLq1Cn69OnjdCylGDRoEKdOnWLMmDHccsstDB482OlIyse4rcARkclAY+CoMaZSCu3tgJftu4lAV2PMNrttP5AAJAHnjTHV3ZVTKV+XK1cuFi1aRPv27XnxxRf5+++/GTx4MCLidLR0oX2NdxIRRo0aRWJiIkOGDCEwMJCXXnrJ6VjKh7hzD85UYBzwWSrtvwJ1jDEnRCQMmAjc79Jezxhz3I35lMo0smXLxsyZM8mTJw9Dhw7l9OnTvPvuu75S5ExF+xqvJCKMHz+ehIQE+vbtS2BgIM8++6zTsZSPcFuBY4xZJyKlr9K+weXuRqC4u7IopcDf359JkyaRK1cuRo8eTUBAgE8cFtC+xrv5+/szbdo0Tp8+Tbdu3QgICKB9+/ZOx1I+wFPOwekCRLncN0C0iBhggjFmojOxlPItIsJ7773HmTNnGDJkCAEBAfTt29fpWBlJ+xoPlDVrVr744gsaNWpEp06dyJ07N82bN3c6lvJyjhc4IlIPq9N52GVyLWPMYREpBMSIyC5jzLpUlo8EIgFKlizp9rxKeTsRYcKECZw+fZqXX36ZwMBAunbt6nQst7uZvkb7GffLkSMHixYtIiQkhDZt2rBkyRJCQ0OdjqW8mKNfExeRe4GPgabGmD8vTjfGHLZ/HwUWADVTW4cxZqIxproxpnrBggXdHVkpn+Dv789nn31G48aN6dGjB1FRUddeyIvdbF+j/UzGCAgIYPny5dx55500a9aM9evXOx1JeTHHChwRKQnMBzoYY/a4TM8tIoEXbwOhwA/OpFTKd2XNmpWZM2dy77330rp1a3788UenI7mF9jXeJW/evERHR1OiRAkaNWrE1q1bnY6kvJTbChwRmQl8DdwhIvEi0kVEnhWRi6fIDwTyAx+KyPcissWeXhhYLyLbgE3AMmPMCnflVCozCwgIYPHixeTKlYuIiAiOH/e+LxNpX+N7ChcuTGxsLHnz5qVBgwb89NNPTkdSXkh8aQTJ6tWrmy1btlx7RqXUZb755hvq1q1L7dq1iYqKws/v5j/7iMhWXxxXRvuZjLN3716CgoIQEdavX0/ZsmWdjqQ8UGp9jV6qQSnF/fffz5gxY4iOjmbUqFFOx1EKgPLlyxMTE8N///1H/fr1OXTokNORlBfRAkcpBVgXQWzevDn9+/fX8x6Ux6hUqRIrV67kzz//JDg4mKNHjzodSXkJLXCUUoD19fFJkyZRqFAh2rZty7///ut0JKUAqF69OsuWLeO3336jQYMG/P33305HUl5ACxyl1CX58+dnypQp7Nmzh5EjRzodR6lLgoKCWLBgAT/++CPh4eEkJiY6HUl5OC1wlFKXCQkJoXXr1gwfPpxffvnF6ThKXdKgQQNmzZrFN998Q7NmzXQvo7oqLXCUUlcYNWoU2bJl47nnnnM6ilKXadGiBVOmTCEuLo7WrVtz7tw5pyMpD6UFjlLqCkWLFmXgwIFERUWxZs0ap+ModZmOHTsybtw4Fi9eTKdOnUhKSnI6kvJAWuAopVLUvXt3ihYtymuvvYYvjZelfEP37t0ZMWIEn3/+OV27dtX3qLqCFjhKqRTlzJmTV155hfXr1/PVV185HUepK/Tr14/+/fszadIkXnzxRS1y1GW0wFFKperJJ58kb968jBkzxukoSqVo6NCh9OjRg1GjRjFkyBCn4ygPksXpAEopz5UrVy6eeeYZRo4cyaFDhyhWrJjTkZS6jIjw3nvvkZiYyOuvv05gYCDPP/+807GUB9A9OEqpq3ryySe5cOECM2fOdDqKUiny8/Nj0qRJtGzZkhdeeIGPP/7Y6UjKA2iBo5S6qgoVKnD//fczY8YMp6MolaosWbIwY8YMGjZsSGRkJLNmzXI6knKYFjhKqWtq0aIF33//vV7sUHm0bNmyMW/ePIKCgujQoQNLlixxOpJy0DULHBEpJCLNRaS7iDwpIjVFRAsjpTKRsLAwAFasWOG2x9C+RqWHXLlysWTJEqpWrcpjjz1GXFyc05GUQ1LtPESknoisBJYBYUARoCLwKrBDRN4QkTwZE1Mp5aRKlSpRoEABt3xdXPsald7y5MlDVFQUFSpUoGnTpnz99ddOR1IOuNq3qMKBp40xB5I3iEgWoDEQAsxzUzallIcQEWrUqMHmzZvdsXrta1S6y58/PzExMQQFBREeHs7q1aupUqWK07FUBkp1D44x5qWUOhy77bwxZqExRjscpTKJKlWqsHPnTs6fP5+u69W+RrnLbbfdRmxsLIGBgYSGhrJr1y6nI6kMdM1xcETkVqAjUNp1fmNMT7elUkp5nHLlypGUlMTBgwcpU6ZMuq9f+xrlDqVKlSI2NpagoCCCg4NZv349pUuXdjqWygBpOYFvOVaHswPY6vJzVSIyWUSOisgPqbSLiLwvIntFZLuIVHNpaygiu+22fml6JkoptypVqhQABw6kuLMlPWhfo9zi9ttvJyYmhtOnTzOmZk3OFy8Ofn5QujTo8Ac+Ky0jGecwxrxwA+ueCowDPkulPQyoYP/cD3wE3C8i/sAHWMfc44HNIrLYGPPTDWRQSqWTW2+9FYCTJ0+66yG0r1Fuc++997K5d2+KDhr0/398v/0GkZHW7XbtnIqm3CQtBc40EXkaWAr8d3GiMeavqy1kjFknIqWvMktT4DNjXR1to4jcKiJFsD7B7TXG7AMQkVn2vOnX6dSte+W0Vq2gWzc4cwbCw69s79TJ+jl+HFq2vLK9a1do3RoOHoQOHa5s79MHIiJg92545pkr2199FYKD4fvvoXfvK9uHD4eHHoING6B//yvbx4yBKlUgNhaGDr2yfcIEuOMOWLIE3n33yvZp06BECZg9Gz766Mr2uXOhQAGYOtX6SW75csiVCz78EObMubJ9zRrr9zvvwNKll7flzAlRUdbtIUMg+dc68+eHefYpGK+8Asm/EVG8OEyfbt3u3dt6DV3dfjtMnGjdjoyEPXsub69SxXr9ANq3h/j4y9sffBBGjLBuP/oo/Pnn5e3168Nrr1m3w8Lgn38ub2/cGF580brtxe+9gj//zGrgUELClfOkD9/ra5RHKT9lypUTz5yBAQO0wPFBaSlwzgJvAwOAi5dqNUDZm3zsYsBBl/vx9rSUpt+f2kpEJBKIBChZsuRNRlJKpebilZr9/f3d9RAe29doP+MjUju86r7DrspBcq3Ly4vIL8D9xpjj171y61PVUmNMpRTalgEjjDHr7ftxQF+szqyBMeYpe3oHoKYx5rlrPV716tXNli1brjemUioNtm/fTuXKlZk7dy6PPvroNecXka3GmOppXb+39DXaz3ix0qWtw1LJmJIlkRSmK++QWl+TlpOMfwTOpH8k4oESLveLA4evMl0p5aDjx626I1++fO56CO1rlHsNG2YdSndxGhhTqFC6D3+gnJeWQ1RJwPcisprLj4vf7Fc3FwM97OPe9wMnjTFHROQYUEFEygCHgDZA25t8LKXUTfr9998BKFKkiLseQvsa5V4Xz7MZMMA6LFWyJOuCgnhh+nS+e/JJpk6dip+fXh3EV6SlwFlo/1wXEZkJ1AUKiEg88DqQFcAYMx7rK6HhwF6sT22d7bbzItIDWAn4A5ONMT9e7+MrpdLXzz//jIi48xyUhWhfo9ytXbvLTigOA4bccQevvfYagYGBjBs3DhFxLp9KN9cscIwxn97Iio0xj1+j3QDdU2lbjtUpKaU8xA8//EC5cuXIlWwXf3rRvkY5ZcCAASQkJDBy5EgCAwMZMWKEFjk+INUCR0SWABOBFcaYc8naygKdgP3GmMluTaiU8gibNm2iRo0a6b5e7WuU00SEN998k1OnTvHWW2+RJ08e+qc0HIfyKlfbg/M08AIwWkROAMeAnNhjRwDjjDGL3J5QKeW4/fv3c+DAAV68OJ5P+tK+RjlORPjggw9ITExkwIABBAYG8txz1/zyrvJgqRY4xpjfgb4ichBYD+QA/gH2GGPc8U0HpZSHio6OBqBevXrpvm7ta5Sn8PPzY8qUKSQmJtKzZ08CAgLo3Lmz07HUDUrL6eKFgS+A54HbsDoepVQmMn/+fMqVK8fdd9/tzofRvkY5LkuWLMyaNYuQkBCeeuopvvjiC6cjqRt0zQLHGPMq1jVcPsE6Fv6ziAwXkXJuzqaU8gDHjh0jLi6ORx991K0nXmpfozxF9uzZWbBgAQ8++CDt2rVj+XI9D90bpekL//a3EH63f84DeYG5IjLSjdmUUh5g6tSpnD9/nieeeMLtj6V9jfIUuXPnZtmyZdxzzz08+uijrF271ulI6jpds8ARkZ4ishUYCXwF3GOM6QrcB1x7vHallNdKSkpiwoQJPPzww1SsWNGtj6V9jfI0t9xyCytXrqRs2bI0btyYTZs2OR1JXYe07MEpALQwxjQwxnxx8WucxpgLQGO3plNKOWrWrFn88ssv9E7pKuPpT/sa5XEKFChATEwMhQoVomHDhuzYscPpSCqNrnmxTW+iF8FTKv0kJSVRqVIlsmTJwrZt2657CPvrvdimt9B+JnP69ddfCQoK4vz583z55ZdUqFDB6UjKdjMX21RKZUJz5sxh165dDBw4UK/PozK9MmXKEBsbS1JSEvXr1+fAgQNOR1LXoL2WUuoKiYmJvPzyy9x77708+qie/qIUwJ133kl0dDSnTp2ifv36ly5AqzyTFjhKqSsMGTKEgwcP8uGHH+reG6VcVK1aleXLl3PkyBFCQ0P566+/nI6kUqE9l1LqMj/++COjRo3iySefpFatWk7HUcrjPPTQQyxatIjdu3cTFhZGQkKC05FUCrTAUUpdcvbsWTp16kSePHl48803nY6jlMeqX78+X3zxBVu3biUiIoJ//tGBtz2NFjhKqUtee+01tmzZwqRJkyhYsKDTcZTyaE2aNOGzzz5j3bp1tGzZkrNnzzodSbnQAkcpBUBsbCwjR44kMjKSFi1aOB1HKa/Qtm1bxo8fz/Lly2nfvj1JSUlOR1K2VK8mrpTKPOLj4+nQoQN33XUXo0ePdjqOUl4lMjKSxMRE+vTpQ0BAAB9//LGenO8BtMBRKpM7ffo0TZo04fTp08TGxpIrVy6nIynldV544QVOnTrFG2+8QWBgIGPGjHHrxWnVtbm1wBGRhsB7gD/wsTHmzWTtLwHtXLLcBRQ0xvwlIvuBBCAJOO+LI6Iq5bQLFy7QoUMHtm3bxtKlS7n77rudjnTdtJ9RnuL111/n1KlTjB49mjx58jBkyBCnI2VqbitwRMQf+AAIAeKBzSKy2Bjz08V5jDFvA2/b80cAzxtjXAcVqGeMOe6ujEpldq+88goLFixg9OjRhIWFOR3numk/ozyJiPDuu++SkJDA0KFDCQwMpG/fvk7HyrTcuQenJrDXGLMPQERmAU2Bn1KZ/3FgphvzKKVcjBgxgpEjR9K1a1d69erldJwbpf2M8igiwvjx4y+NBh4QEEC3bt2cjpUpufMsqGLAQZf78fa0K4hILqAhMM9lsgGiRWSriES6LaVSmdDYsWPp378/7dq1Y+zYsd58roD2M8rj+Pv789lnnxEREUH37t2ZNm2a05EyJXfuwUmpx0zt0uURwFfJdhvXMsYcFpFCQIyI7DLGrLviQaxOKRKgZMmSN5tZKZ83efJkevbsSbNmzZg6dSr+/v5OR7oZ2s8oj5Q1a1bmzJlDo0aN6Ny5MwEBATRv3tzpWJmKO/fgxAMlXO4XBw6nMm8bku02NsYctn8fBRZg7Yq+gjFmojGmujGmug5MptTVffjhh3Tp0oXQ0FBmzZpFlixe/0VK7WeUx8qRIweLFi2iRo0atG7dmpUrVzodKVNxZ4GzGaggImVEJBtW57I4+UwicgtQB1jkMi23iARevA2EAj+4MatSPs0Yw4gRI+jevTtNmjRh0aJFZM+e3elY6UH7GeXRAgICWL58ORUrVqR58+asX7/e6UiZhtsKHGPMeaAHsBLYCcwxxvwoIs+KyLMuszYHoo0xp12mFQbWi8g2YBOwzBizwl1ZlfJlxhj69et36ZybuXPnkiNHDqdjpQvtZ5Q3yJs3L9HR0ZQsWZJGjRqxdetWpyNlCmJMaoervU/16tXNli1bnI6hlMf477//ePrpp5k2bRpdu3Zl3LhxGTbCqohs9cVxZbSfUTcqPj6ehx9+mMTERNauXeuV4055otT6Gh1LWikfdfz4cYKDg5k2bRpvvPEGH3zwgQ4fr5SDihcvTlxcHNmyZSMkJIRffvnF6Ug+TXs7pXzQrl27uP/++9m8eTMzZ85k4MCB3vxVcKV8Rrly5YiJieHs2bMEBwcTHx/vdCSfpQWOUj4mKiqKBx54gMTERNasWUObNm2cjqSUcnH33XezcuVK/vzzT4KDgzl69KjTkXySFjhK+YikpCRef/11GjVqRKlSpfjmm2944IEHnI6llErBfffdx7Jlyzhw4AChoaGcOHHC6Ug+RwscpXzA8ePHCQ8PZ/DgwXTs2JGvv/6a0qVLOx1LKXUVQUFBLFiwgJ07d9KoUSMSExOdjuRTtMBRystt3LiRatWqsWbNGiZOnMiUKVPIlSuX07GUUmnQoEEDZs2axaZNm2jatCn//vuv05F8hhY4Snmp8+fPM2TIEB5++GH8/f356quvePrpp/VkYqW8TPPmzZkyZQqrVq2iVatWnDt3zulIPkELHKW80K+//krdunUZOHAgrVu35vvvv6d6dZ8bckapTKNDhw588MEHLFmyhCeeeIKkpCSnI3k9LXCU8iLGGKZPn07lypXZsWMH06dPZ8aMGdxyyy1OR1NK3aRu3brx1ltvMXPmTCYHB2NKlQI/PyhdGmbMcDqe1/H6K+0plVkcOXKE7t27s2DBAmrVqsX06dP1RGKlfEzfvn0pvWEDjRYt4tLB5t9+g8hI63a7dk5F8zqZs8CpW/fKaa1aQbducOYMhIdf2d6pk/Vz/Di0bHlle9eu0Lo1HDwIHTpc2d6nD0REwO7d8MwzV7a/+ioEB8P330Pv3le2Dx8ODz0EGzZA//5Xto8ZA1WqQGwsDB16ZfuECXDHHbBkCbz77pXt06ZBiRIwezZ89NGV7XPnQoECMHWq9ZPc8uWQKxd8+CHMmXNl+5o11u933oGlSy9vy5kToqKs20OGQFzc5e3588O8edbtV16Br7++vL14cZg+3brdu7f1Grq6/XaYONG6HRkJe/Zc3l6livX6AbRvD8kH3nrwQRgxwrr96KPw55+Xt9evD6+9Zt0OC4N//rm8vXFjePFF6/YNvPfME08wzd+f3r17c+bMGd5880369OnjC1cCV0ql4LHvvuOKM+nOnIEBA7TAuQ7aQyrlwf777z8+HDOGF7Zv56GHHmLy5MnccccdTsdSSrmRHDyYcsOBAxkbxMvpxTaV8kBJSUmMHz+e/v37c/78eUaMGEH37t3x9/d3Olqa6cU2lbpBpUtbh6WSK1UK9u/P6DQeTy+2qZSX2Lx5MzVr1qRHjx7UrFmT7du307NnT68qbpRSN2HYMOuQv4vTwIZGjZzJ46W0wFHKQ5w4cYJu3bpx//33c+TIEWbPnk10dDTlypVzOppSKiO1a2edN1iqFIhwoUQJRt15J7UnTGDx4sVOp/MaWuAo5bALFy4wdepU7rjjDiZMmECvXr3YtWsXrVq10kH7lMqs2rWzDkdduIDfgQP03rSJ++67j1atWhGX/IsYKkVa4CjloPXr11OzZk06d+5MuXLl2Lp1K6NHjyZPnjxOR1NKeZDAwECioqKoUKECTZo0YcOGDU5H8nha4CjlgN9++43WrVsTFBTE77//zvTp0/nqq6+oUqWK09GUUh4qX758xMTEUKxYMcLDw/k++ZAY6jJa4CiVgRISEnj11Ve54447WLJkCa+//jq7d++mXbt2+Pnp5qiUurrbbruN2NhY8uTJQ2hoKLt27XI6ksdya48qIg1FZLeI7BWRfim01xWRkyLyvf0zMK3LKuVNzp49y9ixYylXrhzDhg2jZcuW7N69m0GDBpE7d26n43k17WdUZlOyZEni4uLw8/MjODiYX3/91elIHsltBY6I+AMfAGFAReBxEamYwqxfGmOq2D+Dr3NZpTzahQsX+Pzzz7nrrrvo2bMnd999Nxs3bmT69OmUKFHC6XheT/sZlVlVqFCB6Ohozpw5Q3BwMIcPH3Y6ksdx5x6cmsBeY8w+Y8xZYBbQNAOWVcpxxhhWrFjBfffdR7t27S6dILhq1Sruv/9+p+P5Eu1nVKZ17733smLFCo4ePUpISAjHjx93OpJHcWeBUwxwHW863p6W3IMisk1EokTk7utcFhGJFJEtIrLl2LFj6ZFbqZuyZs0a6tatS1hYGCdPnmTGjBl8++23NGzYUL/2nf60n1GZWs2aNVmyZAn79u2jQYMGnDx50ulIHsOdBU5KPXny60J8C5QyxlQGxgILr2NZa6IxE40x1Y0x1QsWLHijWZW6aRcLm3r16vHzzz8zduxYdu3aRdu2bfUEYvfRfkZlenXr1mXevHls376dRo0acfr0aacjeQR39rrxgOtJBsWByw4SGmNOGWMS7dvLgawiUiAtyyrlKVwLmz179vD++++zb98+evToQbZs2ZyO5+u0n1EKCA8P5/PPP+frr7+mRYsW/Pfff05Hcpw7C5zNQAURKSMi2YA2wGVjTIvIbWLvsxeRmnaeP9OyrFJOS62wee6558iRI4fT8TIL7WeUsj322GN8/PHHREdH8/jjj3P+/HmnIzkqi7tWbIw5LyI9gJWAPzDZGPOjiDxrt48HWgJdReQ88A/QxliXN09xWXdlVSqtjDHExcUxbNgw1qxZQ5EiRXjvvfd4+umnyZkzp9PxMh3tZ5S6XOfOnUlISKBXr1507tyZTz/9NNMeIhdrO/cN1atXN1u2bHE6hvJBSUlJzJs3j5EjR7J161aKFClCv379tLC5ChHZaoyp7nSO9Kb9jPIGw4YN49VXX6Vr16588MEHPv0Fh9T6GrftwVHKF/z77798+umnvPPOO+zdu5cKFSowadIkOnToQPbs2Z2Op5RSKerfvz8JCQm89dZbBAYG8uabb/p0kZMSLXCUSsHff//NRx99xHvvvccff/xBjRo1mDt3Ls2aNcPf39/peEopdVUiwogRIzh16hQjR44kT548DBgwwOlYGUoLHKVcHDp0iDFjxjBhwgQSEhJo0KABL7/8MnXr1s10n36UUt5NRBg3bhyJiYm8+uqrBAYG0rNnT6djZRgtcJQCNm3axHvvvcecOXO4cOECrVu3pm/fvnp1b6WUV/Pz82Py5MkkJibSq1cvAgICePLJJ52OlSG0wFGZ1rlz55g/fz5jxoxh48aNBAYG0qNHD3r27EmZMmWcjqeUUukiS5YszJw5kyZNmvD0008TEBBAq1atnI7ldlrgqEznzz//ZOLEiXzwwQccOnSI8uXL8/7779OpUycCAwOdjqeUUukue/bszJ8/n4YNG9KuXTsCAgIIDw93OpZbZc4vx6tM6YcffuDpp5+mePHi9O/fn7vuuoslS5awe/dunnvuOS1ulFI+LXfu3CxdupTKlSvz6KOPsmbNGqcjuZUWOMqnnTt3jnnz5hEcHMw999zD9OnT6dChAzt27CAmJobGjRtn2kGwlFKZzy233MKKFSsoW7YsERERfPPNN05Hchvt2ZVPOnDgAAMHDqRUqVK0bNmSPXv2MGLECOLj45k4cSKVKlVyOqJSSjmiQIECxMTEUKhQIcLCwti+fbvTkdxCCxzlM5KSkli+fDlNmjShTJkyDB06lGrVqrFkyRJ+/fVX+vXrR/78+Z2OqZRSjitatChxcXHkypWL0NBQ9uzZ43SkdKcFjvJ6f/zxByNGjKB8+fI0atSIb775hn79+rFv3z6WLl1K48aNdXA+pZRKpnTp0sTGxnLhwgWCg4P57bffnI6UrrTAUV7pwoULrF69mtatW1OiRAn69+9PmTJlmDNnDgcPHmTYsGGULl3a6ZhKKeXR7rzzTqKjozl16hTBwcH8/vvvTkdKN/o1ceVVDh48yKeffsqUKVPYt28fefPmpUePHkRGRnLnnXc6HU8ppbxOlSpViIqKIiQkhJCQENauXUu+fPmcjnXTdA+O8nj//fcfX3zxBQ0bNqRUqVK89tprlC5dmunTp3Po0CFGjRqlxY1SSt2EBx98kEWLFvHzzz/TsGFDTp065XSkm6YFjvJY27Zto1evXhQtWpRWrVrx008/8eqrr7Jv3z7i4uJo164dOXPmdDqmUkr5hPr16/PFF1/w7bffEhERwZkzZ5yOdFP0EJXyKCdOnGDmzJlMnjyZrVu3ki1bNpo1a0aXLl2oX7++niyslFJuFBERwbRp02jXrh0tW7Zk4cKFZMuWzelYN0QLHOW4c+fOsXLlSqZNm8aiRYv477//qFy5Mu+//z5t27bVr3YrpVQGevzxx0lMTCQyMpJ27doxc+ZMsmTxvnLB+xIrn2CMYfPmzUybNo1Zs2Zx/Phx8ufPz1NPPcWTTz5J1apVERGnYyqlVKb09NNPk5iYyAsvvEBAQACffPKJ14367tYCR0QaAu8B/sDHxpg3k7W3A1627yYCXY0x2+y2/UACkAScN8ZUd2dWlTH279/P9OnTmTZtGnv27CF79uw0adKEDh060LBhQ7Jmzep0ROVltJ9Ryj2ef/55Tp06xaBBgwgMDOS9997zqg+ebitwRMQf+AAIAeKBzSKy2Bjzk8tsvwJ1jDEnRCQMmAjc79Jezxhz3F0ZVcY4ceIEX3zxBdOmTWP9+vUA1KlTh5deeomWLVty6623OhtQeS3tZ5Ryr4EDB3Lq1ClGjRpFnjx5GDp0qNOR0syde3BqAnuNMfsARGQW0BS41PEYYza4zL8RKO7GPCoD/fvvv0RFRTFjxgyWLFnC2bNnufPOOxk2bBjt2rWjVKlSTkdUvkH7GaXcSER45513SEhIYNiwYQQGBvLyyy9fe0EP4M4Cpxhw0OV+PJd/akquCxDlct8A0SJigAnGmIkpLSQikUAkQMmSJW8qsLo5586dIzY2llmzZrFgwQISEhIoVKgQXbt2pUOHDlSrVs2rdm8qr6D9jFJuJiJ89NFHJCYm0q9fPwIDA+nWrZvTsa7JnQVOSv/JTIozitTD6ngedplcyxhzWEQKATEisssYs+6KFVod0kSA6tWrp7h+5T5JSUmsW7eOWbNmMXfuXP766y9uvfVWHnvsMdq0aUO9evW88ux75TW0n1EqA/j7+/Ppp59y+vRpunfvTkBAAB07dnQ61lW58z9PPFDC5X5x4HDymUTkXuBjIMwY8+fF6caYw/bvoyKyAGtX9BUdj8p4Fy5cYOPGjcyaNYsvvviC33//ndy5c9O0aVPatGlDaGgo2bNndzqmyhy0n1Eqg2TNmpXZs2fTuHFjOnfuTEBAAC1atHA6VqrcWeBsBiqISBngENAGaOs6g4iUBOYDHYwxe1ym5wb8jDEJ9u1QYLAbs6prMMbw3XffMWvWLGbPns2BAwfInj07jRo1ok2bNjRq1IhcuXI5HVNlPtrPKJWBcuTIwcKFCwkNDaVNmzYsWbKEBg0aOB0rRW4rcIwx50WkB7AS6+ubk40xP4rIs3b7eGAgkB/40D434+LXNAsDC+xpWYDPjTEr3JVVpeziWDXz5s1j7ty57Nu3jyxZstCgQQOGDRtGkyZNyJMnj9MxVSam/YxSGS8gIIDly5dTr149mjdvzsqVKwkKCnI61hXEGN85nFy9enWzZcsWp2N4tQsXLvD1118zb9485s2bx4EDB8iSJQv169enZcuWNG/eXEcWVmkiIlt9cVwZ7WeUshw7dozatWtz6NAhVq1aRfXqzmzuqfU1evanIikpiS+//JK5c+cyf/58jhw5QrZs2WjQoAGDBw+mSZMm5M2b1+mYSimlPEjBggWJiYkhKCiIhg0bsnbtWu6++26nY12iBU4mde7cOdasWcPcuXNZuHAhR48eJWfOnISFhfHoo4/SuHFjPfyklFLqqooXL05sbCxBQUEEBwfz5ZdfUr58eadjAVrgZCpnzpwhJiaGhQsXsnjxYv766y9y585N48aNadmyJWFhYeTOndvpmEoppbxIuXLliI2NpXbt2gQHB7N+/XqKF3d+PE0tcHzc8ePHWbp0KQsXLiQ6Opp//vmHW265hYiICFq2bEloaCg5c+Z0OqZSSikvVrFiRVauXMkjjzxCcHAw69ato1ChQo5m0gLHB+3bt4+FCxeyaNEi1q9fz4ULFyhevDhdunShWbNm1K5dWy9qqZRSKl3dd999LFu2jNDQUEJDQ1m9erWj529qgeMDjDF8++23l4qaHTt2AHDvvfcyYMAAmjVrRtWqVfUyCUoppdzq4YcfZuHChURERBAeHk5MTAwBAQGOZNECx0udPXuWtWvXsmjRIhYtWkR8fDx+fn4EBQUxatQomjZtStmyZZ2OqZRSKpMJDQ1l1qxZPPbYYzRt2pRly5aRI0eODM+hBY4XOXr0KMuXL2fp0qVER0eTkJBAzpw5adCgAUOHDqVRo0YUKFDA6ZhKKaUyuebNmzN16lQ6dOjAY489xvz58zP81AgtcDyYMYZt27axdOlSli5dyqZNmzDGUKxYMdq2bUujRo2oX7++XiJBKaWUx2nfvj0JCQl069aNjh07Mn36dPz9/TPs8bXA8TBnzpxh1apVLF26lGXLlhEfHw9AzZo1eeONN2jcuDFVqlTR82mUUkp5vK5du5KYmEjfvn0JCAhg4sSJGfb/SwscD3Dw4EGWLVvG0qVLiYuL499//yUgIIDQ0FAGDx5MeHg4hQsXdjqmUkopdd1eeuklTp06xdChQwkICGDUqFEZUuRogeOAc+fOsWHDBqKiooiKimL79u0AlClThsjISBo3bkzt2rXJnj27w0mVUkqpmzd48GBOnTrFmDFjuOWWWxg0aJDbH1MLnAwSHx9PVFQUK1asIDY2llOnTpElSxZq1arFW2+9RUREBHfeeaceelJKKeVzRITRo0eTkJDAG2+8QWBgIH369HHrY2qB4yZnz55l/fr1rFixgqioKH744QfAum5H69atCQsLo379+nq9J6WUUpmCn58fkyZNIjExkRdffJHAwEAiIyPd9nha4KSjAwcOXDrsFBcXR2JiIlmzZiUoKIi3336bsLAwKlasqHtplFJKZUr+/v5Mnz6d06dP8+yzzxIQEEDbtm3d8lha4NyEf/75hy+//JKVK1cSFRXFzp07AShVqhTt27enYcOGPPLIIwQGBjqcVCmllPIM2bJlY+7cuYSHh9OxY0dy585N06ZN0/1xtMC5DhcuXGDbtm3ExMQQExPDl19+yX///Ue2bNmoU6cOTz31FGFhYXoujVJKKXUVOXPmZPHixQQHB9OqVSuWLVtGcHBwuj6GFjjXEB8ff6mgiY2N5dixYwBUqlSJbt26ERoaSlBQELlz53Y4qVJKKeU9AgMDiYqKom7dujRt2pSYmBgeeuihdFu/FjjJJCYmsnbtWqKjo4mJibl02Klw4cI0aNCAkJAQgoODKVq0qMNJlVJKKe+WL18+YmJiCAoKIjw8nNWrV1O1atV0WbdfuqwlFSLSUER2i8heEemXQruIyPt2+3YRqZbWZdNLUlISmzZtYtiwYdSpU4d8+fLRuHFjJk6cSMmSJXnnnXfYtm0bR44cYdq0aXTs2FGLG6U8iDf0M0qp1BUuXJjY2FhuueUWQkNDL+1YuFlu24MjIv7AB0AIEA9sFpHFxpifXGYLAyrYP/cDHwH3p3HZG7Z///5Le2ji4uI4ceIEAFWrVuWFF14gJCSEWrVqOXL1U6VU2nlyP6OUSruSJUsSGxtLUFAQwcHBrF+/njJlytzUOt15iKomsNcYsw9ARGYBTQHXzqMp8JkxxgAbReRWESkClE7DsjekTp06rFu3DrDGpGnWrBmhoaHUr1+fggUL3uzqlVIZyyP7GaXU9atQoQIxMTHUrVuX+vXrs3nzZvLnz3/D63NngVMMOOhyPx7r09O15imWxmUBEJFI4OJIQYkisjsN2QoAx+Pj45kyZQpTpkxJwyIZrgBw3OkQaaA50483ZIS05yzl7iB4dj8D3vM3TQtfei6gz8ej/fXXXwUKFCiQ1ueTYl/jzgInpe9JmzTOk5ZlrYnGTAQmXlcwkS3GmOrXs0xG84aMoDnTkzdkBI/L6bH9DHjca3VTfOm5gD4fT5cez8edBU48UMLlfnHgcBrnyZaGZZVSSvsZpVSK3Pktqs1ABREpIyLZgDbA4mTzLAY62t9yeAA4aYw5ksZllVJK+xmlVIrctgfHGHNeRHoAKwF/YLIx5kcRedZuHw8sB8KBvcAZoPPVlk3HeNe9q9kB3pARNGd68oaM4EE5PbyfAQ96rdKBLz0X0Ofj6W76+Yj1xQKllFJKKd/h1oH+lFJKKaWcoAWOUkoppXyOTxc4NzOEuwdlbGdn2y4iG0SkckZnTEtOl/lqiEiSiLTMyHz2Y18zo4jUFZHvReRHEVmb0RntDNf6m98iIktEZJuds7MDGSeLyFER+SGVdse3HW8gIm+LyC77NVogIrc6nelmiMhj9nvygoh47VeS09qfeYNrbaveRkRKiMhqEdlpv9d63fDKjDE++YN10uAvQFmsr4NuAyommycciMIaD+MB4BsPzPgQkNe+HZbRGdOa02W+VVgndbb0tIzArVij1Ja07xfyxNcS6A+8Zd8uCPwFZMvgnLWBasAPqbQ7uu14yw8QCmSxb7918e/qrT/AXcAdwBqgutN5bvA5pKk/85afa22r3vYDFAGq2bcDgT03+vfx5T04l4ZwN8acBS4Ow+7q0hDuxpiNwMUh3D0mozFmgzHmhH13I9ZYHRktLa8lwHPAPOBoRoazpSVjW2C+MeYAgDHGU3MaIFBEBAjAKnDOZ2RIY8w6+3FT4/S24xWMMdHGmIt/O6e233RjjNlpjEnrKM6eKq39mVdIw7bqVYwxR4wx39q3E4CdWKOOXzdfLnBSG579eudxp+t9/C5Yn5oz2jVzikgxoDkwPgNzuUrLa3k7kFdE1ojIVhHpmGHp/i8tOcdhfVI+DOwAehljLmRMvDRzetvxRk/izParLqfvXS8hIqWBqsA3N7K8O0cydtrNDOGeUdL8+CJSD6vAeditiVKWlpxjgJeNMUnWjocMl5aMWYD7gPpATuBrEdlojNnj7nAu0pKzAfA98AhQDogRkS+NMafcnO16OL3teAwRiQVuS6FpgDFmkT3PAKy9cDMyMtuNSMvz8XL63vUCIhKAdUSg9432fb5c4NzMEO4ZJU2PLyL3Ah8DYcaYPzMom6u05KwOzLKLmwJAuIicN8YszJCEaf97HzfGnAZOi8g6oDLWMd6MkpacnYE3jXUQeq+I/ArcCWzKmIhp4vS24zGMMcFXaxeRJ4DGQH37b+rRrvV8fIC+dz2ciGTFKm5mGGPm3+h6fPkQ1c0M4e4xGUWkJDAf6JDBexpcXTOnMaaMMaa0MaY0MBfoloHFTZoyAouAIBHJIiK5sK4cvTMDM6Y15wGsvUyISGGskzr3ZWjKa3N62/EKItIQeBloYow543QeBeglOjyafe7hJ8BOY8yom1mXz+7BMTcxhLuHZRwI5Ac+tPeOnDcZfMXYNOZ0VFoyGmN2isgKYDtwAfjYGJOhX61M42s5BJgqIjuwdqe/bIw5npE5RWQmUBcoICLxwOtAVpeMjm47XmQckB3rMCPARmPMs85GunEi0hwYi/XtvmUi8r0xpoHDsa5Latugw7FuWErbqjHmE2dT3ZRaQAdgh4h8b0/rb4xZfr0r0ks1KKWUUsrn+PIhKqWUUkplUlrgKKWUUsrnaIGjlFJKKZ+jBY5SSimlfI4WOEoppZTyOVrgqAwlImNEpPYNLLfCvhxESm09nLjitlLKM4nIIBF5MQ3zbbXHwnGd1klExrkvncooWuCoDCMi+YAH7IvDXc9yOYF8xphDqcwyGeh5s/mUUpmHfZ2jQ/YFN5UP0gJHpTsRKS0iP7jcf1FEBgEtgRUu0/eLyHAR+VpEtohINRFZKSK/XBz4zlYXWGMv86aI/CQi20XkHQB7hNj9IlLT/c9OKeWJRGSAiOy2r6V1hz1tjYhUt28XEJH9LouEYfdHItJZRPaIyFqsgeYQkUAR+dW+bAAiksfus7Jm4NNSN0ELHJWRagFbk007aIx5EPgSmIpVBD0ADHaZJwxYYe8Bag7cbYy5FxjqMs8WIMhNuZVSHkxE7sO65EJVoAVQIw2LNcTqV4oAb2D1TyFARQBjTALWB6tG9vxtgHnGmHPpGl65jRY4KiMVAY4lm3bxGjA7gG+MMQnGmGPAvyJyq91WC1gPnAL+BT4WkRZYlwi46ChQ1F3BlVIeLQhYYIw5Y195+qrXlrLPuylujNmHdU26NcaYY/bhqtkus37M/y9D0hmYkv7RlbtogaPc4TyXv7dy2L//cbl90X/27wsuty/ezyIiZbH28pw1xpwHamJdZbYZLoe77PX+ky7plVLeKKXrDrn2Ra59TxDWh6arLYsx5iugtIjUAfwz+tp16uZogaPc4Q+gkIjkF5HsQGN7+k6g/HWuy/U4eQBwi33Rtd5AFZf5bge081Eqc1oHNBeRnCISCETY0/cD99m3W7rM3xCIsm9/A9S1+6uswGPJ1v0ZMBPde+N1tMBR6c4+Rj0Yq+NYCuyym5ZhnTB8PRry/z01gcBSEdkOrAWed5mvFhB7g5GVUl7MGPMt1qGl77H28H5pN70DdBWRDUABl0XqYvUhGGOOAIOAr7H6kG+TrX4GkBeryFFeRK8mrjKUiKwHGhtj/k7DvNmBr4wx1a8xX1XgBWNMh/RJqZTyVSJSHJhkjAlL4/wtgabav3gfLXBUhhKR+4F/jDHb03GdIcDPxpj96bVOpZQSkbFYh8nDjTF7nM6jro8WOEoppZTyOXoOjlJKKaV8jhY4SimllPI5WuAopZRSyudogaOUUkopn6MFjlJKKaV8zv8AdbiMkbkNVusAAAAASUVORK5CYII=\n", "application/papermill.record/text/plain": "
" }, "metadata": { "scrapbook": { "mime_prefix": "application/papermill.record/", "name": "rot1_fig" } }, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjgAAAEYCAYAAABRMYxdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAABWYElEQVR4nO3deZxN9R/H8ddnxm5G2bPvLVKW0KKxZGaYYWwJ2SI1ZQmlJEqylgpFZSkUsmTfhllsSbJUqCxJYlAoMUOF8f39cQ6/a8wwmDvn3juf5+Mxj7n3fM85933v3POdzz3n3O8RYwxKKaWUUr7Ez+kASimllFLpTQscpZRSSvkcLXCUUkop5XO0wFFKKaWUz9ECRymllFI+RwscpZRSSvkcLXAyEREpLCLrRCRBRN4Vkf4i8rHdVlpEjIhkSeO6porIUPcmvuIxB4nI9JtcRzsRib5K+xoReeoG153hr4nK3ERkv4gE27cvbc/KWdfbV9l9b3l3ZkrhMS+9d25iHVEi8kQqbdf1PyWF5W/6NbmhB1YZR0T2A4WBJOA0sBx4zhiTeAOriwSOA3lMJh0AyRgzA5jhdA7l+0SkDfA8UAlr2/0V+BT4yB3bnzFmeHqsR0RKY2XNaow5n9HLK+9hjAlzOsPV6B4c7xBhjAkAqgE1gFevZ2Gx+AGlgJ8ya3GjVEYRkT7Ae8DbwG1YH1KeBWoB2VJZxj/DAjrsRj/VZyRvyKiuTgscL2KMOQREYX0iREQeEJENIvK3iGwTkboX57UPtQwTka+AM8BnwBNAXxFJFJHg69mNKiJVReRb+/DWbCBHsvbGIvK9nWWDiNybynrGi8g7yaYtEpEX7NtFRWSeiBwTkV9FpOdVMjURkR/tx1wjIne5tJUQkfn2ev4UkXH29E4ist5lvhAR2SUiJ+15xKWtnIisspc/LiIzROTW9HhNRORlETlkL7tbROqn9jyVdxGRW4DBQDdjzFxjTIKxfGeMaWeM+c+eb6qIfCQiy0XkNFBPRBqJyHcickpEDorIoGTr7iAiv9nvyQHJ2i7bntPQPwwRka/s92C0iBSwm9fZv/+2+4oH7WWeFJGdInJCRFaKSKlUXoIrlre3u69EZLSI/AUMSsP2tV9EXhSR7fb2OVtEcthtBURkqf3c/hKRL0XET0T6icjcZK/LeyLy/sW/jYh8IiJH7O1vqNiFZSoZy4vIWvvxj9vbuet6D9p/q60iEpTK63EFEXnJznBYRJ5M1pZdRN4RkQMi8odYfWbOFNaR3X7+lVymFRSRf0SkkH0/rf1ydhEZY+c5bN/O7tLe1F7PKRH5RUQa2tMvHdIXEX8793ER2Qc0SvYYne33T4KI7BORZ9L6mtwwY4z+ePAPsB8Itm+XAH4EhgDFgD+BcKxCNcS+X9Cedw1wALgb61BkVmAqMNRl3YOA6fbt0oABsqSQIRvwG9bu9qxAS+DcxXVh7Vk6CtwP+GMVUvuB7CmsqzZwEBD7fl7gH6Co/Ty2AgPtxywL7AMapJD3dqzd/iF2pr7AXns5f2AbMBrIjVV4PGwv1wlYb98uAJyyn09W+/mdB56y28vb688OFMTquMfc7GsC3GG/BkVdXvtyTr/X9CfdttmG9vvoim0p2XxTgZNYe3X87PdpXeAe+/69wB9AM3v+ikCivQ1lB0bZj3Oxf3DdPtLSP/xib0c57ftvurwfL+sLgGb29nUXVn/yKrAhleeV0vKd7KzP2cvnvNr2ZS+zH9iE1TfkA3YCz9ptI4Dx9raXFQjC+nBSCusDXR57Pn/gCPCAfX8hMAGrXyhkr/+Zq2ScCQxw+fs87JKvPZDfnrcP8DuQI/nfIpX3xx9YH1RzA5/br1d5u30MsNh+zoHAEmBEKuuaDAxzud8dWGHfvmq/zOX/WwYDG+3XpCCwARhit9XEep+G2K9DMeBOl/fRxf7yWWAX1v+pfMBq1/cBVsFTzv471bH/TtXS8prc8LbodGegP9f4A1lvwkTgb6x/qB/aG97LwLRk864EnnB54w1O1j6VGytwagOHsYsSe9oG/v/P/KOLG4NL+26gTgrrEqzCq7Z9/2lglX37fuBAsvlfAaakkPc1YI7LfH7AIax/EA8Cx1J5Lp34f4HTEdiYLFv8xQ02hWWbAd/d7GuC1bEfBYKxzlNw/H2mP+n3g/WP7/dk0zbY2/A/Lu/9qcBn11jXGGC0fXsgMMulLTdwlpQLnLT0D6+6tHXj//8Yr+gLsPYcd3G574f1D6pUCplTWr5T8m07heUubV/2/f1Ae5f7I4Hx9u3BwCJS+AcIrAc62rdDgF/s24WB/4CcLvM+DqxOLSPWnu+JQPE0/N1PAJWT/y1SmG8ydjFp37/dfr3KY/VBp3H5wIPVn/2ayrqCgX0u979yee5X7Ze5vMD5BQh3ma8BsN++PeHiezCFx1/D/wucVdgFqH0/NPn7INmyC4Fe13pNrmfbS/6jh6i8QzNjzK3GmFLGmG7GmH+wPqk8Zu96/FtE/gYeBoq4LHcwnR6/KHDI2O88228ut0sBfZJlKWEvdxl7HbOwOhaAtvz/pN9SQNFk6+mP1TGllOlSBmPMBaznW8x+7N/MtU9wLIrLa2Rnu3RfRAqJyCx7V/YpYDrWXp+Ly97Qa2KM2Qv0xuoEj9qPccVrpbzWn0ABcTmHwxjzkDHmVrvNtd+9bBsVkftFZLVYh1ZPYn0qdn3Pub5fT9vrS0la+offXW6fAQKu8pxKAe+5rOsvrH/Gxa6yTHLJn+vVtq9rZXwba49StH24o5/LfJ9zef/yuctzyAoccXkeE7D2WqSYEWvPsACbxDocfunQiYj0sQ+5nLTXdUsK+VNy2d+Ry/uNgkAuYKtLxhX29JSsAnLa75tSQBVggcvzTVO/TLL+1L59cb4SWAXQzTwvRCRMRDaKdUjxb6y9iym+t5Mve6O0wPFeB7E+od3q8pPbGPOmyzwmtYWv0xGgmIiIy7SSybIMS5YllzFmZirrmwm0tDfI+4F5Luv5Ndl6Ao0x4Sms4zDWBgxYJ1JjbYiH7PWUlGufJHjEXib5Oi4agfUa3muMyYP1yVxclr3h18QY87kx5mH7ORjgrWtkVd7ja6w9BU3TMG/ybfRzrMMTJYwxt2AdhnF9z7m+X3NhHSJJSVr6h7Rmuri+Z5KtL6cxZkMal09p+tW2r6sHtM5r6mOMKQtEAC/I/89j+wKoKyLFgeb8v8A5iPV3KeDyHPIYY+5OLaMx5ndjzNPGmKLAM8CHYp2XE4S1l6wVkNcuXk+mMf9lf0cu7zeOY+3lu9sl4y3G+pJJSq/DBWAOVkHXFlhqjElweb5p7Zcv60/tTIdd1lPuZp6XfT7PPOAdoLD9ei0nlfc2l78mN0wLHO81HYgQkQb2yV05ROTiRp3evsY6Nt1TRLKISAus47IXTQKetT9FiIjkFutkycCUVmaM+Q7rENLHwEpjzN920ybglFgn4Oa0n1clEamRwmrmAI1EpL6IZMU6Bv4f1qGATVgbzJt2lhwiUiuFdSwD7haRFnYx1BPrGy8XBWIfHhSRYsBL6fGaiMgdIvKIvdH/i9WhJaX0WinvY7+f38D6Z9hSRALEOgG2CtZhpasJBP4yxvwrIjWx/mldNBdoLCIPi0g2rMM0qfXhN9M/HAMuYJ0Dd9F44BURuRsunaz72HUsn5KrbV9XJdbJs+XtDxinsLafJABjzDGsQydTsD4w7bSnHwGigXdFJI/9NyknInWu8jiPubxmJ7AKoCQ7+3n7uWYRkYFAnjTGnwN0EpGKdpH6+sUGu2CZBIyW/58oXExEGlxlfZ8DrYF2/L+Yg+vrl2cCr4p1knIBrMOhF09Y/wTobPe1fnaeO1N5Xj1FpLiI5AVc96plwzrX6hhwXkTCsA5hXfM1uRla4HgpY8xBrE+I/bHeNAexOoh0/5saY84CLbCOUZ/A2pjmu7RvwTqXZpzdvtee92pmYh0/vrRBGmOSsD6NVcEaR+M4VhF0SwqZdmN94htrzxeB9XX6sy7rKY91vk+8nTn5Oo4DjwFvYu3qr4B1DPuiN7BO1DuJVQy5PuebeU2y2495HGsXfCGsv6PyEcaYkcALWIc4jmKdQDkB61N/Sns9LuoGDBaRBKx/MnNc1vkj1kmkn2MV8Cew3tspPf4N9w/GmDPAMOAr+9DGA8aYBVh7GWeJdTjpByDFMVBSWj6Vh0p1+0qDCkAsVoH0NfChMWaNS/vnJOtfbB2x/tn+hPX6zeXyw3bJ1QC+EZFErD1rvYwxv2KdzxQF7ME6nPIvaTwlwBgThXVu1SqsfmFVslletqdvtF/rWKwvJqS2vm+wztspame6OP16+uWhwBZgO7AD+NaehjFmE9AZ60sbJ4G1XL6356JJWK/LNnt51/4wAesD5Bw7S1us1/Ni+7Vekxty8ZssSimllFI+Q/fgKKWUUsrnuK3AEWugtdVinWX+o4j0SmEeEZH3RWSvWIM5VXNpayjWAGh75fIz5JVS6hLta5RSKXHnHpzzQB9jzF3AA0B3EamYbJ4wrGOpFbCuk/QRXBqy/AO7vSLweArLKqUUaF+jlEqB2wocY8wRY8y39u0ErFEok4+Z0BRroCtjjNkI3CoiRbC+jbLXGLPPPplzFmn7yqVSKpPRvkYplZIMuZiYWFeXrQp8k6ypGJefeR5vT0tp+v2prDsS6xMZuXPnvu/OO1P69tr//fjjj/z777/4+fkRGBhInjx5yJMnDzly5Ljqckqp67N169bjxpjUBihzC3f1NdfbzyQkJLBnzx5uvfVWypYti0iahndRSt2A1Poatxc4IhKANcBPb2PMqeTNKSxirjL9yonGTMQaSpvq1aubLVu2XDXPiRMnWL16NbGxscTGxvLzzz8DUKRIEYKDgwkJCSE4OJgiRa72zUGl1LWISLqMRnodj+e2vuZ6+xmAMWPG8Pzzz3PPPfcwefJk/Pz0Ox1KuUNqfY1bCxyxBmCbB8wwxqQ0xkE8l49eWBxr9MRsqUy/aXnz5qVFixa0aNECgN9+++1SsRMVFcW0adMAuOeeewgNDSU0NJSgoCBy5rziYq5KKQ/hiX1N7969OXXqFK+//jqBgYG8//77uidHqQzkzm9RCdYIiDuNMaNSmW0x0NH+hsMDwEl7tMnNQAURKWOP2NkGl0GB0lOpUqXo0qULM2fO5I8//uC7777jrbfeolChQowdO5YGDRqQL18+GjRowKhRo/jhhx8uXgxMKeUBPLmvee211+jTpw/jxo1jwIAB6bVapVQauHMPTi2gA7BDRL63p/XHvsaEMWY81rUowrFGLjyDNVoixpjzItIDa1REf2CyPYqnW/n5+VGlShWqVKlC3759OXPmDGvXriU6OpqVK1fSp08fAIoWLXpp705ISAgFCqTl+mpKKTfx2L5GRHj77bdJSEhgxIgRBAYG8sorr6TX6pVSV+FTIxmn9dj4jTp48CDR0dFER0cTExPDiRMnEBGqVatGgwYNCA0N5cEHHyRbtmxuy6CUtxCRrcaY6k7nSG830s8kJSXRsWNHPv/8c8aNG0f37t3dlE6pzCe1vkYLnBuUlJTE1q1bWblyJdHR0Xz99dckJSUREBBAvXr1CA8PJywsjFKlUrpkh1K+Twucy507d47HHnuMRYsWMXXqVJ544gk3pFMq89ECx81OnjzJ6tWriY6OJioqiv379wNQsWLFS8XOww8/rHt3VKahBc6V/v33XyIiIli1ahVz5szh0UcfTed0SmU+WuBkIGMMu3fvJioqiuXLl7Nu3TrOnj1LQEAAwcHBlwqe4sWLOx1VKbfRAidlp0+fJjQ0lM2bN7N48WIaNmyYjumUyny0wHFQYmIiq1atulTwHDhwALC+ih4WFkZ4eDgPPfQQWbNmdTipUulHC5zU/f333zzyyCPs3LmTlStXUrt27XRKp1TmowWOhzDG8NNPPxEVFUVUVBRffvkl586dI0+ePISEhBAWFkajRo247bbbnI6q1E3RAufqjh07Ru3atTl06BBxcXHUqFEjHdIplflogeOhEhISiIuLY/ny5URFRREfHw9AjRo1iIiIICIigsqVK+sAYcrraIFzbYcOHSIoKIiTJ0+ydu1aKlWqlC7rVSoz0QLHCxhj2LFjB0uXLmXJkiV88803GGMoXrw4jRs3JiIigkceeUSvm6W8ghY4abNv3z6CgoK4cOECX375JeXLl0+3dSuVGaTW1+jFUTyIiHDvvffSv39/vv76a44cOcLkyZOpUaMG06ZNo1GjRuTPn59mzZrxySef8PvvvzsdWSl1k8qWLUtMTAznz5+nfv36HDx48NoLKaWuSQscD1a4cGE6d+7M/PnzOX78OFFRUXTu3JnvvvuOp556iiJFilCzZk2GDBnC999/r5eQUMpLVaxYkZUrV/L3338THBzMH3/84XQkpbyeFjheIkeOHDRs2JBx48axf/9+tm3bxtChQ/Hz8+P111+natWqlCpVip49e7Jq1SrOnz/vdGSl1HWoVq0ay5cvJz4+ntDQUE6cOOF0JKW8mhY4XujioawBAwawceNGjhw5wieffEK1atWYNGkS9evXp3DhwnTq1ImFCxdy5swZpyMrpdKgVq1aLFy4kF27dhEWFkZCQoLTkZTyWlrg+IDChQvz5JNPsnDhQo4fP878+fNp1KgRixYtonnz5hQoUIDmzZvz2Wef8ddffzkdVyl1FSEhIcyePZstW7bQtGlT/vnnH6cjKeWVtMDxMblz575UzBw9epTY2FiefPJJNm/ezBNPPEGhQoWoX78+48aN05MZlfJQzZo1Y+rUqaxZs4bHHnuMc+fOOR1JKa+jBY4Py5o166Vi5sCBA2zatIm+ffty+PBhnnvuOUqWLEmNGjUYPnw4e/bscTquUspF+/bt+eijj1i2bBkdOnQgKSnJ6UhKeRUtcDIJPz+/S8XMzp072blzJyNGjMDf358BAwZwxx13ULlyZYYMGcKuXbucjquUAp555hnefvttZs+eTWRkJBcuXHA6klJeQwucTOrOO++kX79+bNy4kQMHDjBmzBgCAwMZOHAgd911F5UqVeKNN97gp59+cjqqUpnaiy++yGuvvcbkyZN54YUXdDgIpdJICxxFiRIl6NWrF+vXryc+Pp7333+ffPny8cYbb3D33XdTsWJFXn/9dX744QftXJVywBtvvEGvXr147733GDRokNNxlPIKWuCoyxQrVoznnnuOdevWER8fz7hx4yhUqBBDhgzhnnvu4a677uK1115j27ZtWuwolUFEhNGjR9OlSxcGDx7MO++843QkpTyeFjgqVUWLFqV79+6sWbOGw4cP8+GHH1K0aFGGDx9OlSpVqFixIoMHD+bnn392OqpSPk9EmDBhAq1ateKll15iwoQJTkdSyqO5rcARkckiclREfkil/SUR+d7++UFEkkQkn922X0R22G3ee/VMH3LbbbfRtWtXVq1axZEjR/joo48oVKgQgwYN4vbbb6d69eq8++67l66GrlRGyUx9jb+//6Xr0nXt2pUZM2Y4HUkpj+W2q4mLSG0gEfjMGFPpGvNGAM8bYx6x7+8Hqhtjjl/PY3r71cS9UXx8PLNnz2bmzJls3boVESEoKIjHH3+cli1bUqBAAacjKodk1NXEM7qv8YR+5p9//qFRo0asW7eOuXPn0qxZM0fzKOWkDL+auDFmHZDWYXMfB2a6K4tyn+LFi9OnTx+2bNnC7t27GTRoEH/88Qddu3alSJEiNGrUiOnTp+uQ88ptMmNfkzNnThYtWkT16tVp3bo1MTExTkdSyuM4fg6OiOQCGgLzXCYbIFpEtopI5DWWjxSRLSKy5dixY+6Mqq7h9ttvZ+DAgezcuZNvv/2W559/nh07dtChQwcKFy5M69atWbp0qY7KqhxxM32NJ/YzgYGBLF++nDvvvJNmzZrx1VdfOR1JKY/ieIEDRABfGWNcP4HVMsZUA8KA7vYu6BQZYyYaY6obY6oXLFjQ3VlVGogIVatWZeTIkezfv58vv/ySzp07ExcXR0REBMWKFaN379589913+k0slZFuuK/x1H4mX758REdHU7x4ccLDw/n222+djqSUx/CEAqcNyXYZG2MO27+PAguAmg7kUunAz8+Phx9+mA8++IDDhw+zaNEiateuzUcffUS1atW49957efvttzl8+LDTUZXv88m+pnDhwsTGxnLrrbcSGhpK/MiRULo0+PlZv/VEZJVJOVrgiMgtQB1gkcu03CISePE2EAqk+O0I5V2yZctGkyZNmDt37qVvYgUGBtK3b19KlChBgwYNmDFjBqdPn3Y6qvIxvt7XlChRgri4OFqdO0e+fv3gt9/AGOt3ZKQWOSpTyuKuFYvITKAuUEBE4oHXgawAxpjx9mzNgWhjjOt/tMLAAhG5mO9zY8yKdA1Xt+6V01q1gm7d4MwZCA+/sr1TJ+vn+HFo2fLK9q5doXVrOHgQOnS4sr1PH4iIgN274Zlnrmx/9VUIDobvv4feva9sHz4cHnoINmyA/v2vbB8zBqpUgdhYGDr0yvYJE+COO2DJEnj33Svbp02DEiVg9mz46KMr2+fOhQIFYOpU6ye55cshVy748EOYM+fK9jVrrN/vvANLl5IPeBZ4Nls2TgcF8Vbdunz22Wfsat+eb/38KFiwIL/PmkXt2rXx8/OEHY3KU3l0X5OBypcvz5jcucl26tTlDWfOwIAB0K6dM8GUcojbChxjzONpmGcqMDXZtH1AZfekUp4od+7cDB48mEGDBnHg6af5b/lyjh47Rr169ShbtixdunShU6dOFC1a1OmoygNpX/N/2X7/PeWGAwcyNohSHsBt4+A4wRPGp1Dp48yZM8yfP59PPvmENWvW4OfnR6NGjejSpQvh4eFkzZrV6YjqGjJqHJyM5tH9TOnS1mGp5EqVgv37MzqNUhkiw8fBUepm5MqVi/bt27N69Wp+/vlnXn75ZTZv3kyzZs0oWbIk/fr100tEKJXcsGHWoWIX//j58e/AgQ4FUso5WuAoj1e+fHmGDx/OwYMHWbRoETVq1OCdd97h9ttvp27dukybNo0zZ844HVMp57VrBxMnWntsRDhdoABPXbhAxMyZ/Pvvv06nUypDaYGjvEaWLFlo0qQJixcv5sCBAwwfPpz4+Hg6duxI0aJF6dmzJ7t27XI6plLOatfOOhx14QK5jx0jdOpUYmNjadOmjQ6yqTIVLXCUVypatCivvPIKe/bsYfXq1YSHhzN+/Hjuuusu6tevz7x587QzVwp44oknGDt2LIsWLaJTp05cuHDB6UhKZQgtcJRX8/Pzo27dunz++efEx8czfPhw9u7dS8uWLSldujSDBg3i0KFDTsdUylE9evRg+PDhfP7553Tr1k1HEFeZghY4ymcUKlSIV155hX379rFkyRIqV67M4MGDKVWqFC1btmTVqlXasatM65VXXuGVV15hwoQJvPTSS7otKJ+nBY7yOf7+/jRu3Jjly5fz888/88ILL7B69Wrq169PxYoVef/99/Xq5ipTGjZsGN27d+fdd99laEoDgirlQ7TAUT6tXLlyjBw5kvj4eD799FPy5MlDr169KF68OC+++CK/pTRmiFI+SkR4//33eeKJJxg4cCBjxoxxOpJSbqMFjsoUcubMSceOHfnmm2/45ptvCA8PZ8yYMZQtW5ZWrVrx9ddfOx1RqQzh5+fHxx9/zKOPPsrzzz/Pxx9/7HQkpdxCCxyV6dSsWZOZM2fy66+/8uKLLxITE8NDDz3EAw88wOzZszl//rzTEZVyqyxZsjBjxgwaNmxIZGQks2fPdjqSUulOCxyVaZUoUYK33nqLgwcPMm7cOP7880/atGlD2bJlefvtt/n777+djqiU22TPnp158+YRFBRE+/btWbp0qdORlEpXWuCoTC8gIIDu3buze/duFi9eTPny5enbty8lSpTgpZde4siRI05HVMotcuXKxZIlS6hSpcqlbxoq5Su0wFHK5ufnR0REBKtWreK7776jSZMmjBo1itKlS/PMM8/wyy+/OB1RqXSXJ08eVqxYQfny5WnSpAkbN250OpJS6UILHKVSUKVKFWbMmMGePXvo3LkzU6dO5fbbb6dt27Zs377d6XhKpav8+fMTExPDbbfdRlhYGNu2bXM6klI3TQscpa6iXLlyjB8/nv3799OnT59LAwg2btyYr776yul4SqWbIkWKEBcXR0BAACEhIezevdvpSErdFC1wlEqDIkWKMHLkSA4cOMDgwYPZuHEjDz/8MLVr1yYuLk5HhVU+oVSpUsTFxSEiBAcHs3//fqcjKXXDtMBR6jrkzZuX1157jd9++40xY8awb98+goODqVOnDmvWrHE6nlI37fbbbyc6OprExESCg4P1JHvltdxW4IjIZBE5KiI/pNJeV0ROisj39s9Al7aGIrJbRPaKSD93ZVTqRuXOnZtevXqxd+9exo4dyy+//EK9evWoV68e69atczpepqJ9TfqrXLkyUVFR/P7774SEhHD8+HGnIyl13dy5B2cq0PAa83xpjKli/wwGEBF/4AMgDKgIPC4iFd2YU6kbliNHDnr06MHevXsZM2YMu3btok6dOtSvX58NGzY4HS+zmIr2NenugQceYMmSJezdu5eGDRty6tQppyMpdV3cVuAYY9YBf93AojWBvcaYfcaYs8AsoGm6hlMqneXMmZNevXrxyy+/8O677/LDDz9Qq1YtmjZtyo8//uh0PJ+mfY371KtXj7lz57Jt2zYaN27MmTNnnI6kVJo5fQ7OgyKyTUSiRORue1ox4KDLPPH2tBSJSKSIbBGRLceOHXNnVqWuKVeuXLzwwgvs27ePYcOGsWbNGu699146d+7MgQMHnI6Xmd1UX5OZ+5nGjRszffp0vvrqK1q0aMF///3ndCSl0sTJAudboJQxpjIwFlhoT5cU5k31KyrGmInGmOrGmOoFCxZM/5RK3YDcuXPTv39/9u3bR+/evfn888+5/fbbefHFF/nzzz+djpfZ3HRfk9n7mdatWzNp0iRWrlxJ27Zt9Xptyis4VuAYY04ZYxLt28uBrCJSAOtTVAmXWYsDhx2IqNRNy58/P++++y4///wzjz/+OKNHj6ZcuXKMGjWKs2fPOh0vU9C+Jn08+eSTjB49mvnz59OlSxcuXLjgdCSlrsqxAkdEbhMRsW/XtLP8CWwGKohIGRHJBrQBFjuVU6n0ULJkSaZMmcK2bdt48MEH6dOnD5UqVWLJkiU6ho6baV+Tfnr37s3gwYP57LPP6Nmzp753lUdz59fEZwJfA3eISLyIdBGRZ0XkWXuWlsAPIrINeB9oYyzngR7ASmAnMMcYo2dpKp9QqVIloqKiWL58Of7+/jRp0oTQ0FB27NjhdDSvpX1Nxnr11Vd56aWX+OCDD+jfv7/TcZRKlfhSBV69enWzZcsWp2MolSbnzp1j/PjxvP7665w8eZJnnnmGYcOGkTdvXqejpQsR2WqMqe50jvSm/QwYY+jWrRvjx49n+PDhvPLKK05HUplYan2N09+iUirTypo1K8899xx79+6lW7duTJgwgTvuuIPPPvtMd/0rjyYifPDBB7Rr147+/fszbtw4pyMpdQUtcJRyWL58+Rg7dixbt26lXLlyPPHEE9StW1fHz1Eezc/PjylTptC0aVOee+45pk6d6nQkpS6jBY5SHqJKlSp89dVXTJgwgR07dlClShX69eung6spj5U1a1Zmz55NSEgIXbp0Ye7cuU5HUuoSLXCU8iB+fn5ERkaye/duOnTowFtvvUXlypX1+lbKY2XPnp0FCxbwwAMP0LZtW6KiopyOpBSgBY5SHqlgwYJMnjyZuLg4kpKSqFOnDj169CAxMdHpaEpdIXfu3CxbtoxKlSrRokUL1q5d63QkpbTAUcqTPfLII+zYsYOePXvy4YcfUqlSJWJjY52OpdQVbr31VlauXEmZMmWIiIhg8+bNTkdSmZwWOEp5uNy5c/Pee++xbt06smfPTkhICM899xz//POP09GUukzBggWJiYmhQIECNGjQQMd3Uo7SAkcpL/Hwww/z/fff07t3b8aNG0f16tXZtm2b07GUukyxYsWIi4sjZ86chISE8PPPPzsdSWVSWuAo5UVy5szJ6NGjWblyJSdOnKBmzZqMGjVKrwukPEqZMmWIjY0lKSmJ4OBgDhw44HQklQlpgaOUFwoNDWX79u2EhYXRp08fwsLCOHbsmNOxlLrkrrvuIjo6mpMnTxIcHMwff/zhdCSVyWiBo5SXKlCgAAsWLGDChAmsW7eOatWqsXHjRqdjKXVJ1apVWbZsGYcOHSIkJIS//vrL6UgqE9ECRykvJiJERkayYcMGsmXLRu3atRk7dqxe6kF5jFq1arFo0SJ2795NWFgYCQkJTkdSmYQWOEr5gKpVq7JlyxYaNmxIz549adu2LadPn3Y6llIABAcHM2fOHLZu3UqTJk30G4AqQ2iBo5SPyJs3LwsXLmTYsGHMnj2bOnXqcPjwYadjKQVA06ZN+fTTT1m7di2PPfYYZ8+edTqS8nFa4CjlQ/z8/Ojfvz+LFi1i165d1KxZk++++87pWEoB0K5dO8aPH8+yZcvo0KEDSUlJTkdSPkwLHKV8UEREBOvXr0dECAoKYvHixU5HUgqAyMhI3nnnHebMmcPTTz+tQxwot9ECRykfVaVKFTZt2sRdd91Fs2bNmDRpktORlAKgT58+DBw4kClTpvD888/rSfHKLbI4HUAp5T5FihRh7dq1PProo0RGRnLq1Cn69OnjdCylGDRoEKdOnWLMmDHccsstDB482OlIyse4rcARkclAY+CoMaZSCu3tgJftu4lAV2PMNrttP5AAJAHnjTHV3ZVTKV+XK1cuFi1aRPv27XnxxRf5+++/GTx4MCLidLR0oX2NdxIRRo0aRWJiIkOGDCEwMJCXXnrJ6VjKh7hzD85UYBzwWSrtvwJ1jDEnRCQMmAjc79Jezxhz3I35lMo0smXLxsyZM8mTJw9Dhw7l9OnTvPvuu75S5ExF+xqvJCKMHz+ehIQE+vbtS2BgIM8++6zTsZSPcFuBY4xZJyKlr9K+weXuRqC4u7IopcDf359JkyaRK1cuRo8eTUBAgE8cFtC+xrv5+/szbdo0Tp8+Tbdu3QgICKB9+/ZOx1I+wFPOwekCRLncN0C0iBhggjFmojOxlPItIsJ7773HmTNnGDJkCAEBAfTt29fpWBlJ+xoPlDVrVr744gsaNWpEp06dyJ07N82bN3c6lvJyjhc4IlIPq9N52GVyLWPMYREpBMSIyC5jzLpUlo8EIgFKlizp9rxKeTsRYcKECZw+fZqXX36ZwMBAunbt6nQst7uZvkb7GffLkSMHixYtIiQkhDZt2rBkyRJCQ0OdjqW8mKNfExeRe4GPgabGmD8vTjfGHLZ/HwUWADVTW4cxZqIxproxpnrBggXdHVkpn+Dv789nn31G48aN6dGjB1FRUddeyIvdbF+j/UzGCAgIYPny5dx55500a9aM9evXOx1JeTHHChwRKQnMBzoYY/a4TM8tIoEXbwOhwA/OpFTKd2XNmpWZM2dy77330rp1a3788UenI7mF9jXeJW/evERHR1OiRAkaNWrE1q1bnY6kvJTbChwRmQl8DdwhIvEi0kVEnhWRi6fIDwTyAx+KyPcissWeXhhYLyLbgE3AMmPMCnflVCozCwgIYPHixeTKlYuIiAiOH/e+LxNpX+N7ChcuTGxsLHnz5qVBgwb89NNPTkdSXkh8aQTJ6tWrmy1btlx7RqXUZb755hvq1q1L7dq1iYqKws/v5j/7iMhWXxxXRvuZjLN3716CgoIQEdavX0/ZsmWdjqQ8UGp9jV6qQSnF/fffz5gxY4iOjmbUqFFOx1EKgPLlyxMTE8N///1H/fr1OXTokNORlBfRAkcpBVgXQWzevDn9+/fX8x6Ux6hUqRIrV67kzz//JDg4mKNHjzodSXkJLXCUUoD19fFJkyZRqFAh2rZty7///ut0JKUAqF69OsuWLeO3336jQYMG/P33305HUl5ACxyl1CX58+dnypQp7Nmzh5EjRzodR6lLgoKCWLBgAT/++CPh4eEkJiY6HUl5OC1wlFKXCQkJoXXr1gwfPpxffvnF6ThKXdKgQQNmzZrFN998Q7NmzXQvo7oqLXCUUlcYNWoU2bJl47nnnnM6ilKXadGiBVOmTCEuLo7WrVtz7tw5pyMpD6UFjlLqCkWLFmXgwIFERUWxZs0ap+ModZmOHTsybtw4Fi9eTKdOnUhKSnI6kvJAWuAopVLUvXt3ihYtymuvvYYvjZelfEP37t0ZMWIEn3/+OV27dtX3qLqCFjhKqRTlzJmTV155hfXr1/PVV185HUepK/Tr14/+/fszadIkXnzxRS1y1GW0wFFKperJJ58kb968jBkzxukoSqVo6NCh9OjRg1GjRjFkyBCn4ygPksXpAEopz5UrVy6eeeYZRo4cyaFDhyhWrJjTkZS6jIjw3nvvkZiYyOuvv05gYCDPP/+807GUB9A9OEqpq3ryySe5cOECM2fOdDqKUiny8/Nj0qRJtGzZkhdeeIGPP/7Y6UjKA2iBo5S6qgoVKnD//fczY8YMp6MolaosWbIwY8YMGjZsSGRkJLNmzXI6knKYFjhKqWtq0aIF33//vV7sUHm0bNmyMW/ePIKCgujQoQNLlixxOpJy0DULHBEpJCLNRaS7iDwpIjVFRAsjpTKRsLAwAFasWOG2x9C+RqWHXLlysWTJEqpWrcpjjz1GXFyc05GUQ1LtPESknoisBJYBYUARoCLwKrBDRN4QkTwZE1Mp5aRKlSpRoEABt3xdXPsald7y5MlDVFQUFSpUoGnTpnz99ddOR1IOuNq3qMKBp40xB5I3iEgWoDEQAsxzUzallIcQEWrUqMHmzZvdsXrta1S6y58/PzExMQQFBREeHs7q1aupUqWK07FUBkp1D44x5qWUOhy77bwxZqExRjscpTKJKlWqsHPnTs6fP5+u69W+RrnLbbfdRmxsLIGBgYSGhrJr1y6nI6kMdM1xcETkVqAjUNp1fmNMT7elUkp5nHLlypGUlMTBgwcpU6ZMuq9f+xrlDqVKlSI2NpagoCCCg4NZv349pUuXdjqWygBpOYFvOVaHswPY6vJzVSIyWUSOisgPqbSLiLwvIntFZLuIVHNpaygiu+22fml6JkoptypVqhQABw6kuLMlPWhfo9zi9ttvJyYmhtOnTzOmZk3OFy8Ofn5QujTo8Ac+Ky0jGecwxrxwA+ueCowDPkulPQyoYP/cD3wE3C8i/sAHWMfc44HNIrLYGPPTDWRQSqWTW2+9FYCTJ0+66yG0r1Fuc++997K5d2+KDhr0/398v/0GkZHW7XbtnIqm3CQtBc40EXkaWAr8d3GiMeavqy1kjFknIqWvMktT4DNjXR1to4jcKiJFsD7B7TXG7AMQkVn2vOnX6dSte+W0Vq2gWzc4cwbCw69s79TJ+jl+HFq2vLK9a1do3RoOHoQOHa5s79MHIiJg92545pkr2199FYKD4fvvoXfvK9uHD4eHHoING6B//yvbx4yBKlUgNhaGDr2yfcIEuOMOWLIE3n33yvZp06BECZg9Gz766Mr2uXOhQAGYOtX6SW75csiVCz78EObMubJ9zRrr9zvvwNKll7flzAlRUdbtIUMg+dc68+eHefYpGK+8Asm/EVG8OEyfbt3u3dt6DV3dfjtMnGjdjoyEPXsub69SxXr9ANq3h/j4y9sffBBGjLBuP/oo/Pnn5e3168Nrr1m3w8Lgn38ub2/cGF580brtxe+9gj//zGrgUELClfOkD9/ra5RHKT9lypUTz5yBAQO0wPFBaSlwzgJvAwOAi5dqNUDZm3zsYsBBl/vx9rSUpt+f2kpEJBKIBChZsuRNRlJKpebilZr9/f3d9RAe29doP+MjUju86r7DrspBcq3Ly4vIL8D9xpjj171y61PVUmNMpRTalgEjjDHr7ftxQF+szqyBMeYpe3oHoKYx5rlrPV716tXNli1brjemUioNtm/fTuXKlZk7dy6PPvroNecXka3GmOppXb+39DXaz3ix0qWtw1LJmJIlkRSmK++QWl+TlpOMfwTOpH8k4oESLveLA4evMl0p5aDjx626I1++fO56CO1rlHsNG2YdSndxGhhTqFC6D3+gnJeWQ1RJwPcisprLj4vf7Fc3FwM97OPe9wMnjTFHROQYUEFEygCHgDZA25t8LKXUTfr9998BKFKkiLseQvsa5V4Xz7MZMMA6LFWyJOuCgnhh+nS+e/JJpk6dip+fXh3EV6SlwFlo/1wXEZkJ1AUKiEg88DqQFcAYMx7rK6HhwF6sT22d7bbzItIDWAn4A5ONMT9e7+MrpdLXzz//jIi48xyUhWhfo9ytXbvLTigOA4bccQevvfYagYGBjBs3DhFxLp9KN9cscIwxn97Iio0xj1+j3QDdU2lbjtUpKaU8xA8//EC5cuXIlWwXf3rRvkY5ZcCAASQkJDBy5EgCAwMZMWKEFjk+INUCR0SWABOBFcaYc8naygKdgP3GmMluTaiU8gibNm2iRo0a6b5e7WuU00SEN998k1OnTvHWW2+RJ08e+qc0HIfyKlfbg/M08AIwWkROAMeAnNhjRwDjjDGL3J5QKeW4/fv3c+DAAV68OJ5P+tK+RjlORPjggw9ITExkwIABBAYG8txz1/zyrvJgqRY4xpjfgb4ichBYD+QA/gH2GGPc8U0HpZSHio6OBqBevXrpvm7ta5Sn8PPzY8qUKSQmJtKzZ08CAgLo3Lmz07HUDUrL6eKFgS+A54HbsDoepVQmMn/+fMqVK8fdd9/tzofRvkY5LkuWLMyaNYuQkBCeeuopvvjiC6cjqRt0zQLHGPMq1jVcPsE6Fv6ziAwXkXJuzqaU8gDHjh0jLi6ORx991K0nXmpfozxF9uzZWbBgAQ8++CDt2rVj+XI9D90bpekL//a3EH63f84DeYG5IjLSjdmUUh5g6tSpnD9/nieeeMLtj6V9jfIUuXPnZtmyZdxzzz08+uijrF271ulI6jpds8ARkZ4ishUYCXwF3GOM6QrcB1x7vHallNdKSkpiwoQJPPzww1SsWNGtj6V9jfI0t9xyCytXrqRs2bI0btyYTZs2OR1JXYe07MEpALQwxjQwxnxx8WucxpgLQGO3plNKOWrWrFn88ssv9E7pKuPpT/sa5XEKFChATEwMhQoVomHDhuzYscPpSCqNrnmxTW+iF8FTKv0kJSVRqVIlsmTJwrZt2657CPvrvdimt9B+JnP69ddfCQoK4vz583z55ZdUqFDB6UjKdjMX21RKZUJz5sxh165dDBw4UK/PozK9MmXKEBsbS1JSEvXr1+fAgQNOR1LXoL2WUuoKiYmJvPzyy9x77708+qie/qIUwJ133kl0dDSnTp2ifv36ly5AqzyTFjhKqSsMGTKEgwcP8uGHH+reG6VcVK1aleXLl3PkyBFCQ0P566+/nI6kUqE9l1LqMj/++COjRo3iySefpFatWk7HUcrjPPTQQyxatIjdu3cTFhZGQkKC05FUCrTAUUpdcvbsWTp16kSePHl48803nY6jlMeqX78+X3zxBVu3biUiIoJ//tGBtz2NFjhKqUtee+01tmzZwqRJkyhYsKDTcZTyaE2aNOGzzz5j3bp1tGzZkrNnzzodSbnQAkcpBUBsbCwjR44kMjKSFi1aOB1HKa/Qtm1bxo8fz/Lly2nfvj1JSUlOR1K2VK8mrpTKPOLj4+nQoQN33XUXo0ePdjqOUl4lMjKSxMRE+vTpQ0BAAB9//LGenO8BtMBRKpM7ffo0TZo04fTp08TGxpIrVy6nIynldV544QVOnTrFG2+8QWBgIGPGjHHrxWnVtbm1wBGRhsB7gD/wsTHmzWTtLwHtXLLcBRQ0xvwlIvuBBCAJOO+LI6Iq5bQLFy7QoUMHtm3bxtKlS7n77rudjnTdtJ9RnuL111/n1KlTjB49mjx58jBkyBCnI2VqbitwRMQf+AAIAeKBzSKy2Bjz08V5jDFvA2/b80cAzxtjXAcVqGeMOe6ujEpldq+88goLFixg9OjRhIWFOR3numk/ozyJiPDuu++SkJDA0KFDCQwMpG/fvk7HyrTcuQenJrDXGLMPQERmAU2Bn1KZ/3FgphvzKKVcjBgxgpEjR9K1a1d69erldJwbpf2M8igiwvjx4y+NBh4QEEC3bt2cjpUpufMsqGLAQZf78fa0K4hILqAhMM9lsgGiRWSriES6LaVSmdDYsWPp378/7dq1Y+zYsd58roD2M8rj+Pv789lnnxEREUH37t2ZNm2a05EyJXfuwUmpx0zt0uURwFfJdhvXMsYcFpFCQIyI7DLGrLviQaxOKRKgZMmSN5tZKZ83efJkevbsSbNmzZg6dSr+/v5OR7oZ2s8oj5Q1a1bmzJlDo0aN6Ny5MwEBATRv3tzpWJmKO/fgxAMlXO4XBw6nMm8bku02NsYctn8fBRZg7Yq+gjFmojGmujGmug5MptTVffjhh3Tp0oXQ0FBmzZpFlixe/0VK7WeUx8qRIweLFi2iRo0atG7dmpUrVzodKVNxZ4GzGaggImVEJBtW57I4+UwicgtQB1jkMi23iARevA2EAj+4MatSPs0Yw4gRI+jevTtNmjRh0aJFZM+e3elY6UH7GeXRAgICWL58ORUrVqR58+asX7/e6UiZhtsKHGPMeaAHsBLYCcwxxvwoIs+KyLMuszYHoo0xp12mFQbWi8g2YBOwzBizwl1ZlfJlxhj69et36ZybuXPnkiNHDqdjpQvtZ5Q3yJs3L9HR0ZQsWZJGjRqxdetWpyNlCmJMaoervU/16tXNli1bnI6hlMf477//ePrpp5k2bRpdu3Zl3LhxGTbCqohs9cVxZbSfUTcqPj6ehx9+mMTERNauXeuV4055otT6Gh1LWikfdfz4cYKDg5k2bRpvvPEGH3zwgQ4fr5SDihcvTlxcHNmyZSMkJIRffvnF6Ug+TXs7pXzQrl27uP/++9m8eTMzZ85k4MCB3vxVcKV8Rrly5YiJieHs2bMEBwcTHx/vdCSfpQWOUj4mKiqKBx54gMTERNasWUObNm2cjqSUcnH33XezcuVK/vzzT4KDgzl69KjTkXySFjhK+YikpCRef/11GjVqRKlSpfjmm2944IEHnI6llErBfffdx7Jlyzhw4AChoaGcOHHC6Ug+RwscpXzA8ePHCQ8PZ/DgwXTs2JGvv/6a0qVLOx1LKXUVQUFBLFiwgJ07d9KoUSMSExOdjuRTtMBRystt3LiRatWqsWbNGiZOnMiUKVPIlSuX07GUUmnQoEEDZs2axaZNm2jatCn//vuv05F8hhY4Snmp8+fPM2TIEB5++GH8/f356quvePrpp/VkYqW8TPPmzZkyZQqrVq2iVatWnDt3zulIPkELHKW80K+//krdunUZOHAgrVu35vvvv6d6dZ8bckapTKNDhw588MEHLFmyhCeeeIKkpCSnI3k9LXCU8iLGGKZPn07lypXZsWMH06dPZ8aMGdxyyy1OR1NK3aRu3brx1ltvMXPmTCYHB2NKlQI/PyhdGmbMcDqe1/H6K+0plVkcOXKE7t27s2DBAmrVqsX06dP1RGKlfEzfvn0pvWEDjRYt4tLB5t9+g8hI63a7dk5F8zqZs8CpW/fKaa1aQbducOYMhIdf2d6pk/Vz/Di0bHlle9eu0Lo1HDwIHTpc2d6nD0REwO7d8MwzV7a/+ioEB8P330Pv3le2Dx8ODz0EGzZA//5Xto8ZA1WqQGwsDB16ZfuECXDHHbBkCbz77pXt06ZBiRIwezZ89NGV7XPnQoECMHWq9ZPc8uWQKxd8+CHMmXNl+5o11u933oGlSy9vy5kToqKs20OGQFzc5e3588O8edbtV16Br7++vL14cZg+3brdu7f1Grq6/XaYONG6HRkJe/Zc3l6livX6AbRvD8kH3nrwQRgxwrr96KPw55+Xt9evD6+9Zt0OC4N//rm8vXFjePFF6/YNvPfME08wzd+f3r17c+bMGd5880369OnjC1cCV0ql4LHvvuOKM+nOnIEBA7TAuQ7aQyrlwf777z8+HDOGF7Zv56GHHmLy5MnccccdTsdSSrmRHDyYcsOBAxkbxMvpxTaV8kBJSUmMHz+e/v37c/78eUaMGEH37t3x9/d3Olqa6cU2lbpBpUtbh6WSK1UK9u/P6DQeTy+2qZSX2Lx5MzVr1qRHjx7UrFmT7du307NnT68qbpRSN2HYMOuQv4vTwIZGjZzJ46W0wFHKQ5w4cYJu3bpx//33c+TIEWbPnk10dDTlypVzOppSKiO1a2edN1iqFIhwoUQJRt15J7UnTGDx4sVOp/MaWuAo5bALFy4wdepU7rjjDiZMmECvXr3YtWsXrVq10kH7lMqs2rWzDkdduIDfgQP03rSJ++67j1atWhGX/IsYKkVa4CjloPXr11OzZk06d+5MuXLl2Lp1K6NHjyZPnjxOR1NKeZDAwECioqKoUKECTZo0YcOGDU5H8nha4CjlgN9++43WrVsTFBTE77//zvTp0/nqq6+oUqWK09GUUh4qX758xMTEUKxYMcLDw/k++ZAY6jJa4CiVgRISEnj11Ve54447WLJkCa+//jq7d++mXbt2+Pnp5qiUurrbbruN2NhY8uTJQ2hoKLt27XI6ksdya48qIg1FZLeI7BWRfim01xWRkyLyvf0zMK3LKuVNzp49y9ixYylXrhzDhg2jZcuW7N69m0GDBpE7d26n43k17WdUZlOyZEni4uLw8/MjODiYX3/91elIHsltBY6I+AMfAGFAReBxEamYwqxfGmOq2D+Dr3NZpTzahQsX+Pzzz7nrrrvo2bMnd999Nxs3bmT69OmUKFHC6XheT/sZlVlVqFCB6Ohozpw5Q3BwMIcPH3Y6ksdx5x6cmsBeY8w+Y8xZYBbQNAOWVcpxxhhWrFjBfffdR7t27S6dILhq1Sruv/9+p+P5Eu1nVKZ17733smLFCo4ePUpISAjHjx93OpJHcWeBUwxwHW863p6W3IMisk1EokTk7utcFhGJFJEtIrLl2LFj6ZFbqZuyZs0a6tatS1hYGCdPnmTGjBl8++23NGzYUL/2nf60n1GZWs2aNVmyZAn79u2jQYMGnDx50ulIHsOdBU5KPXny60J8C5QyxlQGxgILr2NZa6IxE40x1Y0x1QsWLHijWZW6aRcLm3r16vHzzz8zduxYdu3aRdu2bfUEYvfRfkZlenXr1mXevHls376dRo0acfr0aacjeQR39rrxgOtJBsWByw4SGmNOGWMS7dvLgawiUiAtyyrlKVwLmz179vD++++zb98+evToQbZs2ZyO5+u0n1EKCA8P5/PPP+frr7+mRYsW/Pfff05Hcpw7C5zNQAURKSMi2YA2wGVjTIvIbWLvsxeRmnaeP9OyrFJOS62wee6558iRI4fT8TIL7WeUsj322GN8/PHHREdH8/jjj3P+/HmnIzkqi7tWbIw5LyI9gJWAPzDZGPOjiDxrt48HWgJdReQ88A/QxliXN09xWXdlVSqtjDHExcUxbNgw1qxZQ5EiRXjvvfd4+umnyZkzp9PxMh3tZ5S6XOfOnUlISKBXr1507tyZTz/9NNMeIhdrO/cN1atXN1u2bHE6hvJBSUlJzJs3j5EjR7J161aKFClCv379tLC5ChHZaoyp7nSO9Kb9jPIGw4YN49VXX6Vr16588MEHPv0Fh9T6GrftwVHKF/z77798+umnvPPOO+zdu5cKFSowadIkOnToQPbs2Z2Op5RSKerfvz8JCQm89dZbBAYG8uabb/p0kZMSLXCUSsHff//NRx99xHvvvccff/xBjRo1mDt3Ls2aNcPf39/peEopdVUiwogRIzh16hQjR44kT548DBgwwOlYGUoLHKVcHDp0iDFjxjBhwgQSEhJo0KABL7/8MnXr1s10n36UUt5NRBg3bhyJiYm8+uqrBAYG0rNnT6djZRgtcJQCNm3axHvvvcecOXO4cOECrVu3pm/fvnp1b6WUV/Pz82Py5MkkJibSq1cvAgICePLJJ52OlSG0wFGZ1rlz55g/fz5jxoxh48aNBAYG0qNHD3r27EmZMmWcjqeUUukiS5YszJw5kyZNmvD0008TEBBAq1atnI7ldlrgqEznzz//ZOLEiXzwwQccOnSI8uXL8/7779OpUycCAwOdjqeUUukue/bszJ8/n4YNG9KuXTsCAgIIDw93OpZbZc4vx6tM6YcffuDpp5+mePHi9O/fn7vuuoslS5awe/dunnvuOS1ulFI+LXfu3CxdupTKlSvz6KOPsmbNGqcjuZUWOMqnnTt3jnnz5hEcHMw999zD9OnT6dChAzt27CAmJobGjRtn2kGwlFKZzy233MKKFSsoW7YsERERfPPNN05Hchvt2ZVPOnDgAAMHDqRUqVK0bNmSPXv2MGLECOLj45k4cSKVKlVyOqJSSjmiQIECxMTEUKhQIcLCwti+fbvTkdxCCxzlM5KSkli+fDlNmjShTJkyDB06lGrVqrFkyRJ+/fVX+vXrR/78+Z2OqZRSjitatChxcXHkypWL0NBQ9uzZ43SkdKcFjvJ6f/zxByNGjKB8+fI0atSIb775hn79+rFv3z6WLl1K48aNdXA+pZRKpnTp0sTGxnLhwgWCg4P57bffnI6UrrTAUV7pwoULrF69mtatW1OiRAn69+9PmTJlmDNnDgcPHmTYsGGULl3a6ZhKKeXR7rzzTqKjozl16hTBwcH8/vvvTkdKN/o1ceVVDh48yKeffsqUKVPYt28fefPmpUePHkRGRnLnnXc6HU8ppbxOlSpViIqKIiQkhJCQENauXUu+fPmcjnXTdA+O8nj//fcfX3zxBQ0bNqRUqVK89tprlC5dmunTp3Po0CFGjRqlxY1SSt2EBx98kEWLFvHzzz/TsGFDTp065XSkm6YFjvJY27Zto1evXhQtWpRWrVrx008/8eqrr7Jv3z7i4uJo164dOXPmdDqmUkr5hPr16/PFF1/w7bffEhERwZkzZ5yOdFP0EJXyKCdOnGDmzJlMnjyZrVu3ki1bNpo1a0aXLl2oX7++niyslFJuFBERwbRp02jXrh0tW7Zk4cKFZMuWzelYN0QLHOW4c+fOsXLlSqZNm8aiRYv477//qFy5Mu+//z5t27bVr3YrpVQGevzxx0lMTCQyMpJ27doxc+ZMsmTxvnLB+xIrn2CMYfPmzUybNo1Zs2Zx/Phx8ufPz1NPPcWTTz5J1apVERGnYyqlVKb09NNPk5iYyAsvvEBAQACffPKJ14367tYCR0QaAu8B/sDHxpg3k7W3A1627yYCXY0x2+y2/UACkAScN8ZUd2dWlTH279/P9OnTmTZtGnv27CF79uw0adKEDh060LBhQ7Jmzep0ROVltJ9Ryj2ef/55Tp06xaBBgwgMDOS9997zqg+ebitwRMQf+AAIAeKBzSKy2Bjzk8tsvwJ1jDEnRCQMmAjc79Jezxhz3F0ZVcY4ceIEX3zxBdOmTWP9+vUA1KlTh5deeomWLVty6623OhtQeS3tZ5Ryr4EDB3Lq1ClGjRpFnjx5GDp0qNOR0syde3BqAnuNMfsARGQW0BS41PEYYza4zL8RKO7GPCoD/fvvv0RFRTFjxgyWLFnC2bNnufPOOxk2bBjt2rWjVKlSTkdUvkH7GaXcSER45513SEhIYNiwYQQGBvLyyy9fe0EP4M4Cpxhw0OV+PJd/akquCxDlct8A0SJigAnGmIkpLSQikUAkQMmSJW8qsLo5586dIzY2llmzZrFgwQISEhIoVKgQXbt2pUOHDlSrVs2rdm8qr6D9jFJuJiJ89NFHJCYm0q9fPwIDA+nWrZvTsa7JnQVOSv/JTIozitTD6ngedplcyxhzWEQKATEisssYs+6KFVod0kSA6tWrp7h+5T5JSUmsW7eOWbNmMXfuXP766y9uvfVWHnvsMdq0aUO9evW88ux75TW0n1EqA/j7+/Ppp59y+vRpunfvTkBAAB07dnQ61lW58z9PPFDC5X5x4HDymUTkXuBjIMwY8+fF6caYw/bvoyKyAGtX9BUdj8p4Fy5cYOPGjcyaNYsvvviC33//ndy5c9O0aVPatGlDaGgo2bNndzqmyhy0n1Eqg2TNmpXZs2fTuHFjOnfuTEBAAC1atHA6VqrcWeBsBiqISBngENAGaOs6g4iUBOYDHYwxe1ym5wb8jDEJ9u1QYLAbs6prMMbw3XffMWvWLGbPns2BAwfInj07jRo1ok2bNjRq1IhcuXI5HVNlPtrPKJWBcuTIwcKFCwkNDaVNmzYsWbKEBg0aOB0rRW4rcIwx50WkB7AS6+ubk40xP4rIs3b7eGAgkB/40D434+LXNAsDC+xpWYDPjTEr3JVVpeziWDXz5s1j7ty57Nu3jyxZstCgQQOGDRtGkyZNyJMnj9MxVSam/YxSGS8gIIDly5dTr149mjdvzsqVKwkKCnI61hXEGN85nFy9enWzZcsWp2N4tQsXLvD1118zb9485s2bx4EDB8iSJQv169enZcuWNG/eXEcWVmkiIlt9cVwZ7WeUshw7dozatWtz6NAhVq1aRfXqzmzuqfU1evanIikpiS+//JK5c+cyf/58jhw5QrZs2WjQoAGDBw+mSZMm5M2b1+mYSimlPEjBggWJiYkhKCiIhg0bsnbtWu6++26nY12iBU4mde7cOdasWcPcuXNZuHAhR48eJWfOnISFhfHoo4/SuHFjPfyklFLqqooXL05sbCxBQUEEBwfz5ZdfUr58eadjAVrgZCpnzpwhJiaGhQsXsnjxYv766y9y585N48aNadmyJWFhYeTOndvpmEoppbxIuXLliI2NpXbt2gQHB7N+/XqKF3d+PE0tcHzc8ePHWbp0KQsXLiQ6Opp//vmHW265hYiICFq2bEloaCg5c+Z0OqZSSikvVrFiRVauXMkjjzxCcHAw69ato1ChQo5m0gLHB+3bt4+FCxeyaNEi1q9fz4ULFyhevDhdunShWbNm1K5dWy9qqZRSKl3dd999LFu2jNDQUEJDQ1m9erWj529qgeMDjDF8++23l4qaHTt2AHDvvfcyYMAAmjVrRtWqVfUyCUoppdzq4YcfZuHChURERBAeHk5MTAwBAQGOZNECx0udPXuWtWvXsmjRIhYtWkR8fDx+fn4EBQUxatQomjZtStmyZZ2OqZRSKpMJDQ1l1qxZPPbYYzRt2pRly5aRI0eODM+hBY4XOXr0KMuXL2fp0qVER0eTkJBAzpw5adCgAUOHDqVRo0YUKFDA6ZhKKaUyuebNmzN16lQ6dOjAY489xvz58zP81AgtcDyYMYZt27axdOlSli5dyqZNmzDGUKxYMdq2bUujRo2oX7++XiJBKaWUx2nfvj0JCQl069aNjh07Mn36dPz9/TPs8bXA8TBnzpxh1apVLF26lGXLlhEfHw9AzZo1eeONN2jcuDFVqlTR82mUUkp5vK5du5KYmEjfvn0JCAhg4sSJGfb/SwscD3Dw4EGWLVvG0qVLiYuL499//yUgIIDQ0FAGDx5MeHg4hQsXdjqmUkopdd1eeuklTp06xdChQwkICGDUqFEZUuRogeOAc+fOsWHDBqKiooiKimL79u0AlClThsjISBo3bkzt2rXJnj27w0mVUkqpmzd48GBOnTrFmDFjuOWWWxg0aJDbH1MLnAwSHx9PVFQUK1asIDY2llOnTpElSxZq1arFW2+9RUREBHfeeaceelJKKeVzRITRo0eTkJDAG2+8QWBgIH369HHrY2qB4yZnz55l/fr1rFixgqioKH744QfAum5H69atCQsLo379+nq9J6WUUpmCn58fkyZNIjExkRdffJHAwEAiIyPd9nha4KSjAwcOXDrsFBcXR2JiIlmzZiUoKIi3336bsLAwKlasqHtplFJKZUr+/v5Mnz6d06dP8+yzzxIQEEDbtm3d8lha4NyEf/75hy+//JKVK1cSFRXFzp07AShVqhTt27enYcOGPPLIIwQGBjqcVCmllPIM2bJlY+7cuYSHh9OxY0dy585N06ZN0/1xtMC5DhcuXGDbtm3ExMQQExPDl19+yX///Ue2bNmoU6cOTz31FGFhYXoujVJKKXUVOXPmZPHixQQHB9OqVSuWLVtGcHBwuj6GFjjXEB8ff6mgiY2N5dixYwBUqlSJbt26ERoaSlBQELlz53Y4qVJKKeU9AgMDiYqKom7dujRt2pSYmBgeeuihdFu/FjjJJCYmsnbtWqKjo4mJibl02Klw4cI0aNCAkJAQgoODKVq0qMNJlVJKKe+WL18+YmJiCAoKIjw8nNWrV1O1atV0WbdfuqwlFSLSUER2i8heEemXQruIyPt2+3YRqZbWZdNLUlISmzZtYtiwYdSpU4d8+fLRuHFjJk6cSMmSJXnnnXfYtm0bR44cYdq0aXTs2FGLG6U8iDf0M0qp1BUuXJjY2FhuueUWQkNDL+1YuFlu24MjIv7AB0AIEA9sFpHFxpifXGYLAyrYP/cDHwH3p3HZG7Z///5Le2ji4uI4ceIEAFWrVuWFF14gJCSEWrVqOXL1U6VU2nlyP6OUSruSJUsSGxtLUFAQwcHBrF+/njJlytzUOt15iKomsNcYsw9ARGYBTQHXzqMp8JkxxgAbReRWESkClE7DsjekTp06rFu3DrDGpGnWrBmhoaHUr1+fggUL3uzqlVIZyyP7GaXU9atQoQIxMTHUrVuX+vXrs3nzZvLnz3/D63NngVMMOOhyPx7r09O15imWxmUBEJFI4OJIQYkisjsN2QoAx+Pj45kyZQpTpkxJwyIZrgBw3OkQaaA50483ZIS05yzl7iB4dj8D3vM3TQtfei6gz8ej/fXXXwUKFCiQ1ueTYl/jzgInpe9JmzTOk5ZlrYnGTAQmXlcwkS3GmOrXs0xG84aMoDnTkzdkBI/L6bH9DHjca3VTfOm5gD4fT5cez8edBU48UMLlfnHgcBrnyZaGZZVSSvsZpVSK3Pktqs1ABREpIyLZgDbA4mTzLAY62t9yeAA4aYw5ksZllVJK+xmlVIrctgfHGHNeRHoAKwF/YLIx5kcRedZuHw8sB8KBvcAZoPPVlk3HeNe9q9kB3pARNGd68oaM4EE5PbyfAQ96rdKBLz0X0Ofj6W76+Yj1xQKllFJKKd/h1oH+lFJKKaWcoAWOUkoppXyOTxc4NzOEuwdlbGdn2y4iG0SkckZnTEtOl/lqiEiSiLTMyHz2Y18zo4jUFZHvReRHEVmb0RntDNf6m98iIktEZJuds7MDGSeLyFER+SGVdse3HW8gIm+LyC77NVogIrc6nelmiMhj9nvygoh47VeS09qfeYNrbaveRkRKiMhqEdlpv9d63fDKjDE++YN10uAvQFmsr4NuAyommycciMIaD+MB4BsPzPgQkNe+HZbRGdOa02W+VVgndbb0tIzArVij1Ja07xfyxNcS6A+8Zd8uCPwFZMvgnLWBasAPqbQ7uu14yw8QCmSxb7918e/qrT/AXcAdwBqgutN5bvA5pKk/85afa22r3vYDFAGq2bcDgT03+vfx5T04l4ZwN8acBS4Ow+7q0hDuxpiNwMUh3D0mozFmgzHmhH13I9ZYHRktLa8lwHPAPOBoRoazpSVjW2C+MeYAgDHGU3MaIFBEBAjAKnDOZ2RIY8w6+3FT4/S24xWMMdHGmIt/O6e233RjjNlpjEnrKM6eKq39mVdIw7bqVYwxR4wx39q3E4CdWKOOXzdfLnBSG579eudxp+t9/C5Yn5oz2jVzikgxoDkwPgNzuUrLa3k7kFdE1ojIVhHpmGHp/i8tOcdhfVI+DOwAehljLmRMvDRzetvxRk/izParLqfvXS8hIqWBqsA3N7K8O0cydtrNDOGeUdL8+CJSD6vAeditiVKWlpxjgJeNMUnWjocMl5aMWYD7gPpATuBrEdlojNnj7nAu0pKzAfA98AhQDogRkS+NMafcnO16OL3teAwRiQVuS6FpgDFmkT3PAKy9cDMyMtuNSMvz8XL63vUCIhKAdUSg9432fb5c4NzMEO4ZJU2PLyL3Ah8DYcaYPzMom6u05KwOzLKLmwJAuIicN8YszJCEaf97HzfGnAZOi8g6oDLWMd6MkpacnYE3jXUQeq+I/ArcCWzKmIhp4vS24zGMMcFXaxeRJ4DGQH37b+rRrvV8fIC+dz2ciGTFKm5mGGPm3+h6fPkQ1c0M4e4xGUWkJDAf6JDBexpcXTOnMaaMMaa0MaY0MBfoloHFTZoyAouAIBHJIiK5sK4cvTMDM6Y15wGsvUyISGGskzr3ZWjKa3N62/EKItIQeBloYow543QeBeglOjyafe7hJ8BOY8yom1mXz+7BMTcxhLuHZRwI5Ac+tPeOnDcZfMXYNOZ0VFoyGmN2isgKYDtwAfjYGJOhX61M42s5BJgqIjuwdqe/bIw5npE5RWQmUBcoICLxwOtAVpeMjm47XmQckB3rMCPARmPMs85GunEi0hwYi/XtvmUi8r0xpoHDsa5Latugw7FuWErbqjHmE2dT3ZRaQAdgh4h8b0/rb4xZfr0r0ks1KKWUUsrn+PIhKqWUUkplUlrgKKWUUsrnaIGjlFJKKZ+jBY5SSimlfI4WOEoppZTyOVrgqAwlImNEpPYNLLfCvhxESm09nLjitlLKM4nIIBF5MQ3zbbXHwnGd1klExrkvncooWuCoDCMi+YAH7IvDXc9yOYF8xphDqcwyGeh5s/mUUpmHfZ2jQ/YFN5UP0gJHpTsRKS0iP7jcf1FEBgEtgRUu0/eLyHAR+VpEtohINRFZKSK/XBz4zlYXWGMv86aI/CQi20XkHQB7hNj9IlLT/c9OKeWJRGSAiOy2r6V1hz1tjYhUt28XEJH9LouEYfdHItJZRPaIyFqsgeYQkUAR+dW+bAAiksfus7Jm4NNSN0ELHJWRagFbk007aIx5EPgSmIpVBD0ADHaZJwxYYe8Bag7cbYy5FxjqMs8WIMhNuZVSHkxE7sO65EJVoAVQIw2LNcTqV4oAb2D1TyFARQBjTALWB6tG9vxtgHnGmHPpGl65jRY4KiMVAY4lm3bxGjA7gG+MMQnGmGPAvyJyq91WC1gPnAL+BT4WkRZYlwi46ChQ1F3BlVIeLQhYYIw5Y195+qrXlrLPuylujNmHdU26NcaYY/bhqtkus37M/y9D0hmYkv7RlbtogaPc4TyXv7dy2L//cbl90X/27wsuty/ezyIiZbH28pw1xpwHamJdZbYZLoe77PX+ky7plVLeKKXrDrn2Ra59TxDWh6arLYsx5iugtIjUAfwz+tp16uZogaPc4Q+gkIjkF5HsQGN7+k6g/HWuy/U4eQBwi33Rtd5AFZf5bge081Eqc1oHNBeRnCISCETY0/cD99m3W7rM3xCIsm9/A9S1+6uswGPJ1v0ZMBPde+N1tMBR6c4+Rj0Yq+NYCuyym5ZhnTB8PRry/z01gcBSEdkOrAWed5mvFhB7g5GVUl7MGPMt1qGl77H28H5pN70DdBWRDUABl0XqYvUhGGOOAIOAr7H6kG+TrX4GkBeryFFeRK8mrjKUiKwHGhtj/k7DvNmBr4wx1a8xX1XgBWNMh/RJqZTyVSJSHJhkjAlL4/wtgabav3gfLXBUhhKR+4F/jDHb03GdIcDPxpj96bVOpZQSkbFYh8nDjTF7nM6jro8WOEoppZTyOXoOjlJKKaV8jhY4SimllPI5WuAopZRSyudogaOUUkopn6MFjlJKKaV8zv8AdbiMkbkNVusAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "nq=1 #separacion entre vectores en quiver plot\n", "Nx=20\n", "Ny=9\n", "Lx=6.0\n", "Ly=2.0\n", "xp = np.linspace(0, Lx, Nx)\n", "yp = np.linspace(0, Ly, Ny)\n", "X, Y = np.meshgrid(xp, yp)\n", "\n", "def velU(y):\n", " return 1-(y-1)**2\n", "\n", "def rotV(y):\n", " return 2*(y-1)\n", "\n", "def giro(th):\n", " return np.array([[np.cos(th),np.sin(th)], [-np.sin(th),np.cos(th)]])\n", "\n", "t=0.0\n", "U = velU(Y)\n", "V = np.zeros(np.shape(X))\n", "\n", "ypos=1.0\n", "XP=[0,ypos]\n", "\n", "fig, (ax) = plt.subplots(figsize=(10, 4))\n", "ax.contourf(X,Y,velU(Y),256,cmap=\"Blues\",alpha=0.8)\n", "Q = ax.quiver(X, Y, U, V,alpha=0.7,scale=20,width=0.004)\n", "\n", "ax.set_xlabel(\"x\")\n", "ax.set_ylabel(\"y\")\n", "ax.set_ylim([-0.15*Ly, 1.15*Ly])\n", "ax.set_xlim([0, Lx])\n", "ax.plot([0,Lx],[0, 0], 'k-',linewidth=2)\n", "ax.plot([0,Lx],[Ly, Ly], 'k-',linewidth=2)\n", "\n", "ax.set_title(\"Campo de velocidades\")\n", "\n", "r=0.22\n", "pts1 = np.array([[r,0], [-r,0], [0,r], [0,-r]])\n", "#print(giro(np.pi))\n", "#mt=giro(np.pi/2)\n", "#print(pts1.dot(mt))\n", "\n", "\n", "\n", "lin1, = ax.plot([], [], '.-',color=\"tab:orange\",linewidth=5.0, markerfacecolor='white',ms=15)\n", "lin2, = ax.plot([], [], '.-',color=\"tab:orange\",linewidth=5.0, markerfacecolor='white',ms=15)\n", "lin3, = ax.plot([], [], '.-',color=\"tab:orange\",linewidth=5.0, markerfacecolor='white',ms=15)\n", "lin4, = ax.plot([], [], '.-',color=\"tab:orange\",linewidth=5.0, markerfacecolor='white',ms=15)\n", "lin5, = ax.plot([], [], '.-',color=\"tab:orange\",linewidth=5.0, markerfacecolor='white',ms=15)\n", "lin6, = ax.plot([], [], '.-',color=\"tab:orange\",linewidth=5.0, markerfacecolor='white',ms=15)\n", "\n", "plt.close()\n", "\n", "nframes=150 #frames de la animacion\n", "tf=2.7*np.pi #tiempo total\n", "dt=tf/nframes #paso de tiempo\n", "\n", "def update_plot(num):\n", " t = dt*num\n", " \n", " ypos=0.6\n", " xpos=velU(ypos)*t #3.0\n", " shift=np.zeros(np.shape(pts1))\n", " shift[:,0]=xpos\n", " shift[:,1]=ypos\n", " theta=2*rotV(ypos)*t\n", " mt=giro(theta)\n", " ptsg1=pts1.dot(mt)+shift\n", " lin1.set_data(ptsg1[0:2,0],ptsg1[0:2,1])\n", " lin2.set_data(ptsg1[2:4,0],ptsg1[2:4,1])\n", " \n", " #xpos=3.0\n", " ypos=1.7\n", " xpos=velU(ypos)*t #3.0\n", " shift=np.zeros(np.shape(pts1))\n", " shift[:,0]=xpos\n", " shift[:,1]=ypos\n", " theta=2*rotV(ypos)*t\n", " mt=giro(theta)\n", " ptsg1=pts1.dot(mt)+shift\n", " lin3.set_data(ptsg1[0:2,0],ptsg1[0:2,1])\n", " lin4.set_data(ptsg1[2:4,0],ptsg1[2:4,1])\n", " \n", " \n", " ypos=1.0\n", " xpos=velU(ypos)*t #3.0\n", " #xpos=xpos-.7\n", " shift=np.zeros(np.shape(pts1))\n", " shift[:,0]=xpos\n", " shift[:,1]=ypos\n", " theta=2*rotV(ypos)*t\n", " mt=giro(theta)\n", " ptsg1=pts1.dot(mt)+shift\n", " lin5.set_data(ptsg1[0:2,0],ptsg1[0:2,1])\n", " lin6.set_data(ptsg1[2:4,0],ptsg1[2:4,1])\n", " \n", " return\n", "\n", "anim = animation.FuncAnimation(fig, update_plot, frames=nframes, interval=60, blit=False) \n", "\n", "\n", "fig, (ax2,ax3)= plt.subplots(1,2,figsize=(8, 4))\n", "\n", "yp = np.linspace(0, Ly, 200)\n", "Ux=velU(yp)\n", "ax2.plot(Ux, yp, 'k')\n", "ax2.set_xlabel(\"u(m/s)\")\n", "ax2.set_ylabel(\"y(m)\")\n", "ax2.set_ylim([0, Ly])\n", "ax2.set_title(\"Perfil de velocidades\")\n", "Rx=-rotV(yp)\n", "ax3.plot(Rx, yp, 'k')\n", "ax3.set_xlabel(\"du/dy\")\n", "ax3.set_ylabel(\"y(m)\")\n", "ax3.set_ylim([0, Ly])\n", "ax3.set_title(\"Gradiente transversal de velocidad\")\n", "\n", "ypos=0.6\n", "ax2.plot([0,velU(ypos)],[ypos,ypos],'r--')\n", "ax3.plot([-rotV(ypos)],[ypos],'ro')\n", "ypos=1.7\n", "ax2.plot([0,velU(ypos)],[ypos,ypos],'r--')\n", "ax3.plot([-rotV(ypos)],[ypos],'ro')\n", "ypos=1.0\n", "ax2.plot([0,velU(ypos)],[ypos,ypos],'r--')\n", "ax3.plot([-rotV(ypos)],[ypos],'ro')\n", "\n", "plt.tight_layout()\n", "glue(\"rot1_fig\", fig, display=False)\n" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/html": [ "" ], "text/plain": [ "" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "HTML(anim.to_html5_video()) " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Se observa que estos molinillos no solo se desplazan sino que también **giran sobre si mismos**. Dicho giro se produce en sentido horario en el molinillo inferior y en sentido anti horario en el molinillo superior. El molinillo situado en el centro, no gira. Además, vemos que el molinillo superior, el que está más cerca de la pared, gira a mayor velocidad que el molinillo inferior.\n", "\n", "A la vista de estos resultados, cabe preguntarse ¿a qué se debe este movimiento de rotación?. Basta con analizar el perfil de velocidades para darse cuenta de que el movimiento de rotación ocurre en aquellos puntos en los que hay un gradiente transversal de velocidad y que su magnitud parece ser propocional a éste.\n", "\n", "Este movimiento de rotación que hemos observado está asociado al **rotacional del campo de velocidades**.\n", "\n", "
\n", "\n", " \n", "**Rotacional de la velocidad**\n", "\n", "*El rotacional de la velocidad se define como la circulación de la velocidad a lo largo de una trayectoria cerrada $C$ cuando ésta tiende a cero:*\n", "\n", "$$\n", "rot(\\vec{\\bf{v}}):= \\nabla \\times \\vec{\\bf{v}} = \\lim_{l\\rightarrow 0} \\frac{1}{l} \\int_{C} \\vec{\\bf{v}} \\cdot d\\vec{\\bf{l}} \n", "$$\n", "\n", "*y se calcula como*\n", "\n", "$$\\nabla \\times \\vec{\\bf{v}} =\\left(\\begin{array}{c}\n", "\\frac{\\partial w}{\\partial y} - \\frac{\\partial v}{\\partial z}\\\\\n", "\\frac{\\partial u}{\\partial z} - \\frac{\\partial w}{\\partial x}\\\\\n", "\\frac{\\partial v}{\\partial x} - \\frac{\\partial u}{\\partial y}\n", "\\end{array}\n", "\\right)$$\n", "\n", "\n", "\n", "Al rotacional de la velocidad también se le llama **vorticidad**, que es un vector definido como\n", "\n", "$$\n", "\\vec{\\bf{\\omega}} = \\nabla \\times \\vec{\\bf{v}}\n", "$$\n", "\n", "que representa una medida de la rotación local del flujo en un punto.\n", "\n", "```\n" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "tags": [ "hide-cell" ] }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsgAAAEYCAYAAABBfQDEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAABxzElEQVR4nO3dd5wjWXnw+99Rji2pc865e6Z7liUsYFiCbcDYxte8GPziAPd6LzZgcw02xgkwr41tgsksCywZlrCBzTnv7OzknPP0TOec1ZLO/aPUGnWaVvcotGae7+czn2mVSupHdUrneerUqWqltUYIIYQQQghhMGU6ACGEEEIIITYSKZCFEEIIIYSIIwWyEEIIIYQQcaRAFkIIIYQQIo4UyEIIIYQQQsSRAlkIIYQQQog4UiALIcQGoZS6WSnVlebfWa2U0kopy1W+z4RSqnaF5/5cKfX8Ot837dtECCGkQBZCXBOUUn+slNoZLdS6lVIPKaVem+m4rhdaa4/W+nSm4xBCiGSQAlkIkfWUUn8LfAn4D6AIqAS+Afx+BsMSQgiRpaRAFkJkNaWUD/g34INa67u01pNa6zmt9X1a67+LrvMKpdSLSqmR6Ojy15RStrj30Eqpv1JKnVBKjSulPqOUqou+Zkwp9Yv59edP+Sul/lEpNaCUOquU+t/x8SilfqiU6ldKnVNK/bNSatm+VinlVEp9Xyk1rJQ6DLx80fOlSqk7o+91Rin11yu8z6uUUj1KKXPcsj9QSu2P/mxSSv2DUuqUUmow+nlyV3ivUqXUvUqpIaXUSaXUX8Q9Z45+7lPR7bRLKVURtw3roz/nRd9jTCm1Hahb9Du+rJS6EH1+l1LqN5KxTaLtvDP6vr1KqS8u9xmFEGI1UiALIbLdTYADuPsK64SB/w/Ij67/JuCvFq3zFuBlwKuAvwduA/43UAG0A++JW7c4+l5lwJ8BtymlmqLPfRXwAbXA64E/Bd63QlyfxCge64Dfjr4XYBS1wH3AvujveRPwEaXUby9+E631NmASeGPc4j8Gfhr9+a+Bd0TjKQWGga+vENPPgK7oeu8E/kMp9aboc38b3Q5vA3KA9wNTy7zH14EZoCS6zvsXPb8D6ARyozH+UinliD53Ndvky8CXtdY50df/YoXPKIQQV6a1ln/yT/7Jv6z9h1HE9qzxNR8B7o57rIHXxD3eBXw87vEXgC9Ff74ZCAHuuOd/AfwLYAZmgda45/5f4OkV4jgNvCXu8S1AV/TnVwLnF63/CeB7K7zX/wFuj/7sxSiYq6KPjwBvilu3BJgDLEB19PNbMA4GwoA3bt3PAt+P/nwM+P0Vfr8G6qPbYA5ojnvuP4Dnr9Aew0DH1W4T4Fng00B+pvdL+Sf/5F92/5MRZCFEthsE8q90FwalVKNS6v7oNIQxjIItf9FqvXE/Ty/z2BP3eFhrPRn3+BzGiGs+YIs+jn+ubIXQSoELi9adVwWURqeFjCilRoB/xJhjvZyfAv+XUsoO/F/Abq31/PtVAXfHvc8RjEJ48XuVAkNa6/EV4q8ATq3w++cVYBTbK30ulFIfVUodUUqNRuPxcbk9rmab/N9AI3BUKbVDKfX2VWIVQohlSYEshMh2L2Kczn/HFdb5JnAUaNDG6fd/BNRV/M6AUsod97gSuAQMYIyeVi167uIK79ONUXTGrzvvAnBGa+2P++fVWr9tuTfSWh/GKCbfysLpFfPv9dZF7+XQWi+O6xKQq5TyrhD/BRbNJ15GP8YI+7KfKzrf+OPAu4CA1toPjHK5Pda9TbTWJ7TW7wEKgf8CfrWonYQQIiFSIAshsprWehT4V+DrSql3KKVcSimrUuqtSqn/jq7mBcaACaVUM/CXSfjVn1ZK2aIF39uBX2qtwxjTLf5dKeVVSlVhzNv98Qrv8QvgE0qpgFKqHPhw3HPbgTGl1MejF66ZlVLtSqmXL/9WgFEU/zXwOuCXcctvjcZUBaCUKlBKLbnDh9b6ArAV+KxSyqGU2owxKvuT6CrfAT6jlGpQhs1KqbxF7xEG7gI+FW2LVuLmEWO0RQijkLYopf4VYz7zVW8TpdR7lVIFWusIMBJ9TfgK20sIIZYlBbIQIutprb+IUYj+M0bhdQH4EHBPdJWPYYyqjgPfBn5+lb+yB2Pe7CWM4vEDWuuj0ec+jDH/9zTwPEbRevsK7/NpjFHfM8CjwI/iPlMY+F2Mi9nOYIxOfwdjOsJKfoYxR/pJrfVA3PIvA/cCjyqlxoFtGPN5l/MejHnJlzAufPyk1vqx6HNfxChgH8U44Pgu4FzmPT6EMSWlB/g+8L245x4BHgKORz/7DAunVFzNNnkLcEgpNRH9zO/WWs+s8DmFEGJFSmud6RiEECJrKKVuBn6stS7PcChCCCFSREaQhRBCCCGEiCMFshBCCCGEEHFkioUQQgghhBBxZARZCCGEEEKIOCveWH+jys/P19XV1ZkOQwghhBBCZJldu3YNaK0LVlsv6wrk6upqdu7cmekwhBBCCCFEllFKnVt9LZliIYQQQgghxAJSIAshhBBCCBFHCmQhhBBCCCHiSIEshBBCCCFEHCmQhRBCCCGEiCMFshBCCCGEEHGkQBZCCCGEECKOFMhCCCGEEELEkQJZCCGEEEKIOFIgCyGEEEIIEUcKZCGEEEIIIeJIgSyEEEIIIUQcKZCFEEIIIYSIIwWyEEIIIYQQcaRAFkIIIYQQIo4UyEIIIYQQQsSRAlkIIYQQQog4UiALIYQQQggRRwpkIYQQQggh4kiBLIQQQgghRBwpkIUQQgghhIiTsgJZKVWhlHpKKXVEKXVIKfU3y6yjlFJfUUqdVErtV0rdkKp4hBBCCCGESEQqR5BDwEe11i3Aq4APKqVaF63zVqAh+u8W4Jurveno6Cha62THumaPPPII+/bty3QY9PX1cd999zEwMJDpUNi9ezePPfZYpsMgHA7z4IMPcvjw4UyHQldXF/fddx+jo6OZDoWXXnqJp59+OtNhEAwGuf/++zlx4kSmQ+HMmTPcd999TE9PZzoUnn/+ebZu3ZrpMJicnOS+++7j3LlzmQ6FY8eO8cADDxAKhTIdCk8++SQ7duzIdBgMDw9z33330d3dnelQOHjwIA899JDk5DiSk5faaDk5UZZUBaG17ga6oz+PK6WOAGVA/Bb6feCH2vh2bVNK+ZVSJdHXLuvkyZOYTDIzRAghhBBCpEZaKk2lVDWwBXhp0VNlwIW4x13RZYtff4tSaqdSamfKghRCCCGEEIIUjiDPU0p5gDuBj2itxxY/vcxLlpyr0VrfBtwGcMPLbtTPvrA96XEKIYQQQohrm9dpTmi9lBbISikrRnH8E631Xcus0gVUxD0uBy5d6T211oR0JHlBCiGEEEIIESdlBbJSSgHfBY5orb+4wmr3Ah9SSt0BvBIYvdL8YzCGl8PhpIYqhBBCCCFETCpHkF8D/AlwQCm1N7rsH4FKAK31rcCDwNuAk8AU8L7V3lRrCEUyf8WsEEIIIYS4NqXyLhbPs/wc4/h1NPDBtb53OCJTLIQQQgghRGqk/CK9ZNMawjKCLIQQQgghUiTrCmSAsAwgCyGEEEKIFMm6AlmjCckUCyGEEEIIkSLZVyBriMgUCyGEEEIIkSJZVyCDzEEWQgghhBCpk3UFstzmTQghhBBCpFL2Fcho5uQqPSGEEEIIkSLZVyBrCMoIshBCCCGESJHsK5DRhGQEWQghhBBCpEgWFsgwp6VAFkIIIYQQqZF9BbKGqZlZLFZrpkMBIDQ3tyFiCYdCmMxmlLriX/dOi42yTWDjxBKam8NssUj7xNFaEwmHMVsy3w1J+ywViUTQWmM2mzMdyobZJrBxYgmHQiiTCZPJlOlQNsw2gY0Ti+Tk5W2kWFaT+cy0RhrNmVPHeeSXP6ZhUyeNm7ZQWlWbsU7ioTt/wnB/H42bttDQ3oEvNz8jcQTngnzvs5+htLqWxk1bqG1uw2qzZySWowf28NzD99LQbrRPSWV1xjqJe370bWZnpmnYtIWGtg68/kBG4picmuQH//MfVDe20Lipk6qGFqw2W0Zi2fPS8+x+4WkaN22hcdMWCkvLM9Y+d3zrS5gtVho3dVLf1oHbm5OROIaHh/jZNz5PXcsmGjdtobK+KWOF+4tPPcLxA3ti35+8opKMtI/Wmh99+bN4cvw0bt5CXctmnG532uMA6LnUxV3f+yaNmzppaO+kvLYhY4X7kw/cxcUzp2Lfn0BBYUbiCEcifO9zn6agpIyG9k5qW9pxOF0ZieXsRsrJv/oxwwP9Rk7e1IkvkJeRODZSTj6yfzfPP3JftE7plJycIKV1dl3wVt/Wof/7jof58Zf/g/MnjgLg9uZQ19pB/aZOals2YbM70hbPyGA/t/7b3xMJhwEoKq+kvn0L9W0dlFbXpXUnfPHR+3nq3l8AYLHaqG5sMWJp7yAnjZ2E1prv/uc/03fxAgBeX4D6TZ3Ut3VS3dSa1k6ip+sct//nv8Qel1TV0tDeSf2mLRSVVaa1fZ789c/Z9tgDANjsDqqb2mjY1EldWweeHH/a4giHQtz6mb9ndHAAAF9ePvVtRuFR2dCS1qP7c8eP8JOvfBYApRRlNfU0tG+hrr2TgpKytLbPgz/9Lnu3PgOA3emktmVT7LvsdHvSFkdwdoav/+vfMj05AUCgoCi2z1bUNqa1cD+6dwd3feerAJhMJsrrGmlo30J9eyd5RSVpiwPgzm9/hWP7dgLgdHuoa91MffsWals24XClrzCcHB/jG5/8KHPBWQDyi8uo39RJQ/sWymrq01oY7nnhaR762e0AmC0WKuubqW/vpHHTDfjy0jtYs1Fy8vBAH9/6zMeX5OSG9k5KqmolJ3M5Jze0b6GqqRWrNX2DNRshJ//h5tJdWusbV1sv6wrkksoa/Ycf+Fv6Ll7g1ME9S543mc1UNrRQ176FurbUjehOjY+x+7nHATi8YyujQwNL1nFFO4m69k6qmtpS1kmcO3aYC6eOMjc7y86nH1l2ncKySuraO6lr66S4siZlO+HOpx5hZnqSS2dOce74oSXPWyxWKhtbqWvvpL69E48vNUePY0OD7N9mFDv7tj7N1PjYknW8/lxq2zqoa+ukqrEFS4o6iVOH9tJ97jTTExPsfeHJZdcprqylvr3TKAxLK1LWPi8+eh/h0BznTxzh4ukTS5632uxUN2+ivr2T2tbNuFI0ojvU183hnS8CsOuZxwjOTC9Zx5ebb+yz7VuoqEvdiO7RPdsZ6O5ibHiIQ9ufX2YNRVltfTTh30BuikZ0I5EIWx++B4DTh/fTe+HsknXsDhfVLe3Ut3dS07I5ZYV7b9c5TuzfhdaaHU8+RDgUWrJOoKA42qd0UF7biClFI7oHX3qekcE+hvp6OLZn+5LnTSYz5XWN1LUZ359AQVFK4gjOzrD9iQcBOLZ3J0O9l5as43C5qY32+dXNqRvRvXj6BGeOHiAcCkdjWprH84rLqGsz+tmS6rqUFe57n3+SibGRDZWTD21/gbHhwSXrSE6WnAzwni3l12aBnJNboGvbOhNeP7+knNq2Tja9+g14/blJi2Oot5sf/tc/Jry+2WKhor6F+s0vo+XG1yQ12W998E62P35/wuu7c/zUtGym9RWvpbSmIWlxANz+mY8t2zGtpKi8iurWDjpe+yZcnuQVY5fOnOAXX/2PhNe32mxUNLTS0PFymm54VVKTyZO/+iH7tz6V8Ppef4Ca1k7aX/U6CsurkxYHwDc+8ZcEZ2cSWlcpKKqspa5tC5tf80bsSUz2pw/t4d7vfiXh9W12B1XN7TR2voL6zTcmNZk8+MNvcnzv0sJrJb68AmrbOmm/6WbyikqTFkckHOYrf/f/JLy+MilKaxqpbe1g86vfgDWJyf7w9ud59I7vJry+3emkunkzTS97FTUtHUltn7tu/Rznjx9OeP3cwmJq2jrZdNPN+POTVyxPTYxx27/+TcLrm0wmyuqaqN/0Mtpe+RtJTfa7n36YZ+/9ecLrO90ealo7aH7Zq6lsbE1aHAA//eKn6Os6l/D6qcrJg72X+NF//VPC60tOXl5ReRU1bZ1sfs0br9mc/L5XVCRUIGfdHGTQJFLUK7OZ0ppGalo7qW7twOENMBdO3sFAKJJYHAAOl4eqls1Ut3ZQ2dhORJmJZCiW3KIyqls7qGnrJK+8NqnbBCCiSSgWk9lCeX0z1a2dVLd0YHV6M9Y+Tm8O1S0d1LR2UtHQSlgrwkmMJZzgNgHIL6uM7rOd+IsrU9A+iW0Xs9VGRX2L0T6tHZhszuS2TzjxbeL2GQcM1S0dlDe0EIrAciNm6xVOcJuAccBQ3WrsK9684qRuk0g48TgsNjtVTe1Ut3ZS1bIZLPaMfX+8gXxq2jqpae2kpLYx6e0TiSS4ryhFSXU91a1GLC5/QVK3ydwa2sfmdFHZ1E5NaydVTZvQJmuS2yfx74+/oDi2TQqr6pLfpyS4r6Q8J6+hfSQnL3U95eREZd0IcnlDq/7gF3/IoRefYt8zC09d2J0uKps3U9XaQUVje1JHvBYLh0JMjg2D1jxw+5cY7e9d8HygsISq1g6qWjopqkrd6S2AmakJgjPTDPde4qHvLRyVM5nNlNY2UdXSQVVrBzm5BSmLA2BiZIhIJMyepx7kyEvPLnjO6fFS2byJqpZOyhtTd3oLIDQXZGp8lEgkwr23/hdTY6MLns8rrTC2SUsHhRWpO70FMD05ztzsDL3nTvHEz7694DmzxUJZfUssFk8SR1SWMz48gNaalx78Faf271zwnCvHR1WLkbxK65pTOld8LjjL9MQY4bk57v76vxOcWTiqXVBRTVVLB9UtneSlcMoJwPTEGHPBWS4cO8hzd/94wXMWm43yhjbju9y0GVeOL2VxaK0ZHzamaj175w/pOrFw1NTjz6Wq1dgmpXVNmC2pmysenJ1hZnKc2alJ7vnGZxdOsVCK4qq62D4bKCpNaftMjo0QDs1xcs9LbH/k7gXP2RwOKhrbjT6/aRNOtzdlcUQiESZGjJG4x35yK/2LpsDk5BVS3Wpsk+LqhpTOFZ+dnmJ2epKJkSHu/dbnjNs7RSmToqSmkarmzVS1duIvKE5ZHAATo8NEwqGNlZO/+z+MDvQteD5QWEJVWydVzR3XZU7e/eQDHN3+3ILnjJy8maqWjusqJ3/otdXX5giyyWzB5s7h2O4X0Wh8BSWxBi6qql8wDy6Uyr+4ZzLj8udz/sg+Rvp7UCaz0Sm1dFDR3IEv//KVzRGMo+xUsTjcWBxutj10JxqNw+WlonkzlS2bKW9ow+ZwxtZN6TYBHDkBZqYmOLF3OxpNbnE5lS0dVLZ0UFBes6BTSmksZisufz7Hd21lcmwEs9lKSV0zVS0dVLZsxuO/fIFEWLMgwSSb1enB6vRw5M4fotE4vT4qmzdT2dJBWV0rVvvlQjTV7eP05TExMsTpQ3vQaPLLqo32ad5MflnVgk4plbEoiw2XP58Dzz3K7Mw0ZouN8oZWKls6qGjejDvuosWUt4/Li8Xp4fCO59Fo3L5cKqMddUlt04JT46luH5c/n+HeS1yIFseFFTXR708nucWXL1rUKY7FZLXj8ts5vP15QqE5LDY75Y3tRv/WtAln3KnXVLeP3eMjEg5zZKfRPt7cguj3uIPi6oUXLaa2fRQufz49Z0/Sd+EMoCiuaYzlH19Bcdrax2x34rI72f30w2gdweZwUdHUHh18aMfuuny3kZT3+V4/obngxsrJA72Sk6Pmc/LJfUtzcmFFbdr6/I2UkxOVfSPITZv1H/3D5xi8eI6Klk5y8jJzi515h154DFeOn7L6NmwZusUOGEesh55/lPKmzRRUZO4WOwBdxw4wNtRHZXMHnkBmbns3b/8zD+IrKKG0Pr13z1hscnSIY9ufpaKlg/yyzN1iB+DswV3MTk1Q3rQZd4ouyEiE1pp9T91PXmklJXWpuyAjEaP9PZw5sJPKlg4CxZm77R3AyT0voiNhyps2LyhE0y0cDrHvyfsormmiqLohpSPWqxm4eJbuk0eoaOnAV5CZ297NO7b9GSw2O2WN7Thc6bu7yWKh4Cz7nn6A0vpWCqvqMZszN97Vc+aY5ORFNlpOHh/qp6J5s+Rk4O/fUHNtXqRX3rRJf+ibv850GEIIIYQQIst84k111+YUC60hFJY/NS2EEEIIIVIj+wpkUj9nRwghhBBCXL+yrkBG64zc7kMIIYQQQlwfsq5ANkaQZYqFEEIIIYRIjewrkLVxQ3AhhBBCCCFSIQsLZM1cSEaQhRBCCCFEamRfgYxcpCeEEEIIIVIn+wpkuc2bEEIIIYRIoawrkEETlgJZCCGEEEKkSNYVyFojt3kTQgghhBApk3UFMhoZQRZCCCGEECmTdQWyJvERZK01SqnUBpQgiWXjxgEbJxatjX17o8SyEeKAjRPLRokDJJaNHAdILBs5DpBYNnIcsDFiyboCGa2JJDiCPDczxaGHvoevtJa86ja8hRUZ2+D9J/fSe2wnuVWt5FW3Yvf4MxIHwNEnfobJbCGvug1/eQNmizUjccxOjHLk0R8RqGgkr7oNd35pxtqn+9A2hs4dIbfaaB+by5uROLTWHHnkh9hcXnKrW/GX1WMyZ+ZrOjXcy/GnfkluVQt5NW24AkUZa58Le55mvO88edWt5Fa1YHW4MxJHJBLm0AO34woUklvdiq+kJmPtM9Z7njMv3k9edRu5VS24AoUZiQPgzEsPMTM2ZLRPZTMWuzMjcYTnghx84Lt4iyrJq2ohp7gaZTJlJJah88fo2vsUedVt5FW34cjJzUgcACefu5twcJbc6lZyK5swW+0ZiWND5uTqNvKqWiQnA7MTIxx59MeSk6PU/IhV0t9YqduBtwN9Wuv2ZZ6/Gfg1cCa66C6t9b+t9r65VS36zR//XsJxnNv+MBd2PQ6A1eklt6rFKDzKG9LaSehImF13fI6Z0QEA3Pll5Fa1klvdiqegPK074VjPWfbf/TUATBYr/rL6WCw2ty9tcQCcevYuug9tBcDu8ROoaiG3KloYprGTCM8F2fmTzzI3PQ5K4S2sMLZJVSuuvJK0ts/QucMcfvB2AMxWG/6KpmgsLVidnrTFAXD0sR8zcHIvAI6c3Ng2ySmtTWthODczyc4f/wfhuVlQipzi6tg+6/QXprV9eo/u4MRTPwfAYncSqGgiUNVKoLIp7YX7wfu+xUjXCQCc/oLYNjEKQ3Pa4pidGGHnTz+LDodRJjM5JTWX28eXn7Y4AC7ue5YzW+8FwOJwkVsZ7VMqm7DYHGmLQ2vNvju/zER/FwCu3KLoNmnDW1iZ1sJ9aqiH3b/4AmiNMpvxl9aTW91KoKoFhze9hbvk5KUkJy+Vypz8yw/etEtrfeNq66WyQH4dMAH88AoF8se01m9fy/t6i6r0pnf8dcLrh4LTXNjx8NL4zBZ8pXUEKlsJVK19RDc0OxUrHBI10nWM4XOHlyy3unIIVDYTqGzFV96A2WJb0/uO955jcuDiml7Ttedx5qbGlyx355cTqGohUNWKO69szTth/4ldhIOzCa8fnBrl4p4nlyw3Waz4yhqMwqOiBZs7Z01xBCfHGDp7cE2vGTp7kNGLJ5Yst3n8BCqNbeIrqVtzJzF26RRTw71res35HQ8RDs4sXKgUnoKKaDHWiiu3eM3t03v0JXQ4nPD606P99Bx8fslys9WOr7wxWnisfUR3dnyI4fNH1/Sa/pO7meg9t2S5PSeXQKXRcXqL1z6iO9J1PJYkE6F1hHPb7kdHFm1Hpcgpron1KU5/wZri0FrTe/jFNb1mcvAifUe3L1lutjnwVzQb7VPRhMXuWtP7To/0L/tduJLeI9uYGupestzpL4x9f7xFVWsu3IfOHSY4MZLw+pHQHOe2P2Bc0R1nvnCfbx9HTt6a4giHgvQf27mm14z1nGHw1N4lyy0Od2yb+MsaMdvWVhhODl5ivOfsml7TfeBZZsYGlyx35ZYYfX5lK57CyjX3KQOn9hGamUx4fcnJy9swOXlylIt7V8nJlS3YXNmbk+/+m1dntkAGUEpVA/cns0C2e3N1oLIlKfHFc+WVEqhsIbe6HXd+2arrT4/0se+Xn096HCaLFV9pPf7KZnJrNidUeFzY8fCyO/TVsrly8Ec7Tn95U0IjHnvu+Cyz48NJj8VTUIG/soW8mk04A0Wrrj/ee5ZD934j6XGYrTZyyhqMgqy6PaFTyWdeuHvNhU8i7N5AtJNoI6e0PqGOc8f3/8UYhU0ipRSewirj+1OzCUcCI4bD5w5z7NHvJzUOiBaG5Y34K42RukRGpE488RMGT+9LeiwOX36sfbzFNau2j46Eeem7n0h6HMpkwltcE2sfuyew6mv6j+/k1DO/SHosFocLf3lTrAhKJLEdefDbay7WE+EMFBKobCMQHdFdzdz0BLt+vOpJzjVTZjM5xbXR9tmc0GBA94FnObft/qTHYnV68Fc0E6hswV/ZktDB5oG7v7zmYjARa87Jw73s+9UXkh7H5ZxsfH8kJxuyOSf/+v97bUIFcqbnIN+klNoHXMIolg8tt5JS6hbgFgCz3WVcqZdEFqcbV6AEZ6AEmyePSAIXAUbCOulxADhy8nEGSnD6SzFZnInFopMfizJbcOaW4vSX4vAXo7VCJxCL1iQ9Fqsrx4glUILF5c9s+/gKcQVKcQZKUWZ7QrHoSPJjMVmsOKNx2HOK0BHQCfySlLSP24czUIIjUILF6UusfVKwTVAKp7/I2C7+ElDWxNonBd8fs80R20/sOYUJtU8q9hMAmzsQ7VNKMNs8mWsfkynWPo5ACShLgu1D8tvH7sQVKMMZKMHuyc9on2L35OHKNfYVs82dsfZRZrOxn0T3WzBnrH3WlZNT9P2J5eRAieTkqPmc7AqUZmVOTlQmR5BzgIjWekIp9Tbgy1rrhtXe01tSq2/4359KOIbZiWHOPPvzJcudgWL8FS34Kppx55WveT5YJDTH1NClNb2m/9h2Bk/tXrBMmcx4S+qMWMqb13WhwOzECHNTo4m/QMOpp3/K3PTYgsVWpxdfeTP+ima8JXXrmg82OXgRHQ4lvP70cA/nXrxnyXJXbim+ihb8Fc241nFaKRycYXpkbdMaeg4+y8j5hafblNkYPfBVtOArb1rzaSWA2fFB5qYnEl5fR8KcfOJHhOcWTrGwunz4o9vEW1y7rvlgE/0XQCd+m8Tx3rNc3LX4dKjCnV8e+/44A2uf6hGanWJmtH9Nr7m4+zHGe04tWGay2Mgpa8Rf0YyvrGldc7RnRvsJzU4lvH4kFOTE4z9YMsXC7smN7bOeouo1T/XQWjPZf35NrxntOkb3/qcWLVV4iqqNbVLejMNXsOb2mZueYHZ86en4Kzn/0n1MDS4cSTRbHfjKm/BXtJBT1rDmqR5gnK0LB6cTXj80M8nJJ3/M4mzs8BXE+jdP4dqnekTCoSWfbzVDZ/bTd2TrgmVKmfAU18T6/LVO9QAITo0RnFjbqOCZ537F7PjCqUQWuxtfeRO+imZ8pQ2Y1zFHe2qom0gomPD6qcrJ4VCQ6WWm+FzJ8jnZgrek9rrNyVNDPZzfds+S5a68sug2acr6nPzgx2/e2CPIWuuxuJ8fVEp9QymVr7W+4mRAk9mKu2D102Hz+o/vRGswmcx4S2rxlTfjq2hecppxrQcKymxZUxzhuSAjXUfRGqwOt9EhVbSQU1KP2Xp5ftN6Dlhsbt+aJvIPnztIcMrY/K7cEnwVzfgrWpbs9OuJxZVbuqb1ew4+Z7SP2RJ3oNC05POsNRaT1b6m9pmbmWD04gm0Nk5j+aLFRc6i+U3rah9PLjZP4hfC9B/fQSg6/9goRI19ZXEhup5Y3Pnla1q/a9cjaB09jVXaEP3+NGF1LCxE1xqL2eZcU/vMjg8x3nsGrY0LR4xCtGVJIbqebWLPyWctaaf7wDNEwmGUUrgLK/GXG+2zuBBdV/usYZtorTm39R60BovNQU5ZA77yFnzljUsK0bXGYnG4saxhXvnU4KXYaXaHLz+W1N0FVZjMlwvR9WwTh29tc7m7dj5s3CLKZMJbVB3dZ1uWFKJr7vNN5jW1TyQcZuSZO4z2sTujhWgLOaX1WGyXTwOvZ5tYnV6szsSv6h/vOc3MmJFanf7CWJ/vzq9YUIiuJxZnoHhN66cqJ6+1NgjPBRm5cMTIyU7P5fa57nPys9d8Tk5UxgpkpVQx0Ku11kqpVwAmIKEhCx1JbIPMjwrVvv495JQuvEI20fdIlrFLJ8lveDm+8majU4rf6dMcy2T/RSpf+Xv4ypsX7vQ6tTvbYsHJUcw2F3VveG90p4/rlNLdPl0nKW57XXREtCRj7aO1Znq4l6qb/gBfedPCJJjm9pkZ7cfhK6So7XXGiHV8IZrm9hm9eILSjjcZI27+ooy1TyQcJjg+TPVr3omvrHFhEZnm9pkc6MJTXEv5jW/DXVi9sBBN9/en+zTlL3tLbMQ6XlrbJxQkNDtNzW+8i5yyxoWFaJq3yUTPGfxVm/CXN+MuWHjXinTHMt5zjoqX/44xIrrorhXpjGWj5eSCxleSU94kOTnKyMlu6t/4J9GzlNd3Tk7lXSx+BtwM5AO9wCcBK4DW+lal1IeAvwRCwDTwt1rrrcu/22W+siZ90199MyUxCyGEEEKIa9cj//ymzE6x0Fq/Z5XnvwZ8bc3vS3QCvBBCCCGEECmQ6btYrJ3W6AT/kp4QQgghhBBrlX0FMhBZw1X4QgghhBBCrEVWFshSHwshhBBCiFTJugJZo9FSIQshhBBCiBTJugIZDRGZgyyEEEIIIVIk+wpk0ntfQCGEEEIIcX3JugJZa00kIiPIQgghhBAiNbKuQAYZQRZCCCGEEKmTlQUyaf6Th0IIIYQQ4vqRfQWy1hAJZToKIYQQQghxjcq+AhkgEs50BEIIIYQQ4hqVhQWyhqu8SE/rCN17H8LmzcdbVI/Nk4tSKknxrc3MaC+DJ7fjKarFU1iL2ebMSBwAgye3E5qdxFNUhyu3DGUyZySOSDjEpb0P4vSXRNsnkJE4ACYHLzB6fj+eojrcBdWYrY6MxdJ/7Hl0JIKnqA5noASlTBmJIzw3Q/e+R3DlVeApqsPm8mUkDoDxnpOM95zAG20fk8WWsVh6Dz2FyWLFU1SHw1ecsT4lNDNBz4HHcRfW4Cmsxer0ZiQOgNGuw0wNdRnfn/wqTObMpBytNT0HHsPq8OApqsOeU5ix9glODtN35Fk8hbV4iuqw2F0ZiQNg+OxeZicGo31+eQbbR3LyciQnL5XOnKyy7YI3T2Gt7vijz1z1+4ycP0D3/kcBsLp8eApr8RbV4corT/tOeO7FnzM12AWAK7cMT1EdnqJabO70dhLBqVFOP3U7WkcwWe14CqqNWApqMNvSWxgOntxO39HnALC5A7Ft4gqUoUzpKwy11px57kfMjvWjlAlnbhneWPukt5OYGevjzLM/AsBsc+IprIkVHmarPa2x9B15lsFTOwCwe/ONZFJUh9NfnNbCXUfCnHrqduamx1AmM668ilj7WJ05aYsDYHLgAue3/QIAi90d1z6VaS/cu/c/ysj5AwA4fIV4Co1t4vAVpbVPiYSCnHzyO4SD0yiTBXdBVbQwrMXq8KQtDoDx7hN07boXAIvDE91P6nDlVaS9MOzaeS/jPScAcPpLYt8fuzc/re0Tmp3i1JPfIRKew2S24i6ojhWG6S7cF+dkb1EdnsJaycmSkxdIRk7e+rX37tJa37jaellXILtyy3T9ze+/6vfROsylfY+iF81nNllsuAuq8BbU4C6swbLC0WM4FGRq4MJVxwEwNXKJodO7liy3ufzRJFuLK1C6YicxOzFIcGIkKbEMnt7B9EjPwoVK4QqUGomtsBb7FY4eJ/rPocNXP0c8Eg5yaf+jxpzzOGar43KSLahesTAMB6eZGrp01XEATA6cY/j8/iXLbZ5cvIW1eAprcPpLVuwkZsb6mZsaS0osfcdfIDgxtGCZMpmNTjway5VGdMf7TiflItdQcIqeg08sWW62OfEU1OApqjEK9xUKw7mZCWZGeq86DoDx3pOMXjyyZLndm28c+BbW4PCvPKI7PdJDaGYyKbH0HH6a0Mz4gmXKZMadVxFrn5VGdLXWTPSeTkocc9Oj9B55dsnyWOFeWIs7vwKT2brC68eYGe1PSiyjFw8z3ntqyXKHryj2/bHnFKzYPlPDlwjPTl91HJoIPQeeIDw3s2C5Mltx51fgLazDU1iNxe5e9vWRcIjJ/nNXHQfA7PgA/SdeXLLc6vTG9pMrjegGJ0eYHR9MSizD5/YyObg4lymc/uJosVyD3ZO3YvtMDl4gMhe86jhWzcmFtbgLqq+7nDxwegczkpMXuNqcvPWb77s2C2SbM0d7CmvS88tUtJMorMFbaBydzHcSsxNDnH7ux+mJA4yjx/xKo/goqF5w9Nh3/MXYaF462NzRTqKgBlegZEEncfLp7zM3nZxicDXKZMIZKMUbjcXm9seemxq+xLltv0pLHABmm8M4ui+owZ1fuaCT6Dn0FMPR0bx0sHvy8BRWRzuJhSO6xx67lUjo6pNZIi4X7jVG4R43ojved5quXfenJQ64POLujbaPyXK5MLy49yHGuk+kLRZHTkFsmzjiTvXrSISjj3wtbXEos8Uo3Atq8BRWLxjRHek6QveBx9IWi8XhMb4/hTW4F43ont9xD5MD59MWi8NfhLeghj8Z6+dtXYdiy7+x5W3cdfBJXjE7yT8vLliAfwyUctDm5PUz43x0tG/J83+bW8ZJq4Pfnhrjg+NLDz7+Mq+CixYbfzA5wvsmBlFKYbI6MEf//ctvf5BRp5e3HXuB39z3CMGp0QWv/6OCGqZNJt4/PsA7Fj0H8HtFdQB8aKyfcZOJH3jyEt4mVmdObJ91BUoXtM+ZF+5gZmzp500JycnLkpy81JVy8tZv/T8JFciZmcSYLfTlfzoSMY6c4v+lNRYdvf+zRuvMx7LiP9IXi47+Th2JLLNN0hbGfDDReDLcNoBmY7QP8XFEFseSxjBi4RjfnUzvKzq2TTbC9zgS9y9T+wmXP/tG+A5Ff+dbzu6lYcnIahrDmI8lfkkStsffjPXxh5Mjawwmbl9Z3L+kc1/R8f8yv59ITl4cxrWVk7NuBNkVKNV1r/vTq3+jSIRLBx9HL7ojhslsxZ1fGT3yqMJiW34eVjgUXOa01PpMj3QzdHbvkuVWZ070SKx61dM5s2vt8FYwdGY306NLT327AqWxI2Wb27/i6baJ/nNEknAbPh2e49LBJ5bszCaLDU9+lXG0nF+54gT9cHCGyeGLVx0HGKcQRy4cXLLc5g5E95NqXKtMsQgm6Qi+/8Q2gpPDC5YppXAFyoxR44JqbC7/iq8f7zudlD+0Ew5O03P46SXLzVZHbJu48yswW5Y/3TY3M8n06NJRuPWY6D3NaPexJcvnR9K9BTVXnHs7PdLL3OxEUmLpPfocoZmF7zU/ku6Nfn+uNMVivC85UyxC0+P0Hnt+yXKLzRUdqa3GnVuxYCQ9XnB6jJmxZE2xOMpE/5klyx05BbE+xbHKFItQ8OqnWIBxNmfJFAuTGXdeJd7Catz51VgdxhSLr97/eQA+/PaPAcYUi4mB5EyxCE4M0n9y+5LlFocHb3TUy5VbdsUpFjMT65ticfsLPwXg/a/5Y8CY+zs51LVkPaevKHZ24cpTLLoIh2bXFcsCq+Rkb0EN7oLKK+TkWSYHl36O9dhIOXnwzG5mJCcvcLU5eeu3b0loBDnr7mJhsljJScIUi5Guw7F5Oca8rxq8y+30evk7ZpjNlqTEATB8bp+x00VPH3mjDRx/+uhKsdjdAexJuGDMSIp9oLVx+iivwtjZ8qsWXRCw8lGYJ7/iquMAGDyzJ3a3Epvbv/JOv1L7WG1JaR+tNYOntoPWxukjfwneQiOBLZnru0IsDm8eDm/ipzNXMjM+EJt/bLY5jE6poBp3XsXCeV8rxAHgLai+6jjAOIU4vw/Yvbl48o32cfqLFl6kt0IsVrsTazLaJxKm7+jzsfZx5ZbHDm5tCy7SW3mfdfoKcFJw1bFMDl0kNG3MP7bYXdGksUwhusI2UZC0PqX78NOxz+vIyY99fxyL796wQiw2hwdbEi6ii4Tm6Dn0pNE+ZgvuvPLYvjJfiEYDWbF9XP7iq44DjIPDcLTQtjjceAqMg6clhWh0m3zlVf9rwWOTyZS09um6dOxyn+8rNLbJcoXoSu3jysHmWt9FqPMFTE5hDaHgtDGVRmtMFivuvPjBofi5viu3jzu3dF1xLLYwJ+dED27XkpOTUxvAxsrJs/E5Ob/S6FckJ19VTk5U1hXIyaB1hKnhSxQ0vgpvQc3SnT6NZsb6MduclG56M+78yhUvQEiH8Z5TBCo2RY+OSzJ6S5npsT4Km16Np6A6KR3Nek0NX8LmziWv5gbceZVpv1tEvPHeU+TV3ICnoCrtd4uIFw4FCU6NUtT8G9ER6/TeLSLexMB5XLmleApebRwoZPA2bxN9Z8ivvRFP4TKFaBqFZqcIz05R3Pr6aCGa3rtFxBvvO21cYV5QjTu3bMWLAlNNa83EwHkK6l9h9CkJ3C3iRF5yCovF5ucOl7S9AU9BdUZv8zbeewpfabPR5+eWYcpQny85eXnjPSclJy+SzpycdVMsPAVVuuP3P5HpMIQQQlzDbozeGWVnWUuGI0muzz/yVQA+9tsfznAkQmTG1u/+5bU5xcKYnJ9dRb0QQojs8md7HwJgZ2lzhiNJro/91oeMHySPCnFF2Vcgo696XokQQghxZfN31pB8I8T1SG7zJoQQQlwn/nzvQ/x5dHRcCLEyKZCFEEKI68TLuo/xsmVuiyiEWCgLp1ggp7yEEEKk1vwU3Wst31yrn0uIJMvSAlkuLhBCCJE6n7vpXcYP12q+uVY/lxBJkp0FshBCCJFC531FmQ5BCJFB2Vkgy5GvEEKIFHpN9E/ZvlDRnuFIkmts/g+TSB4V4oqyr0DWK/9JRSGEECIZ3n34KQBeKG/LcCTJ9U+vf5/xg+RRIa4o+wpkAOTiAiGEEOkg+UaI65Hc5k0IIYS4Tnxg9wN8YPcDmQ5DiA0vO0eQ5dSQEEKIVJrPM9dYvmnrP2v8cI19LiGS7boukLXW9J3egd3lx5NbjmX+4oUMCE6NMtR1GE9+BS5/CSaTOWOxjHQfJzQ3gye3Arvbj1IqI3HoSITeUy/h9BbgySvHbHVkJA6A6fEBxnpP4cmrwOUrQmWwfYa6DqN1GE9eJXaXL2NxRMIhek9tx+UrNtrHYstYLJMjPUwOXsCTX4kzpwClMndybODcPkxmK568CmxOb8biCIeC9J3agTu3DE9uGSazNWOxjA9eYGasD09eBQ5vQcb6FID+M7uw2Nx48iqwOtyrvyBFheTc7BQDZ/fgyavAHSjFZE5zOo77XKO9p5mbHsOTV4Hdk5u5Pn8D5eTZqVGGJScvcL3l5JR9I5VStwNvB/q01ksuA1ZGC38ZeBswBfy51nr36u+cvIv0FGB3+ug++jwAjpx8vHkVRuHhDqR1J7Q5c5idGmF43xFMZouR1PIqjE7C5kxbHAAufwmnt99J/6mdWJ0ePHkVePMq014YKqWw2j1cOvIsKHDmFOHJK8ebV4nN5Utr+zjcufQMP8/QhUOYLDY8sfYpS3sn4fIVcWbnr+k7uQObKwdPXiWevHJcOUUoU/oKQ5PJjNls49Lhp1EmE05fUfT7U4HNmZO2OABc3ny6jz7L4PkDmK12PLnlRuGRW5b2wt2ZU8j5vQ/Re2Ibdrff2E/yKtJeuJujBfHFg0+iTCZc/pJYLDaHJ21xALh9RXQffY6Bs/uw2Jx48srjCsP0Fu4OTx5dB5+M/pwb2yYOb/6CPuUzN73b+CFFBbLV5iQ8N0vXgcdRZjNuf0n0u1yBNR2FYdzncgdKOHXsefrP7MbicOPJLcebFy0M01i4b6ScbJecvMT1lpOVTtGXXyn1OmAC+OEKBfLbgA9jFMivBL6stX7lau/r9pfopt94b9Li1Fpz4cDjRELBBcstDncs2bt8xUs6iUg4xOzkUNLiAJga7aPv1I6FCxXRozUjluU6ibmZSULByaTG0n9mD5PDlxYsM1msuANlRnJboZOYmRhER8JJiyMSDnPh4GPo8ML3tDq9ce2ztJMIh+YITg0nLQ6AicEuBs7tW7hQGQVrrPBwLu0kgtPjhOemkxpL78ntTI/1L1gW6yTyK/EEyjBb7UteZ7wmed/50NwsXQcfX/KWlwv3Clw5hUsK9/DcLMHp0aTFATDWd4ahrsMLlimTKa59Kpcd0Q1OjRIOzSY1lkvHXiA4ObJgmdlqjxaGlbgDpUsKd601M+ML2/Rqzc1McvHw00uW2z2BaJKdLwwXtk8oOM3czHhSYxnpPs5I94kFy5TJjMtfHPsuW5cp3GcnR4iEg0uWX42uQ08Rmp1asMxid10+sFpmRFdHwsxMDCY1jtnJEbqPvbBkucObd7lw9+Qt7fNnpwjNTqzrd9629Q4Abnn1uxcsH7xwkPH+cwuWKbMFd6AUb14F7tzyZQv3mYkhdCS0rliWIzl5eZKTl1o+J6ton1++Yk7e+tO/36W1vnG191+1QFZKfQj4idZ6zZ9MKVUN3L9Cgfwt4Gmt9c+ij48BN2utu6/0njaHR3vyKtYaylUxma24AyV4civw5JVhsbmYnRrl9I670xoHgNXhiXXiLn8xJpOZvjO7GTy/P72BKBXXSZRjdxmnfU6+9CvmZtbXca+XyWKLdeKe3HLMVjtTo32c2/tgWuMA40yA0VlV4PIVokxmek5sY/jS0fQGohSunMudxPxUjGPP/4RIeC6toZgt9ujoi9GJmy02xgcv0HXwibTGAWBz+fFGt8n8iO7Fw88w1n8mrXEYhXtxbF+xOb3oSISjz/0wrXEAmK2OWJ/iyTVGdEd6TtJ97Pm0x2L35OLNNfqU+RHd8/sfXVIYpJoymXm3Utg9eTzf8jqsdjeh4AwnXrwjrXEAWGyuWD/rjo7oDnYdWlq4JejW6Lb8QKB0za91eOdHdMuxu42pGGd23Zf0A4fVLJuTJ0c4vfOetMYBkpOXs9Fz8taf/UNCBXIi506KgR1Kqd3A7cAjOjnDzmXAhbjHXdFlSwpkpdQtwC1gJNt0i4TnmB4fxGJzYbG7cAfSe3ol3tzsJDMTg1jsLmwOLzZXek9lx2jN7OQwFrsLi82JzeFBZWiOYyQUZGZiEKvNhcXuxpXBv4AVnBlnJrqvWJ3etJ/KjtGamckhLHYnFrsLq92d/jmOUeHQrLHP2pxYHR5cOYUZiQNgbnosGosLq8ObnlPZy9CRCDMTQ1hsTiMWuwvjBHP6hedm4voUDw5vXkbiAGM0f9rmxGJ3YnV4sdgyM8dRR8L88WAX5uFuHq9oT/sp9Xih4BQzEwPRftaL3e2/qvdbT2E8b3ZyOLrPGu2TqesOJCcvQ3LysoycPLSunLxqxtRa/7NS6l+A3wLeB3xNKfUL4Lta61Prjnr5bLBs4a21vg24DcCZU6iLGm66il+79Ff2n9mz5HQOXHn+k8XmIrlxGMl78SliYNX5T978Siz2BC42WYOxvtNMj/YtWW51ePDkrzz/qaD6BsLJHKHUmr4zO5eczpmf/xSb87po/pPVmZP09pmdGGKk+/iS5avNf/IW1mJzB5Iay2j3cWYmlp5OXDgnuXBJ+xTWvQKtk3dfVx0J03d6x5Jv7mpzku3u3KS3z/RYH2O9p5csX21Osq+kAae/OKmxDF88THBqbMnyK81J1lonfZtEQkH6zyy9tGO1OclOX2HSY5kavsT4wPkly1ebkxwoa8WTX5XUWAbP718yxQIWzkl2br8TAG/0d5ssJH2bhIJTDJ5bOtK4cE5yOdZF/bs7UJr0WCYGzi87Um+xu2LTcZabk5xXuZnQ3EwSI1lnTrZLTpacbEjWnOSEhpS01lop1QP0ACEgAPxKKfWY1vrv1/WbjRHj+LkS5cCq59HMVhu5ZS3r/JVLTQx1xb6IymzBEyiNnaKw2FYeXTJb7UmNAzAmvkdZHe5YR73aFbTOnEKcSRyVC8cnVWW8/3wHaXNd+QpaX3F90uIAGO09FfsimixW3Lllsflwlivs9Fa7K+ntc37/o7GfbU5vbF7r/Gmblbj9xbiTWIDNzU5dPr0am29VsWAqxUoCpU1JiwNg6OLhWHFsttpw5xoXbKx2cZzN6U1q+2itGeu9fLxuc/tjHfVqF8d5csuTFgcYV7/3ntwGxE+lmD9QWPmuFkqppO+z/Wf3xH422xzRU9LluANlmC0rjy7ZXX7sLn/S4tA6wvDFy4WG3ZMba5/FF8ct5s2vTFocYBxIzRfHlwvRCjy5V76rhclsSXr79ET3E7hciHryKmJTKVbi8OTh8KxvpP9vdt0LwJdf9nuxZZFwaMGUgNhUivyK2FSKleQU1qwrjpWsPyc7kt4+F488E/vZ6vDE4pCcnN05OVGrFshKqb8G/gwYAL4D/J3Wek4ZGecEsN4C+V7gQ0qpOzAu0htdbf5xNCJI0pWSWmtGek4SKGs2Nqp/6cT/dAlOjxGcGaeg9mUrTvxPl9GeE7hzS2OFTqZOL2odYaz/DLkVbRm/vdr0+AA6Eqaw/uUrTvxPl5Hu43gLqozRpdzlL8ZLh0g4xMTABXIr243vzzIX46XL1Eg3JrOVooZXZuQuGvFGuo/hK27Ak1uekbtozAuHgkyN9JBX1YE3P7O3VxsfuIDVmUNueduKF+Oly0j3CfyljdGLJUtWv4tGirbZ3OwUMxND5NdsWfFivFSonx8ljvtdY/1njKK4pgJ3bpruorGMDZWTp0aZm5mQnBznesvJiVyk928Y0ynOLfNci9b6yAqv+xlwM5AP9AKfBKwAWutbo7d5+xrwFozbvL1Pa71ztYA9eRW6420fWW21hMx/9kzek3Oe1npDxAEbJxZpn+VtlFg2ShwgsWzkOCA7Y/nqo98A4MO/9VcZjSPZlvtcG6V9pM9f3kaJ5Vppn60//lhyLtLTWv/rFZ5btjiOPveeVd5XAx9c7fen0kZo5HkSy1IbJQ6QWJazUeIAiWU5GyUOyM5Y/vl1f7Yh4kiHjRLLRokDJJblbJQ4ID2xZOdf0ttAjSSEEOLaM+rM3DSQlJrPn5JHhbii7CyQydyfkRVCCHHte9up7QA8WPeKDEeSXBe8BdGfJI8KcSXZVyCr5F2kJ4QQQiznrfMFcv2qf+A1q/z3or+gJ4RYnhxCCiGEEEIIESf7RpBBRpCFEEKk2LU5V/fvtxp/LltGkoW4MimQhRBCiJVcY/mmYqzf+OEa+1xCJFuWFsgyM0QIIUQKzdeP11q+uVY/lxBJlp0FshBCCJFCH/vN1PyBECFEdpACWQghhFhkNkN/IlwIsTFkYYGs5NSQEEKIlPqDI88AcHfL6zMcSXKdzK0wfpA8KsQVZV+BrJCLC4QQQqTUG8/sBuDu1pszG0iSffmmd2U6BCGywnV5CKl1hP6T25kYuEAkEs5oLDPjgwyc2c3sxBBa64zGMnLxCKOXjhEOzmQ0jkg4RN+Jl5gc6kJnuH2mRnoYPLuX4ORIRuMAGDp/gLGek4TnZjMaR3hulr4TLzE10o3WkYzGMjl4gaHz+wlOj2U0DoDBs3sZ7z1NJDSX0ThCs5P0n9zO9GhvxvuU8b4zDHcdYm5mIqNxaK0ZOL2L8f6zRMKhjMYSnBpl4NQOZsb6M94+o90nGLl4hNDsVEbjkJy8PMnJS6UzJ2ffCDJc9QiyUmaUycyF3fdhslhx51XiKajGU1CFxeZMUpCJsXtzuXjgUfpPbMPqzMFTWI23oBpXoBRlMqc5ljzObvsVKIXLX4KnoApPQTU2dwCVxlF7k8WKjoQ4v/NeTFY7nvxo++RXYrY60hYHgMNXyMX9j9B3fCs2tz+6n1Tj8pegTOk9vrS5/VzYdR/KZMLpL8FbWI2noAaby5fWOMw2B6HZCc5tvxuzzYEn39hP3PmVmNM8b9PhK+Li/kfpPfo8dm8unoIaPAXVOH2FqDSfQrY4PHTtexhlMuHKLcdTYHyXrU5v2uOYGR9g4PROLHaX0T6FNbhzyzFZrGmNxeEr4tTzP6bn8DM4cgpi/awjpzCtfYpSCrPNTteeB1FmC+688mifUo3V4V7txUmNxeryMTF4gf5TO7A4PHjn+5TcMkzm1Kfkf33qdgD+7Q3vx+kr5NQLPwXA6SuM9W92T16a28eMMpkkJy+JZXFONraJ5OT05GSV6SOktXLnVejWt33kqt8nEgpydtsvlxwNOf3FCXUSOhJmbnbyquMAGO85Rd/xFxYsM5mtuPMr8RbU4F6lkwjPzRIOJWdU8dL+x5ge6V6wzObyXd4JV+kk5mbGk3LUHZ6d4uz2OyH+vWKdRA2ewmrs7sCKr4+EQ4SCyRkVGe06zMDpnQuWma123NHCcLVOIhycIRwOJiWWrt33MzsxtGCZzR2IFmM1OP3FV+wk5qbH0Vx9+8xNjXJ+568XLFPKhCu3LLavXKlwj4TnCAWnrzoOgKGzexg+f2DBMrPNebkwzKu4YuEeCk4lZ1RRa87tuJvQotFSuycvmmRrcPiKVu5TtGZuZvzq4wBmxvq5uPehBcuUyYwrtwxv9PtjdaxcuEdCc4TmktM+/Se2MdZ9fMEyi90dPQCvwZ1Xjsm8cuEemp0iErn69tGRMOdeupPw3MLROKNwr8FbWI3dWxBrn6/e/3kAPvz2jxmv15GkjYRPDV6g+9BTC5YpswV3bgXewhqjMLSvXLiHQ7PrPpN066PfAOADv2XcpaP3yLNM9J9dsI7V4Yl+j2tWLdznZibR+upHFVfPyTXYPbnXYU5+lOmRngXLLufkGlyBEsnJrC0nb/32Lbu01jeu9nuyrkC2OXO0p7AmLb/L6vRGG74GV24pJtPlTmJ2YojTz/8kLXGAMjqJQqMTt7kXdhJ9x19kcNHOkiomi83oJApr8ORXY7Yt3AlPPvN95qaTk+RXY3P58RQu30lMDXdz7qVfpSUOlMIVKDXap6AGm9u/4Omew08vKeDWY3biDwlOvjX22On/Khb7PkKzHUyPfDgaiwmz1YHZ5qD2NTvJKR5npKuUrj1bAJgavgTRaRGu3M9gtp4jOPV6Zsf/ZMnvc+f9EyZLL8HJ32Z24n8tfT7/Y5jMI8xO/B7Byd9b8nxuzb+QU1zKzOg7Gevp5PINWCEcnMbm/gMAZsb+lLnp12FzP4Tdc+d6N8+K4kd0PYU12Jw5C56/uPdhxnpOJP33LsdscxoHM4U1uPMqF4zo6kiEo49+PS1xAHEjutVLCveRi0foPvB4WuJQpuiIbqEx+m91eBY8f37HPUwOXkhLLBaHO3YW4vvbfskNPSd4z7s+w3l/Ma86tZ0/eP6nS17zl3kVXLTY+IPJEd43Mbjk+T/Pr2LIbOE9E0O8Z3J4yfN/VFDDtMnE+8cHeMfUaGy5yWLFbHXyV2/5MHZvPn+8/1FefX4/AKGZCYJTo8woE++K5sOPjfbyukUF/LDJzJ8VVAPwLyPdvHx2ik3BaQ7YnPxeUV1C28QoDCti28Vidy14/szWO5iZ/+MjKSY5eSnJyctYJSdvve0vEiqQs3OKRZrMTY8zeukooblpdCSMp7Dm8pcgrRcKaqZHugkHpwkHpwhUbl7Y4GmMJRIKMt572hgVnZvFX9G2aPQnfbEEp0YYvXiUUHAajcaTX5mJMEBrpoYuEgpOEw5OE6jcnJLT6sHJtxIONmG2HbtCLBHCwWm0jjA5eB5vkS9jF7UGJ4YZ6RohEu4hHApittgvP7kopHCwiSCkpEDWkQiTA+cJBaeM9qnavHB0Lo2bJxycZqznBOG5GcKhOXxlTZengqS5nWbG+gkFpwgFp/GbTDh9RXHPpi8WHQkx0X92wfdnQZJP43YJzUwy1n2McHCKP3vFH/CDHfcYvz8D36FIaA4diTBy8Qj+irakxXDA5uTORQXDFeMIzzHed8Zon7kZ/JWbFp2RSd+2kZy8lOTkZSQpJ2fdCLLTV6QrXv77V/0+WsPQmd3oZU7dWV0+vIW10aPUsmVPX4Rmpxg+t/eq4wAITo4y1r1M0RM7CqrFU1iL3bP86YvJgfNMDXUlJZbx3tPMjg8sWW7MO6rGU1SLp6BqxdMXg6d3EUnCqSUdiTB4ZtfC0zlRNncunqIavIW1OFeYdxScGmO06+BVxwEwOz7IeO+pJcvnT1l7CmrwFNWuOKVgvPc0M6M9yz63Fl27PkooOI2n4M+XPGeMTNbgKarBnV+14pSCgZMvJeUii0g4xFD0Kv/F7N58PIW1eAtrcPiLlz0lOjsxxNilo7HHXbs+CkD5y76w5limR3qZHDi3ZLkymXHlRU9ZF9au2EGOdR9fdp9fj5Guw0umWEB0SkGhMfLlzq9cdkqB1hEGTmxLShzhuVmGz+1b9jmHryg68lWLPadg2faZGetjvOdkUmKZGrrI1NDFJctVdGTSW1iLe5mR43kjXYeZmxpJSizD5/YvmWIBYHF4jf2kqBZXbvmyUwoioTkGT+9IShyhmUlGug4t80x0ZLKo1phS4F1+mt/U8CUmF02LWK+J/nPMjPYuWW6MTFYZZzsKa1acUjB8bh+hJExtuFJONkYma67TnHyK2fGlZybMVgfugiojFsnJQOI5ees333dtjiCb7S4Kml571e8z0XeGwVM7MO6rDM5AabQorsV2hXlO8ywOT1LiALi450HmD69MVnv0VHB0p0/gAgV3QTXu6Gm0qxGem2Ho7L5YLDZ3wOioC2ujc49XnwCfV/fyq44DYPTiEYypssq4KC1Qhjcay+LTJcuxuf1Ja5/z2+9ifpuYbY7Yl8+dX4XZar/yiwFvcT3e4vqrjsPm3suFnffEYrF784z9pKjWmHucwEVp+Q03XXUcQLQ4NuJQJhOuvIpY0rC5cq78YowiOr59eo8YHdla20xrzdmtP4vFYrG7oom01ihEE7hoMKe0eU2/cyWz44MMzPcpRKcwRPfZK809nqeUKWn7bP/xrbE4lNmCO78y2j41Kxai8Ry+Yhy+4quOQ0cinH72B7FYLE5P9OCpFldeRUIXpfkr2q86DjCKyoGTcX2+rzjWPnZv/qrtY7Lak9Y+PQefJNbnW6zG3MloUbx4CsNyXLnluHLLrzqOSDjEyIVDsVisrhyjfaIHColclBao3nLVcYAxkKDjcrIrUBb7Ll+3OTk4LTl5GVebkxOVdQUySoH56q4k1VozdG4P3rImvEV1eAprEtrpU2F2fJCZ8X5y616Gp6huxaPjdBg+tR+HvwhPUR2eolrsntyMxKEjEYbP78dX0WoUOoXVab9Sdt7U0CXmZifIa3gFnqI6nIGStN8dYd7MxGPklM3gKXojnqK6tN+9Yl4kHGLk4hF8le14i+pwF1QlVIheickSvV3cGr/bk72n0VqT3/gqPEV1K45Yp8PQuT2x786VRqxTLRycYaz3JP7qjmjSWH7EOh3Guo9hsjkoqHgNnqK6FUes02Ho7B68JQ1G+xTVXvEiuFSamx5ncugCgdot0T5/+RHrdBg5vx+rJ0Cg7ka8RbXY0nz3inlaa4bP7ZWcvMjwhQOxnOwtqsO2woh1ql2vOTnrplh4iup0x3v+46reQ+sIaJ2xnT5eJBzKWOe42EaJxZgCoNJ+G7XlbJRtAjB8Nh9lMuOvXHo6NJ10JAzKlLFCJ95Gap+NEkskHEKZzNI+cbTW6Eh4Q8Qi7bOU5OTlbZRYrrWcvPXL7742p1gAcJVfIkXmv4TzTBugQ5i3UWLZCJ3kvI2yTQAu7toMgL86OfNl10vaZ3kbJZaNEgdsnFgUxlSTjWCjbBPYOLFITl7eRonleu3zN0aPsRZKyd+QF9e3a3D/v7DNmAdc8aqjq6wphBBCpF72Fchw1SPIQmSn6CnZa3D/Hz1fCEDFq9NzP2IhhBDiSrKyQFamzM/dEiLt5m/3eS3u/9fyZxNCCJF1sq5AVkph2gATxYVINzV/26FrcP+/lj+bEEKI7JN1BTKwIa7+FSLdGt5q/Lnqa3L/j/0xrGvwswkhhMg62Vkgy2lYcR1yF0xFf7r29n+rcw6Q77YQQoiNIesKZJliIa5XA8cLAMhv7M9wJMm36V17oz/Jd1sIIUTmZV2BDDLKJK5PF7bVAFDQnNn7IAshhBDXuqwskE3X4H1ghUjUtbj/n3y8HoD6N5/McCRCCCFENhbISkaQxfVp/gK2a3H/H+3yA9fmZxNCCJF9sq5AVihJouK6di3v/9fyZxNCCJE9sq5ARiV+r9TQ7BRDZ/bhK2/G7gmkOLArG+8+RSg4TU5pI2arLaOx9B/fjiu3BFdeeUZvqxWcGmW06xi+siZsbl/G4gAYvXgcdARvcR0mizVjcWit6T+2DU9hFc5AycL2mf9Demm6SHVmtJ+JvnP4ypuxOj2p/WWrfLbh84cwW2x4imowmTPXbUXCYQaOb8NbUo/DV5jR78/UUDfTwz34ypuw2F0ZiwNg6Mw+rA4P7sJqTObM/aXHSCjIwImd5JQ14sjJz1gcABP95wlOjJBT1oDF5sxoLIMnd2PPycOdX4HK4EXuGy4nz82QU9IgOTkqODnK6MVj+MqbsLkkJ6c00yil3gJ8GTAD39Fa/+ei528Gfg2ciS66S2v9b6u+b4KjTFanm7FLJ7iw/X6cgSL85c34Kpoz0kk4AoUcvPPzoDXeklp8Fc0Z7CQiHH3wVqxOD77yJnwVLeSU1Ke9k7C5fQyd3sP5bb/GlVuCr6IZf0ULrryytHcSjpxcDt3zJZTJTE5pfax9bK6ctMahUITnZjhy/9exuX34ypvwV7TgLa6l44+OGuukaZTV4cvn1NM/4fy2e3Dnl8e2iTNQnPT2mf9DISt9NrvHz5H7v4HZaiOntCEaSxNWR4oL90XMJgvByREO3/sV7J5AbJ81Cvf0FoZOfwGnnvwh57beibuwMtq/teDwFaT9+2NxuDj+2O1YbA5yyhqN9ilrTHvhbrbZmRq6yIUdD+Dw5eMrj7ZPYSUqzX+i3Rko5NQTPyAcCuItqsY33z45eWmNA8BksXDs4duw2J2xPt9X2oDZ5khrHBs/J7dg9/jTGodhg+Rkj4+hU7slJ0cprXVq3lgpM3Ac+E2gC9gBvEdrfThunZuBj2mt357o+/rKm/SrP/iNhOOYGrjI0YduXbDM4nDjKzMKj5yyBsxWe8LvN09rjY6E1/SaCzseoP/otgXLnIFi/BUtlzuJdeyEOhJmLe2owyEO3v0/zE2PxZYpkwVvSS3+ihb8Fc3Y3P41xwEQCYfWtP7YpZOcfOIHC5ZZnTnRwrAZb2k9ZsvaO4n1tM/Z53/F0Jl9C5a58spi7ePKLU1L+4SDMxy86wuE52Ziy0xma7STaMFf3ozV5V1zHLD29hk6s4+zz/9qwTKb2x8tPJrxFteu6+h+cfvs+0UrAB3vOrzSSzj5xI8Yu3Q8bonCXVARS7LrLdzX2j5z0+McvOsLC+I3Wez4yhqMwqO8CavDvfY41rHP9h/dxoUdDyxYZvfm4Y8mE09R9bpG3HUkgtaRNb3m6IPfYmqw6/ICZcJTWBXrUxy+gjXHAWvfZ2fHBjj0668Al9vUbHPiK2uM9fnrKdzX0z7d+5+ie9+TC5Y5fAX4yo1tst7Cfc3tozWH7v0Ks2OX74CjTGa8RTVGn1LRhN27vsJ9re2zoXLy9gfoPyY5Od7YpROcfOKHC5ZZnTn4KqKDNSV1WZ+TH/z4zbu01jeutl4qC+SbgE9prX87+vgTAFrrz8atczNrLJDt3lztr2hJXpwmMznFNfgrW/BXtiY8ojs90seBu76YtDgArA539IjNGH1JtJPo2vUIl/Y9ldRYXHkl+Mtb8Fe24M5P/LTPvl/8J7MTI0mLw2S2kFNaH+0kmhLuJMZ7z3LkgVtXX3ENbC6vEUelcXSfaGF4dus99C06MFqPmbE3AeDIeQJ3frmxz1a04MotSbh9dv3ok4TnZq86lnnzI7r+6H5rdSZWuA+fP8yJx3+4+oprYPf4Y+3jLa5NuDA8+dRPGTqzP2lxKAXugir8lS0EKlpw+BObiqEjYXZ8/5+SFgcYI6rzhaG/vBmLI7HCcODELk4/98ukxuLIyYt+j1vwFFUl3D7HHv4Oo5eSd3cTpRTe4ppYLA5fYlMx5qYn2POz/5O0OAAsdhe+cqN9fOWNCU/F6Dn4HOe3P7D6imvg9BfG+hRPQWXCI7qHfv0VJgcvJS2O9efkXg7c9T9JiwMu5+TAGgv36ycnNyc8PXIj5eT7/+51CRXIqZxiUQZciHvcBbxymfVuUkrtAy5hFMuHFq+glLoFuAWMDiWpI/06zFj3Scb7zjJ26QSlHW/AW1yz6stMZlNy4wBCs5MMntzF2KUT5NZsoqzzTQnN/VQmlfRYpoe6mR7qZqz7BIVNr6Cg8eUJdZhKJTcWHQkx2nWU8Z7TjF06Tmnnm/AUlK/6ulS0z9z0OP3HtzN66Th5tR2UdrwRi331hJas9pkefgcATt8TTA12MTV0kbFLJyhqfhV59VsS6jCVIqnbJRIKMnL+EOPdJxnrPkn5ljfjDBSt+jqTKfntE5wcoe/oi4xdOk5e3RZKNr8+oYSWiu/PZP85pgYuMHbxOMXtryVQ1bZq+2ilkx5HZG6W4bMHGO8+yXjPKcq2vCmhubmp2Caz44P0Hn6esUvHyW94GcVtr00ooSU/Fs14z2km+s4xduk4xZteh7+8adVXpaJPCQenGDq9l7FLJ8ntaaN0y5sSOsWfivaZGe2j50AfYxdPUNB4I4Utr0roICbZff66c3IK+hTJyUstyMndJyjteGPW5eREpbJAXm5TLB6u3g1Uaa0nlFJvA+4BGpa8SOvbgNsA3PlluqjpFQkHEYmEGTi5e9nnrE4vgcpmApWt+Mrq13Rax2Z3spY4AKZGepnoO7/sc+68UgJVrQQqW3Hnr22+j7egYs2xDJ8/zNzM5JLlJrMFX3kjgejol829tvk++fWdhKaXvu9KwnOzDK4wemdz+whUthKoasFXsraJ+g6Xd83bZHLw4oojIZ7CSmObVLbiyl3bqXxfcRVqjaeWBs/sX2akV6GUIq9mk7GvVKz94rnCxpcRCSV+ym1udpLhc8tPe7B7cwlUtZJb2YK3eG0XzzlzAgva59L+dwBQuvmeFV8z3neO6ZG+ZZ/zFtcQqGwht6p1zXNwA2X1WNd4Srf/5O5lTxeabQ78FU3kVrXhL1/bHFyNac37bHBqlJGu48s+5/DlE6hsJbeqFW9R1ZpO5bv8BWuOZaznNDNjg0uWK2Uip6SWQFV0RD3BEdt5gYpmHGu4VkPrCP0ndi37nMXhIlAR7fPLG7GsYQ6utlrXvE1mxgcZ6z697HOu3GKjf6tswVOwtjm4nrySNccycvE4wcnRJcuVyYyvtN5on8qWNV8Xk1fTjie/LOH1U5aTHS7JycuQnLx+GZ1iscxrzgI3aq1X/FNhuZUt+s0f/17CcXQf2sqp5+6KPXbnl5FbZSQNT0H6rhjVWnPg119nrOcsYMwp9ZfXkxv9Ato96btidHp0gN13/HdsDpvN7SO3soXc6lb8ZQ1pvWL0wu7HObf94dhjb2GlsU2qWnDnrW9+0XroSIQ9v/wCU8O9gDF1wF/eGG2fFmzrnPO7HhP9F9h755djj+3eAHlVbZx64SNY7E7e8JEjaYvl9NZ7ubT/2egjRU5xlfH9qW7DmeDUgUQ8/SVjDvLNH1m+GI+EQ+z66X8yOzkCgMXmjBairQQq1zfnd71Guo5z8P7bYo+dvvxYn+ItXt+c3/U6/tQd9B3bCVwuRHOrjYMWp399c37XIzQ7zc6ffpbQ7BRgnOmL9SnljUkd1VlN/8m9HHv8x7HHrkBRbJ/1FiY+dSAZDj90O0PRA0yjEK2LxtKKw5ubtjiCU2Ps/MlniYTnALA6PbF91l++vjm/6yU5eakNlZN3Pc65HUtzcm5VK668xKfzXa1U5uRffuimjE+x2AE0KKVqgIvAu4E/jl9BKVUM9GqttVLqFYAJWDoEseBFYLYk1sFFwiG6Dz5HXrXRIeVVt2boClUYvnCc2YlhStpuIq96vlPKzK1lLu59Am9heXSbtOHOT18hGi8UnKH3yDbya9vJq24jt2rtR8fJ0ndiH5FwkLLNr412SvUZu51Y154n8JXUxPbZ+aPj87uM0chE9/+rFZwcY+DUHgobOqNFVwpv9xbd/Vb6bL1HdmCyWijvfD151a3klGTmdm9aa7r2PIG/rM7YZ6tbcQUK0x4HGEl15MIxippeFmufdBai8S7u3YrdnUNJ26uM9imuzsjtxHQkwqV9TxGobIz2Ka04fem/awTAeN8FJvovUNzycvKq2/BXrG3EOpku7X8GV26hkQurWvEWVWakz9+IObm0/aa4A4XrPCfPTtN7dBv5tZui+8r1nZNTNoIMEJ028SWM27zdrrX+d6XUBwC01rcqpT4E/CUQAqaBv9Vab73Se+ZVt+q3/nNiF/fMn6JO59HxSuamJ7A43Bm9x+G84NQENld6b4+1nNDsDMpsxpzB+w7PC05NYHVmvn201oRmJpctRB/7nDFP8jf/7lhaYgnNTmOyWNPSKa322TZK+0TCIcJzQawJXuyWSnMzk5htDkxpvn3ZcjZKnxIOzaHDYSz2zBSi8eZmJrHYnBm97/C8DdM+kpOXtVHa53rJyT/5i5dnfAQZrfWDwIOLlt0a9/PXgK+t9X0T7W9M9sx/CefZ3Znf+ec5PBsjFpsz80ls3kbZJqAwr7CvvP6vTgGJ7/9Xy+ZM32jkfB+40mfbKO1jMlmwWDfG31eyu9I3rWQ1G6Z9bFYg88kdpH2WIzl5eRulfSQnL7Qxevo1UAos5swfkQuRbh7//H1Pr73931dsjCzJd1sIIcRGkJUFcrrmYAqxkRx/1riop/F1QxmOJPle9xfzf2BCvttCCCEyL+sKZFCY0vSndoXYSE48ZxTIzTcPZzgSIYQQ4tqWdQWyTLEQ16v5ebrX4v7/9G3GfVRvvuVihiMRQgghsrFABixmGUEW1x8VvRfatbj/j3YbF+9ci59NCCFE9sm+AlkpbJbM39ZIiHSbH0G+Fvf/a/mzCSGEyD5ZVyCjkDnI4ro0fz/Ia3H/v5Y/mxBCiOyTdQWyAqySRMV16D2fMu70cC3u//Of6Fr8bEIIIbJP9hXISmGR27yJ65Aldt/0a6+ILKmP3gdZvttCCCE2gOwrkAHzBvjTkEKk2/b7cgB4xe+OZTiS5PudvxyM/iTfbSGEEJmXfQWy3OZNXKcOPesF4NXvmMhwJEIIIcS1LesKZFCM9lxgLjhDYWU9JnNmr3o/d2g3geJycvIKMxrHzNQE3aeOUNbQjs3hzGgsfedPobWmoKIWkymzBzNnDuygoKIWjz8vo3FMjY0w0HWGkvpWrDb7ut5j/kK2qz1A7DlzDLPVRn5Zdew9M0Frzel9L1FS28yvv1oPwHv+aSAjsYwP9TPS301JbTMWqy0jMcy7dPIwDk8OgaKyjLZPOBzi7IGdlNa34vTkZCwOgJG+S0yNjVBU04jZnNm0deHoPry5BfgKSjLaPqHgLOeP7KWssR27052xOAAGL56TnLzIRsvJAPnlNZKT1yDrCmSlICcQ4Of//XHMZivlTe1UtnRQ3tCO3ZX+TiI0M8FdX/gE/oISKls6qGzpoLCyLu2dhMfj4dhLT/HcL75DSW0jlc0dVDR3kJNXkNY4ALw5OfzyC/+EzemiomkzlS0dlDW0YbM70h7L1HA/v/rZreQWl8fap6CiNu2Jzevz8fj37+GZO75FSV2zEUtzBx5/bsLvEftDIVfZvzmdTu7+yqdx5fipaI62T10LlnUW7uunGO3t4rlffJuLJ7+O3eVhpPsceaWVaW+fHH+AR777eWYmxyirb6Wyxfj+uLy+tMYBxgHQvV/5JB5/Xqx9Smqb0l64W0wW+s4c5flffoeCyloqmzZT2dJJoDj9hbsvkMdDt/0XkXCI8kajz69o2oTD7U1rHABEQtzzpX8hJ68wup9spri6EbMlvenU4rBz/uBOnvvldyiqbqCy2ejf/AXFaY0DNlZOnpsel5y8OBZvDr/6ouTktVJa60zHsCaVzZv1x79zH9se/CV7n3k4tlyZFCXVjVS1dFDV2ok/vygt8YRDIe74/D8yPjwYW2Z3uals2kRVSwcVje3Yna60xHLx1FHuu+1zC5YFCkuoau2kuqWTwsr0jeg+/avvc3THc7HHJrOZ0tpmqlo2U93aiTeQn5Y45mZn+PF//j2zU5OxZU63l8qWzUb7NLRhTVMncfrALh798TcWLMsvraCyuYOqlg4KK2qu2El86cPGPv2Rr/ZedSyP/PDrnDm0O/bYbLVSXtdCVWu0cPcFrvp3JGJ6Yoyf/OfHOb7nswDUtn8Ud46fypYOqls6KKtvSVtheGT7szxz5w8WLCsor6aqpYPq1k7ySirS1on/+tb/ovvM8dhjq81OeUObsd82b05b4T421M8dn/tHIpFIbJk3kGf0sy0dlNY2YbZY0xLLnqce5KWH77y8QCmKK+uifX4HgcLStLSP1ppffulTDPV0xZbZHA4qGtupaumgsnkzDpfnCu+QPAOXzvOrL396wTJffiFVLZ1UNW+muLohbYX7xs/Jm6lu7aC8oe06zcnf4+iO52OPL+fkDqpbO66rnPyh36jepbW+cbX1sq5A9uUX6sYbbiISCjEXnF1xPX9BMdWtRmIrqU7+aZ/hvh7u/Nq/AzA3O0skHFp2PZPZTElNA9WtndS0duBLQSex8/H72fvsIwALdrrFHC53rECtbErNaZ+ff/GTjI8MEQ7NEQoGV1wvt7iMmtZOqlo3U1RZl/ROoufcKe7/7pcA4wsZCYeXXc9ktlDe0EJ1rHBP/mmfF+77OUd2PA9aMzs9teJ6Lq+PqpbN1LR1Ul7fsqST+MJfFXJij4OGLTMA/O+PD1FcFWL/c04e+9nSkbT3fXKQ3KIwOx938cxdRsLuPXeKiI5ARFPR9Cks1jGGe3+L4b7fXvBaq93O7/7FE9R3tnPkpXZ2Pbl0JOij3+gD4NGfeDnwwsJ9yWbXfPh/+gF44PYcju5c+FlMpmG8uR8A4NyR9zDY/Xac7lPUbvrogvUsVivlDa1Ut3ZS3dKB2+dfcfut15O/+B6nD+5GRyIEZ6ZXXM/jzzXap7WTsvrkT8WIhMPc/umPABCeCxKam1t2PaUUhRU1xjZp6yCvuDzpheGJPS/xzN0/BiA4PcVKecJqs1PZ1E51awdVLZtTMhXjoe9/jYunjxEJh5mbnVlxvZzcfGObtM4X7sktDKcnxvjJf/8TYExvCIeW7/OVUhRX18fyT6Aw+VMxDmx9kpcevhu4cp9vd7qi7dNJZfMmHCkY0b3nm//NQPcFyclxsjknV7d2pKRw30g5+QM3VSVUIGfdFAsd0cxFiwzTFTqdsYFe9j/7KAdfeIL6zTfymre/C+8aTmevxqJULI4rxhKJ0H3qGN2njrHv6Ye54Q1voeM1b05q561Dcwltk+D0FCd2b+PE7m0UVdbyG7/7R5TWNiYtDoC5memEYhnpvcSe3kvsf+4xmm54Fa/+nXfiSmJyNUOC7ROm69hBuo4dZO9TD/Hy3/xd2l75+qR2Dom2z8zEGMd2PM+xnc9TVtvEa3/3jyiqqIk9/w+3DvDff1nA/J0erCYTVpMJs0kt+77G8xqzuvx8JBJBR0cDTdHlyyXvudlZ9j71EIe3PYTZ8tcQee2ShGaNbqP495+n1JWfh8vto9A43acIFD65ZL1IKMT5I/s5f2Q/e/MKeNVvvYOml92U1IIjMhdMqH2mRoc5su0Zjrz0DFVNm/iN33s3uUWlyYtD68T2WaD/whn6L5xh3zMPs+nVb+AVb/7d5I66RMJx7cOK2zs8F+TMwd2cObibQFEJN731D6lrvyGp7RMOzibUPhPDgxx84QkOvfgUtW2dvObt70rqqOWcyZRw+/SePUnv2ZPse/phOl/3W9xw81uSe0AVDiW0TeZmpjm1bwen9u0gv7SS1/zOO6lq3pS8OIDQ7MwGycmJ9vmSk5cTn5ObX3YTN73tD6/ZnJyorCuQ7XY79e0dTI6O0Nt1btl1XB4vte2d1LV2UtWcmnk2XreD+vYOAHrOn2FqfPlbbxWWV1LX1kldeydFq5xCX6+i0hLq2zuIhMOcPXpw2XUsViuVja3UtXVS29aJ15+aU+g1za1MjY8xPjxI/6WuZdfx+APUtnZQ195JVWNrSk6h+3I8sfa5dOYkMyscxRdX1Rrt09ZBQVlq5r6WlJcz3d5BKBjk/Ikjy65jtdupbmqnrr2TmtbNuFc4hf6v31l8EZviVW+c5VVvXGnkRvG6t83wurcZI2/3fu+nhObmGO7vZbjP2Gfzix8lv/jR2CtycvOob99CbduHKa9rwmK1AsPLvjfAO943yTvet9z2NZ7/Xx+YABbeeePS2VNse9RoH7vjJ8zNLo1fKUVJdR117Z3Ut99AblFqLooqraxEh2YJzkzTder4suvYHE5qWtqpbeuktrUDpzv5p9AjZlNsnx3svcToQP+y6wUKiqhrN77HZTWpOYWel58Xi+XcsUPLjpYqk4mKuiZq24zvciBFc1/La2qx261MT07QffbUsus43G6jT2nrpKq5HUcqTqE7rLFt0n/xAuMjQ8uulldcRl17J3VtnZRUJ//sGEBBQSH17R1orTl75MCyI/xmi5mK+mZq27ZQ196JLzc1p9Cr6hvwBfwbICc7JScvYz4njw0NMNB9cdl1rrecnKism2JR19ah//tnD/Hr73+Tw7u2xZYXllZQ395J/aZOSqvq0rZRp6cm+eYnP8ps9NSs2WKluqmV+rYO6tu3kBNI3hHyag5uf4H7fnRb7LHH56e+rZP69k6qm9Z/94T1+Pk3Ps/pIwdij0sqa4z2ae+kqLwqbe0zNjzErZ/+O8LR021Wm43qpjYaNt1AXdtmPDn+tMQBsOPpR3n8zp/EHucE8mLbpLKhGWua5tpqrfnB5z9N9/kzgFGIllbXUd/eSUP7FvJL0ncR1kDPRb7zH/8US/A2h4Pals3Ut3VQ19aBy5O+i7CefeAuXnj417HHgYKiWPtU1KbvIqxwOMx3/v0TDPUbc82VyURFbWMslryikrTEAXDxzEl++MXPxB47XG5qWzfT0N5JbctmHK70zOUEeOQXP2T3c0/EHucXlxrbpK2T0pp6zGm6CGtuLsg3P/UxJsdGATCbLVTUN9HQbhRdgfz03T3h5MG9/PJb/xN77PLkUNe2mfr2Tmqa27Gn8e4JGyYnT07wzU99bGlOju4r12tOvuPrn+NMXLFu5OQtNGzqpDCNhehGyMnv7Ci7NqdYmIDRvm5OHthNQ1sHjZu2UN/WgT8vPRPMF9v6zKPYbDbabngFjZtvoKapNSNXhobDYbY9eh+lldU0btpCw6YtlFRk5jZeXadP0HXqGE2btxixtHfiTdNFX4vteOIBvD4fDe1baNzUSVVjS9oK0Xhzc0G2P/EgFTX1sfYpLE3+3NFEnDiwl6G+blq3vDz2/XF7M3Mbr22P3Ecgr4CGTZ00btpCVX1z2u8GAMaB7t7nn6S6oZmG9k4a2jvJL07PRV+L7d/1IjOTE2y68SYaN3VS27oZVwpGrBPx4sO/pqCohIZNxne5vLYhbYVovLHhQQ7teIG65jbq2419JbcgPRd9Lbbn2WcgEqHzVa+loX0LdS3puxA7ntaaFx/5NcXllbFcWJqiEevV9Hdf3Dg5+dnHsNvttL/slTRs2iI5Gbhw6jgXTx+nueOGWP92vefkRGTdCHJje4f+t9t+isvtychOv1h/zyXyU3Tqdy1mpqcIzsyk9eh4JSOD/bi9Pqy2zO/0/d0XM1boxJuanCASDuPJSf9twxYb6uslJ5AbnTqROVprBvt6yCssznj7TIyNYjKbM1aIxhvs68Gfm5+RA4V44VCIkaEB8grTf9uwxcZHhrHabCm5yGytBnq7yS0oyvj9ZIPBWabGx/Bn4LZhi40MDUhOXkRy8vI2Qk5+a0vxtXkXi6b2Tv3Nux7PdBhCCCGEECLLvKmp4NqcYmFcHb/xbigthBBCCCGuDdlXIKOwXuWf2hVCCCGEEGIl2VcgK7AoKZCFEEIIIURqZF+BjMImI8hCCCGEECJFsq9AVmCROchCCCGEECJFsq5ABjCbpUAWQgghhBCpkXUFsgLMGb6/oRBCCCGEuHZlXYGMkhFkIYQQQgiROllXICuUjCALIYQQQoiUyb4CWUaQhRBCCCFECmVdgQxyFwshhBBCCJE6WVcgKwVmk9wHWQghhBBCpEZKC2Sl1FuALwNm4Dta6/9c9LyKPv82YAr4c6317iu+J2CR+lgIIYQQQqRIygpkpZQZ+Drwm0AXsEMpda/W+nDcam8FGqL/Xgl8M/r/ld4Xs0yxEEIIIYQQKZLKEeRXACe11qcBlFJ3AL8PxBfIvw/8UGutgW1KKb9SqkRr3b3Sm+7ZvYscZ9bNDBFCCCGEEFkilZMVyoALcY+7osvWug5KqVuUUjuVUjuTHqUQQgghhBBxUjkUu9w8CL2OddBa3wbcBlBZWalPnDiB3W6/+gjXaW5ujttuu42qqire/va3ZywOgGPHjvHQQw/x9re/nfr6+ozGcs8999Dd3c0tt9yC2WzOWBzT09N8+9vfprW1lTe/+c0ZiwNg7969PP3007zzne+kvLw8o7HccccdTE5O8v73vx+VwXuJj46O8r3vfY8bb7yR1772tRmLA+Cll17ixRdf5L3vfS/5+fkZjeUHP/gBZrOZ9773vRmNo6enhzvuuIPXvva13HjjjRmN5ZlnnmHv3r28//3vx+v1ZiwOrTXf/va3yc3N5Z3vfGfG4gA4e/Ys99xzD29+85tpb2/PaCwPP/wwJ06c4JZbbpGcHHX06FEefvhhyclxNlpO3rJlS0LrKmN2Q/IppW4CPqW1/u3o408AaK0/G7fOt4CntdY/iz4+Btx8pSkWN954o965UwaShRBCCCHE2iildmmtVz36T+UUix1Ag1KqRillA94N3LtonXuBP1WGVwGjVyqOhRBCCCGESLWUTbHQWoeUUh8CHsG4zdvtWutDSqkPRJ+/FXgQ4xZvJzFu8/a+VMUjhBBCCCFEIlJ6Owit9YMYRXD8slvjftbAB1MZgxBCCCGEEGshf3JDCCGEEEKIOFIgCyGEEEIIEUcKZCGEEEIIIeJIgSyEEEIIIUQcKZCFEEIIIYSIIwWyEEIIIYQQcaRAFkIIIYQQIo4UyEIIIYQQQsSRAlkIIYQQQog4UiALIYQQQggRRwpkIYQQQggh4kiBLIQQQgghRBwpkIUQQgghhIgjBbIQQgghhBBxpEAWQgghhBAijhTIQgghhBBCxJECWQghhBBCiDhSIAshhBBCCBFHCmQhhBBCCCHiSIEshBBCCCFEHKW1znQMa6KUGgeOZToOsWb5wECmgxBrJu2WfaTNspO0W3aSdss+TVpr72orWdIRSZId01rfmOkgxNoopXZKu2UfabfsI22WnaTdspO0W/ZRSu1MZD2ZYiGEEEIIIUQcKZCFEEIIIYSIk40F8m2ZDkCsi7RbdpJ2yz7SZtlJ2i07Sbtln4TaLOsu0hNCCCGEECKVsnEEWQghhBBCiJSRAlkIIYQQQog4WVUgK6XeopQ6ppQ6qZT6h0zHI1anlLpdKdWnlDqY6VhEYpRSFUqpp5RSR5RSh5RSf5PpmMTqlFIOpdR2pdS+aLt9OtMxicQopcxKqT1KqfszHYtIjFLqrFLqgFJqb6K3DROZp5TyK6V+pZQ6Gs1xN624brbMQVZKmYHjwG8CXcAO4D1a68MZDUxckVLqdcAE8EOtdXum4xGrU0qVACVa691KKS+wC3iHfNc2NqWUAtxa6wmllBV4HvgbrfW2DIcmVqGU+lvgRiBHa/32TMcjVqeUOgvcqLWWPxKSRZRSPwCe01p/RyllA1xa65Hl1s2mEeRXACe11qe11kHgDuD3MxyTWIXW+llgKNNxiMRprbu11rujP48DR4CyzEYlVqMNE9GH1ui/7BgBuY4ppcqB3wG+k+lYhLiWKaVygNcB3wXQWgdXKo4huwrkMuBC3OMuJGkLkVJKqWpgC/BShkMRCYieqt8L9AGPaa2l3Ta+LwF/D0QyHIdYGw08qpTapZS6JdPBiITUAv3A96JTmr6jlHKvtHI2FchqmWUyOiJEiiilPMCdwEe01mOZjkesTmsd1lp3AuXAK5RSMq1pA1NKvR3o01rvynQsYs1eo7W+AXgr8MHodEKxsVmAG4Bvaq23AJPAitezZVOB3AVUxD0uBy5lKBYhrmnROax3Aj/RWt+V6XjE2kRPGz4NvCWzkYhVvAb4veh81juANyqlfpzZkEQitNaXov/3AXdjTAMVG1sX0BV3Zu1XGAXzsrKpQN4BNCilaqITq98N3JvhmIS45kQv9voucERr/cVMxyMSo5QqUEr5oz87gTcDRzMalLgirfUntNblWutqjJz2pNb6vRkOS6xCKeWOXsBM9BT9bwFyp6YNTmvdA1xQSjVFF70JWPHic0taokoCrXVIKfUh4BHADNyutT6U4bDEKpRSPwNuBvKVUl3AJ7XW381sVGIVrwH+BDgQnc8K8I9a6wczF5JIQAnwg+gdf0zAL7TWctswIZKvCLjbGEvAAvxUa/1wZkMSCfow8JPoQOtp4H0rrZg1t3kTQgghhBAiHbJpioUQQgghhBApJwWyEEIIIYQQcaRAFkIIIYQQIo4UyEIIIYQQQsSRAlkIIYQQQog4UiALIYQQQggRRwpkIYQQQggh4kiBLIQQ1wCl1MuVUvuVUo7oX/o6pJRqz3RcQgiRjeQPhQghxDVCKfV/AAfgBLq01p/NcEhCCJGVpEAWQohrRPTPp+4AZoBXa63DGQ5JCCGykkyxEEKIa0cu4AG8GCPJQggh1kFGkIUQ4hqhlLoXuAOoAUq01h/KcEhCCJGVLJkOQAghxNVTSv0pENJa/1QpZQa2KqXeqLV+MtOxCSFEtpERZCGEEEIIIeLIHGQhhBBCCCHiSIEshBBCCCFEHCmQhRBCCCGEiCMFshBCCCGEEHGkQBZCCCGEECKOFMhCCCGEEELEkQJZCCGEEEKIOP8/BhCY3SSCVKcAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsgAAAEYCAYAAABBfQDEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAABnDUlEQVR4nO3deXxb13ng/d/BDlyCFClSFPdVCylqIQnATeLppHWSZtJMmr7NJNNpOm+btG6ztE26pNPO2yVNk7Rp0yTNbsfO4iR2HMd2bMf7vi+SLduyZVkbKZIiJXEnwQUEcN4/cAmBmwiKwAUhP9/Pxx+bFxfg43MuzvPcc8+9VFprhBBCCCGEEAm2XAcghBBCCCHERiIFshBCCCGEECmkQBZCCCGEECKFFMhCCCGEEEKkkAJZCCGEEEKIFFIgCyGEEEIIkUIKZCGEuAQppWqVUpNKKXuWf8/vKaUez+bvEEIIq0mBLIQQWaCU6lJKTZtF6oBS6ntKqYI03/e29f5+rfUprXWB1jq23s8SQog3GimQhRAie/671roA2Ae0A3+T23CEEEKkQwpkIYTIMq31AHAPiUIZpdR7lFKvKKVGlVIPK6VazO3XAbXA7ebM86fM7T81Z6HHlFKPKqV2zX+2UsqrlPqiUqrbfP1xc1u9UkorpRzmfpVKqduUUsNKqWNKqT9M+Yx/VErdqJT6gVJqwowtkPL6/1FKHTdfe1Up9ZsWNJsQQuSMFMhCCJFlSqlq4L8Bx5RS24HrgU8AZcCdJApil9b6d4FTmDPPWusvmB9xF7AN2AI8D/wo5eP/HegE3gyUAJ8C4suEcT3QC1QC7wM+p5S6IuX19wA3AJuA24Cvpbx2HPgvQBHwaeCHSqmKNTeEEELkCaW1znUMQghxyVFKdQGlgAYKgAeB3wL+BNittX6/uZ8N6AF+R2v9sPm+P9Ba37/C524CRkgUshNAGPglrfWLi/arB04CTqAC6AI2aa0nzNc/D1RorX9PKfWPwOVa67eZr7UCB7TW3hViOAj8g9b650qp3zPjvXwt7SOEEBuZzCALIUT2vFdr7QfeCuwkUTBXAt3zO2it4yQK5KrlPkApZVdK/Yu5xGGcRKGL+VmlgIfEDO+FVALD88WxqXvR7xxI+e8pwJOyPON/K6UOmktCRoE283cLIcQlSQpkIYTIMq31I8D3SCyHOA3Uzb+mlFJADdA3v/uit/8v4DeAt5FY4lA//1ZgEJgBmlYJ4TRQopTyp2yrTfmdK1JK1QFXAx8HNmutNwGHzN8vhBCXJCmQhRDCGl8G3g7cC/y6UuoKpZQT+AtgFnjS3O8M0JjyPr/5+hDgAz43/4I5+3wt8B/mTXh2pdSblFLu1F+ste4xP//zSimPUmoP8GEWrmVeiUGiaD8HoJT6fRIzyEIIccmSAlkIISygtT4H/IDETXQfBL5KYgb4v5O4KS9i7vp54P8zlzP8pfmebhKzva8CTy/66L8EXgaeA4aBf2X5sf23Scw+nwZuIbGG+L404n4V+CLwFInifTfwRFr/00IIkafkJj0hhBBCCCFSyAyyEEIIIYQQKaRAFkIIIYQQIoUUyEIIIYQQQqSQAlkIIYQQQogUjlwHsFalpaW6vr4+12EIIYQQQog8c+DAgUGtddlq++VdgVxfX8/+/ftzHYYQQgghhMgzSqnu1feSJRZCCCGEEEIsIAWyEEIIIYQQKaRAFkIIIYQQIoUUyEIIIYQQQqSQAlkIIYQQQogUUiALIYQQQgiRQgpkIYQQQgghUkiBLIQQQgghRAopkIUQQgghhEghBbIQQgghhBAppEAWQgghhBAihRTIQgghhBBCpJACWQghhBBCiBRSIAshhBBCCJFCCmQhhBBCCCFSSIEshBBCCCFECimQhRBCCCGESCEFshBCCCGEECmkQBZCCCGEECKFFMhCCCGEEEKkkAJZCCGEEEKIFFkrkJVSNUqph5RSh5VSryil/myZfZRS6j+VUseUUi8ppTqyFY8QQgghhBDpyOYMchT4C611C/BLwMeUUq2L9vlvwDbznyuBb672oWNjY2itMx3rmt1zzz28+OKLuQ6Ds2fPcvvttzM4OJjrUHj++ee57777ch0GsViMO++8k1dffTXXodDb28vtt9/O2NhYrkPhmWee4eGHH851GEQiEe644w6OHj2a61A4efIkt99+O9PT07kOhccff5wnn3wy12EQDoe5/fbb6e7uznUoHDlyhF/84hdEo9Fch8KDDz7Ic889l+swGBkZ4fbbb6e/vz/XoXDo0CHuuusuyckpJCcvtdFycroc2QpCa90P9Jv/PaGUOgxUAakt9BvAD3Ti2/W0UmqTUqrCfO+yjh07hs0mK0OEEEIIIUR2WFJpKqXqgXbgmUUvVQE9KT/3mtsWv/9KpdR+pdT+rAUphBBCCCEEWZxBnqeUKgB+BnxCaz2++OVl3rLkWo3W+irgKoB6w9D/0NKS8TiFEEIIIcSl7UMHDqS1X1YLZKWUk0Rx/COt9c3L7NIL1KT8XA2cvuBnIo/eEEIIIYQQ2ZO1AlkppYBrgMNa6/9YYbfbgI8rpW4ALgPGLrT+OPnZmQtTCCGEEEKIBbI5g/wW4HeBl5VSB81tfwvUAmitvwXcCbwLOAZMAb+/2ocqwJ6FYIUQQgghhIDsPsXicVaZ7DWfXvGxtX62LLEQQgghhBDZkvWb9DJN1iALIYQQQohsyrsCGfI0aCGEEEIIkRfyrtaUGWQhhBBCCJFNeVcggxTIQgghhBAie/KyQJbHvAkhhBBCiGzJuwJZHvMmhBBCCCGyKS8L5LwLWgghhBBC5I28rDVlBlkIIYQQQmRL3hXIClmDLIQQQgghsifvCmSQp1gIIYQQQojsycsCOaY1DrUx5pGjGySWmNbYALUBYtkobQIbJ5ao1tiR/kmltSYO2DdALNI/S8W1RrNx+mcjtAlsnFhiWif+LsAGiGWjtAlsnFgkJy9vI8WymrwrkBVwemaG286do8UwaDUMqt3unA0SvxgcZGhujlbDYKfPR7HTmZM44lrz9d5eajweWgyDbV4vLltu5tqPhMM8ODLCTsOg1eejyu3O2SDxs7NnmYnHk/1T6MjNIT8bj/P1vj6avF5afD6avF6cOeqfgxMTPDM+TovPR6thsNXlyk3/KMX3+vuxK0WLz8dOw6DAnps7DCaiUa49fZrtPh8thkGD15uzQfzJ0VEOT03RYsZS5nTmpH80cNXp0/jtdloNg+0+H74c9c/ZSITrz5xJtkmdx5Ozwv2B4WFOzczQahi0GAabczTmK+Cbvb2Uu1zsNPvHk6Mx5dQGzckthsGmHI35GyknvxYO89DICC2GQYvk5LQprXWuY1iTFsPQ17a08M2+Pk5MTwNg2O3JZL/d58Nt4UE4PDfHv3Z3Ezd/rnC5kl/MWosPwgdHRrhraAgAp1I0eb05GSS01nypp4f+SASAQjPBthgGzRYPEn2zs3y5pyf5c7XbTas5iFdaXBj+YnCQh0dHAXApxTbzmLV6kIhqzRe6uxmJRgEodjiSia3J4sLw+PQ03+rrAxIJv85MJi0+n+WF+0/PnuXZ8XEAPDYb21P6x7CwMJyNx/lcVxdT8cSostnpTByzPh/1FvfPy5OT/GBgAEj0T4PXS6vZLmUul2VxAHy/v59D4TAAPpuNHWab7PD58FrYP5OxGJ/r6mLOzJ1bXK5km9R5PJYWhk+PjfGzc+eAxEx/o8eTHN9KLC7cN0pOHpqb4wvL5ORWw6BGcjKwMCdvs3iyZiPk5DcfOHBAax1Ybb+8K5BrPB79hxUVnI5EeMUcLFPZlaLZPAhbfb6sDRKTsRiPm8XOgYkJhs1iI1WBeRC2+nxZHSRen5rixPQ0Ea15xIxpsUq3m13mgJXNQeKR0VGmYzG6ZmY4ag6WqRxKsc3rZZf5hSjK0iAxMjfHM2ax89T4OJOx2JJ9ihwOWn0+dpmFe7YGiVfDYU7NzBCOx3lybGzZfWrNQWKXYVCRxUHi/uFholpzbHqakzMzS153KcUOs01asjijezYS4fmJCQAeGxtjJh5fsk+Jw5Fsk8YsFoYHJycZmJ1lJBplvxlTKgXUm4V7m2GwJUszunGtuXd4GIDDU1P0zs4u2cdjs7HTgsK9b3aWlycn0cDDo6NEl8kTZfOFu2HQkMUZ3efGxxmam+Pc3BwHJyeXvG4DGs0xf5dhUJqlMX82HuehkREAXgqHOWMWG6l8NlvyZHOH15u1wv3k9DRHpqaIAQ+NjLBcFi93uRLjrM+X1cL9ybExxqPRDZWT909MJCcAUklOlpwMcNmlWiCXOJ16l2GkvX+lOUi8uagoo2dsZyIR/uXUqbT3nz8I9xQUEPD7M5rs7xwa4j5z4E5Hkd1Oi2EQ8vtp8HozFgfAZ7q6lj1ZWEmNWRheXlSU0WLs5PQ0/2nOTKbDpRTbfT72FhTQUVCQ0WRy07lzPLFCYbycTQ4HuwyDXyospNrtzlgcAH9z4sSyxehyFFDr8dBmGLylsDCjyf6VcJjv9Penvb/HZmOHz0d7QQF7DCOjyeQHAwO8sEzhtZLNTie7fD7eVFTE1gzOosa05i+PH097fxuJGd1dPh9vLirKaLJ/dnyc68+eTXt/r81Gi89Hh99Pq8+X0f75Zl8fry+T2FdSbhbuby4qymixPBmL8XcnT6a9vx1o8nrZXVDAZX5/RpP9w6Oj/HxwMO39DbudVp+PgN/Pdp8vY3EAfLGnZ9mTuZVkKycPRCL8q+TkJS4mJ+8yDN5yCefkYJoF8sZd/LGCdB/zNj+rsMuc9SnO8FnRWh43Nz+r0GbOKjizcKaY7iduNQenXeasQjbOWdP5THvqWavPhz/DMy1r6Z8Cuz3ZJtt9vozPhK0llipzVmGXYVDtcuWsfxxKsT1lViEba0/T/X8rcjiSMy3bvd6szISl+4m1ZvLYZRhsdToz2j9rOU5cSrHTPE5aDSPja0/XEkuxw0Gb2SZNWeiftcTS4PEk+6fU4chZ/8zP9O8ylwtlelnZWmIpczqTbVKfhTFfcvLK8aRDcvJS2c7J6cq7GeSdPp/+5rZtPDY2xgOLLl34bDZaDYPdPh87s3xDSVRrxqJRNPDN06c5Oze34PWtLhdtPh9t5uXHbK5LC8dizMTj9EcifHvRrJxdKZrNWcDdFtxQMhKNJi4Vj4zwpHk5ZV6B3c4us012ZvmGkrl4nPFYjJjW/GdfH2OLLudUuVy0mQNkXZbXpU3GYszG45ycmeH7Z84seM2hFDu83mSBkemksdiQeZz+fGhoyaxpkd2ebJPtWV4rHonHmYjFmNOaL/b2LpnVrnW7k8dsVZbXpU3EYkTicV6dmuJGcz3nvPlCtM0crLO5VlxrnZzpuf7sWY4smjWdL0R3z19+zGKbzMTjhGMxwrEYX+rrW7DEQpEoROePla1ZvolwLBolqjX7Jya4w1yCMs9jzly3mUk9mzd5xrVOXra/dmCAU4tmTcuczkSb+HxZXRIEMBWLMR2PMxyN8tW+vgVLLGwkZq7nx9ryLK8VH41GiWm9oXLyN06f5twyOXm3+T1+I+bke0ZGeGqZnNxmnsi9kXLy3kt1BtmuFJvsdvZPTKBIXE6bb9RGC+9sdilFmdPJoXCYc3Nz2IFmr5fdZixlFt4g4bfb8dvt3DE0hCJxOa0tpRD1WrgAf7PDQTgW44XJSRSJy2m7Uw56q25gcdtslNlsPDM+zngshtOcEZ1PYFbewFJot4Pdzk/OnUOZP+8yB8cdXq+lN7CUOZ2MRKO8HA6jSFxO2222iZU3sHhsNjw2Gw+OjjIbjycL0fkElq11cMspstvR5rGiSCxxmW+T7VbewGKOKQORCEenp7GRuGmxzWwXK28q9dls+Mw2iWmNWyla508UDCPjs0sXUuxwENOaZ8wxv9TpTLaJlTeV2sz+OTE9Tc/sbLIQnR9ryy182kiB3U6B3c6DZkHqs9loNduk1eKnjZQ4HMzF4xsqJw9KTk66UE6ut3DM30g5OV15N4O8yzD0Z+vr6ZmdZbfFB/1yHhodpcjhYKfXm7NHIEHijPWB0VFLzo5X84p50mDF2fFq7h0ZodzpZKfFd1IvNhKN8sTYGLsN659ustgLk5OEYzHajNw9AgkSM6Z3jYxQ43azM4ePvYPEPQXPT05aMmO9mmcnJohpTZvFhehiUa25a3iYbV5v4rGEOWyTUzMzHJmetmTGejWPj43hstnYZfHTTRaLxOPcPTLCTp+PRo8np8+WPWqeNEhOPm+j5eTBaJQ2n09yMtB2qd6k12YY+qaWllyHIYQQQggh8kzLpbrEAuRPTQshhBBCiOzJuwJZIQWyEEIIIYTInrwskPMuaCGEEEIIkTfystaUGWQhhBBCCJEtUiALIYQQQgiRIu8K5LX8NRYhhBBCCCHWKu8KZEj8jXshhBBCCCGyIe8KZLlJTwghhBBCZFPe1ZoKmUEWQgghhBDZk3cFMsgaZCGEEEIIkT15WSDLUyyEEEIIIUS25F2BvJa/pKe1RqmNMd8ssWzcOGDjxKK1BtgwsWyEOGDjxLJR4gCJZSPHARLLRo4DJJaNHAdsjFjyrkCG9NcgT8bjfGFggBaPh4Bh0Ox256zBnwyHeXh8nE7DoNMwKHXkrum/dvYsDqUIGAZ7vF5cttzMyQ/FYnxpYIC9Ph8Bw6De5cpZ/9w3Ps7zU1MEDINOn49NOeofDXzxzBk22e10GgZtXi/OHLVJ79wc3zp7lk7DIGAYVDudOeufn4+Ocmx2loBh0OHz4bfn5k6EGPD506epcrkI+Hy0eL04ctQmR2dnuW5oKHnMVrlcOYkD4PrhYc5GowR8Pvb5fBg56p9Zrfnc6dNs83jo9PnY4fFgy1H/HJye5ucjIwQMg6BhsMXpzEkcANcMDjITj9NpGOzz+fDkaMzfiDk5YBh0SE4GYDAW48uSk5PU/IxVxj9YqWuBdwNntdZty7z+VuDnwElz081a639a7XM7DUM/1dKSdhw/HhripyMjAMmiI+jzsdfiQSKmNR8/dYqBuTkAGtxuguZBaPUgcXh6mr/t6wPApRR7vN7kIF5i8UH47XPnuHtsDIBSh4NOn4+gYbDb4kFiNh7nj7u7GY3FUMA2j4dAjgaJ/eEwn+3vB8CjFO1mHJ2GQZHFhce/DwzwxOQkAOUOR/I42WVxYTgRi/FH3d1Mx+MoYKfHQzBHhfuD4+N89exZAAybLdk/uSjc/7GvjxenpwGodDoJmv2z0+PBbmGbDEajfKS7m6jW2IHWlDGlwuLC8LbRUb47OAiA32ajw4yj3efDZ+GYorXmr3p7OT47C0CNy5U4ZnNQuJ+KRPjEqVNowKEUu83+Cfh8lhfukpOXkpy8VDZzsvvAgQNa68Bq+2WzQP5lYBL4wQUK5L/UWr97LZ+7w+PR/15Tk/b+4ViMHw4PL9nuNAeJoGEQuoizx8lYjEfNwiFdL0xN8Ww4vGR7yfwgYRjs83pxr/EgPDIzkxyE03Xj8DAjsdiS7U1uNyEzlsaLOAgfmphgOh5Pe//haDQ5WKZyK8Ve84sZ8PnWPEgMR6M8vUxbX8jTk5PJYiNV2Xxh6PNd1CBxaHqaU5HImt7zw6EhwovacX6QCJntUncR/XPv+DjRNXznT0ci3G4Olqm8ZmE4n1AK11gYnp2bY//U1Jre8/DEBEdmZpZs3+p0EjTb5GIK94NTU5w2k2Q6YlrzvaGhJe1oA1q83mT/rHVGV2vNXePja3rPidlZ7lvmPYbNRofPR8gs3AvW2D99kciy34ULuWdsjK5ljvPqdRbuz4bDDEajae8ficf53tAQi49yh1K0ejzJ8W3rGgvD2XicByYm1vSeV6eneWyZPFFotxMwj5N2nw/vGseUk7OzHF7mu3Aht42O0r/McV5vFu5Bw2D7RRSGj09OMr5MLlmJ5OTlbZScPBSNctMqOTno81GcxznZkesCGUApVQ/ckckCudzp1CHDyEh8qepdLkKGwZsLCmh0u1fdvzcS4aOnTmU8jvmzx6Bh8JaCgrQKj+tSzsgzqcRuTw5WnT5fWjMeH+7q4twaklm6ms1B4i0FBdSkUXgcnp7mr80z8kzymINEyDB4s2GkdSn5m+fOcdcyReZ6lTkchAyDywyDvV5vWgPnB06cWNNgmQ4F7DALj7cUFKQ1Y/hsOMw/m7PkmeQzC/eQYfAmw0hrRuoLAwM8vsbEmo4KszD8JcNgl8ezav/EtOY3jx/PeBw2EjO6IcPgLYZBWRr988D4OF8xZ8kzaX5GN+TzcZlhpJXY/i5lljyTql0uLjP7Z4fHs+r+Y7EYv3vy5Kr7rZVDKXalfH/SmQy4dXSUa81Z8kwqSincQ4aR1snmJ3p6OLHGYjAda83JPZEIH8tiTp6PRXJyQj7nZFuaBXKu1yC/SSn1InCaRLH8ynI7KaWuBK6ExACbaUV2O00eD00eD5VpnqFl6/JLlcuVjKXQbs9ZLE6laDTjaHS7safZ7tmIpcThoNnjocntpjzNy+nZ6p8at5tmj4dmjwcj3f7JQhxum40mt5smt5t6txtbjtasQeIy3HwsZQ5HztpEAXUuF81mLB6bLWex+Mz+aXa7qUuzf7J1Qbfc6Uz2T0kOvz82pagz42jyeHCnOaudjVgK7PbkcVKT7pif8SgSKpzO5JhSnMPvj0MpGsy+afZ4cKY75mchFsnJS23EnNzs8eRlTk5XLmeQC4G41npSKfUu4Cta622rfeYen0/fuG3V3ZLOzM3x78vMVNWbZz+hggK2XcR6sEg8vuaz5rtHR3lg0eVQx/zZT0EBwTRndxY7NzfH0BrOEDXwL6dPM7zoPcUOR+LstKDgoteDHZ+ZYW4Nx1TX7CxfP3NmyfYmc0YlVFBA00Vc9puKxda8rOFnw8M8vWgm0aUU7eYZeyDN2Z3FBiIRRtdwCTKqNZ/p62Nq0UxvqcNBqKCAUEHBRa8He316mrXMH78yPc33zp1bsE0B2z2eZCwXs9RjIhajb439c93gIC8tWpbhmV9KUFBAwDAouoj+6YtEmFhD/8zE43y6r2/JEoutTmeiTQyDXT7fmpd6aK2XXUJyIc9NTnLjosvVCtjl9RI0Y6m6iP4Zi0aXvRx/Id8+e5Zji+I3bDY6DYPLCgroMIw1L/UA6JmdXbLc6ELGYjE+29e3ZIlFtbmUIFRQQIvXu+alHlGtl/z/rebRiQluXzSTaFeKNq83OeZXXMTNlcPRKGfX2D9fGhjg9KLvXKE5IxksKEis0b6I/umanWVmDf2TrZw8G49zco05+a7RUR5clJOdSrHnDZyTT87O8o1lcnLz/PKkSyAnq2ee2dgzyFrr8ZT/vlMp9Q2lVKnW+oLXjVwOBzs3b07799zX2wt2Ow6l2FNQQNDvJ1RYyJZ13vHtAnYWFKS9/0wsxnNnzoDdTpHDQaiwkJDfz76CAjzrvLGnzPwnXU+OjTGsNdjtNHq9hMw2aU7zMv2FNPl8a9r/lu5usNtx2WzsNQxChYUECwvZvM4bR3zAzjXsPxaN8kJ/P9jtbHY6E3H4/ewtKFj3jQlbfT62rmH/e4eHmVIK7Ha2+3zJ/qlP4zL9aravsX++f/w42O2JQtTvJ+j3EywsvKhCNJWftfXPmUiEV06fBrudLS4Xl5nfn12GkfZM10qq1tgmN509S9RmQwEthpHsn+p13tijgJ1rWD6mtebrQ0Ngt2PY7XQUFBAqLKTT78e/zv4pMv9J14npaY7NzYHdTpXbnfz+tPh8ONbZPzVr7J/v9fej7XbsSrErpX8q0rhMfyEO1tY/0Xicfzt3Dux2/HY7ATOOdr9/3U/5KDH/SdfLk5OcjsXAbqfW40m2yY40L9NfSP0a+ydbOdnNReTkgQGw29nkcBCUnAzAzV1dl3xOTlfOCmSl1FbgjNZaK6VCJJbKDaX15jQP3oloFGWz8TcNDbT7/Xhz9OghgBcnJ3lnaSmhwkK2+3w5fb7fsZkZPlpTQ7CwkNIcPhpqMBKh0Onk7xob2ev3r/lGiEw6OD7O+8rLCRUW0pCBQeliaa05FYnwp7W1BAoLKc7ho6F6Z2ao8/n4H1u3srugYN2F6Hq8EA7zOxUVhAoLqc3AicLFisbjnIvF+PO6OjoLCynM4aOhjk1NsbewkD+srqbVMNZdiK7Hy1NTfKiqilBhIVVprOfNltl4nLDW/FV9PZ2FhTl73BzAq1NT/JfiYkKFhew0jJw9bg7g8MwMV1ZXEyospHydJwrrsdFy8rvKyghKTk4ajEQocrn4+8ZG9khOzupTLK4H3gqUAmeAfwCcAFrrbymlPg58BIgC08Cfa62fXO1zA0VFev/ll2clZiGEEEIIcelSd96Z2yUWWuvfXuX1rwFfW/MHm5eehRBCCCGEyIZcP8Vi7ZSCHF7WFEIIIYQQl7b8qzRlBlkIIYQQQmRRfhbIXm+uoxBCCCGEEJeo/CyQZYmFEEIIIYTIkvyrNGWJhRBCCCGEyKL8LJBz+JxAIYQQQghxacvPAllmkIUQQgghRJbkX4Fss8Ea/3SiEEIIIYQQ6cq/AhlkBlkIIYQQQmRN/hXIssRCCCGEEEJkUf4VyCAFshBCCCGEyJr8K5BtNnC71/UR8XicLz/xBLWbNnFZTQ3VRUUopTIU4NqcGB7mppdfJlhdTaC6Gv86/9/W4+ZDhxiZniZUU0NLWRmOHJ2IRKJRvvTEE+woLSVUU0NlYWFO4gA4NDDAvUePEqqpob2yEiOHT1D50QsvEI3HCdXUsKO0FJvNlpM4wpEI//nkk+wuLydUU8OWgoKcxAHwbE8PT506Rai6mvbKSjxOZ85i+c5zz+F1OAjV1NC8eXPOxpSR6Wm++fTTdFRWEqyuZrNh5CQOgIdPnOCVM2cIVVezt6ICV46eYa+15htPP81mn49QTQ0NxcU565/+8XG+9/zzBKurCVZXU+Tx5CQOgLuOHOHU6Cihmhraystx5mjMl5y8vJ8dOsSo5OQFrMzJSmudtQ/PhkBNjd7/yU+u+3PuO3KE/3z8cQC2+v0Ea2oI1dbStnWr5Qfh3955Jy/396OA1vJyQrW1hGprqbJ4kDg7McGVP/0pMa0xXC46q6sJ1dbSWV1NgcWDxM9eeonvPfccAFVFRYTM/mkpL8duYWGotebPbr2Vk8PD2JVi19atyf6psHiQODk0xJ/eeisAhW43AbNN2quq8FlcuH//uee46aWXAKgvLiZYW0uopobtZWWWFu7RWIw/uukmzk5O4rTb2VNRQai2lmBNDWUWF+4v9/fzt3feCUCx10ugpobLamvZm4PC/WuPP849R44A0LR5c7JNmktLLR1TZubm+PBPfsL47Cwuu532qiqCNTUEa2spsfhm66e6uvjcAw8AUGoYie9xTQ27c1C4f/6BB3iyqwsFbC8rS44pdRYX7mPT0/zBjTcyE43icTjoqK4mVFNDoKaGIov/Yu29R47w1ZScPH/MvpFz8pmJCf5IcvICmcjJ6i/+4oDWOrDqfvlWIO+qqNDX/M7vrPtzovE4X3rwQSKx2ILtPpeLDnMAD9TWUrjCIDEdifBiX9+64wA4PDDAzS++uGR7RWEhofp6QnV1tF5gkOgZGaFvdDQjsdz0wgscOXt2wTabUrRu3ZqMpWrTphXf/0JPD7PR6LrjmJ6b48sPPUR80fFZ4HbTWVNDqL6ezpoajBUGiYmZGV7p7193HAAv9PZy5yuvLNleU1xMqK6OYF0dOy8wSJwcHOTMxERGYvnBs8/SMzKyYJvDZqOtspJQXR2hujrKLzBIPNfdTSweX3ccY9PTfO3RR5dsL/J6CdTWEqqro726Gu8KhftwOMzri46zi/XkiRM8dPToku31JSXJY3b7li0rJrajZ88yFA5nJJZvP/44g4s+y2m3s7eqKnmslK5QuGuteaarKyNxnJmY4DtPPrlke4nPR9A8TvZWVeFeoXA/NzHB8cHBjMTywJEjPL3M/9e2srJkmzReoHA/PDDA2PT0uuOIa83XHnmEidnZBdvdDgf7qqu5rK6OQF0dxSsU7nOxGAdOnVp3HABdQ0P8aP/+JdvLCgoS3+P6enZXVq44o9s/Nkb38HBGYrnj0KEluUwBO8rLk7HUXqBwf6mvj6lIZN1xrJaTQ3V1dNbUvOFy8k9feGHJWCk5eX05WX3845dmgVxeWKhD9fWW/C4F7DQPwsvq66lOGSR6R0b4yPXXWxIHgOFy0VFbS9AcxP0pl+Wue+YZbjxwwLJYKouKEl/M+npaFg0SH77uOs5mqBhcjd1mY1dFBaH6eoJ1dVSmDBKH+/v51C23WBIHgN/tJmAmk/ZFg8Q3H3lk2S9zttQWFyf7Z0d5+YIZ3fdffTXTc3OWxOGw2dhdVZUcxLekFO7PdnXxGXO21QpFXm+iMDT7J3VG9wv33stjx45ZFktjaWmyf5rLypJjSiwe573f+pZlcbjsdvZWVye/P5tTCvcHXnuNLz/4oGWxbDaMZP/sra5eMKP7d7fdxsHeXsti2b5lSzKWhpTCfWx6mg9+97uWxeFxOmmf75/6+gUzurcePMg1y5wAZcsWv5/LzDjaFhXun7jxxoydTK3mQjm5Z3iYj95wgyVxgOTk5eRLTlYf+UhaBXL+rUGGxJMsrPxdNhtxmy1xc+D87079bwtopdBmLHo+ltQYcxBLMo4cxaLNWOKpsczLUf8s2yY2m/WxpB4nqWfRVh4r822iFDrHbUJK/2y478/8785VHMt9f3JwzGLGsJFiWdA/VsfBMt/leTmIJZ6Sg3L9XV6QByUnS05eLpYLtUma8m4GeVdlpb76935v3Z8Ti8f58n33Lbmc43U66airI1hfT6C+nqIVLrdNRyK8kKHLba/193PLCy8s2b61sJBQQwOhxkZ2VVaueDnn1NAQvYsuu1+smw8c4MiZMwu2KWBXVRWhhgaC9fVUXeBy24GuroxczpmNRvnyffctuZxjuFx01tdzWUMDHXV1FKxwg8vE9DQvZ+hy28FTp7jr0KEl26uLi5Nt0lJZueLlnBPnzjEwNpaRWH741FNLlljYlaKtqopQYyPB+noqLnC57ZkTJzKyxGJ8epqvP/TQku2FHg9Bs03aa2vxrXC5bXhyktcGBtYdB8DTx4/zkLneNlX95s3J78/28vIVj9nXBwYYnJzMSCxXP/roks9y2u3sqa5OHCsNDZT5/cu+V2vNU8ePZySOcxMTfOexx5ZsL/b5CDY0EGpoYO+imfRUZ8fHOZahJTAPHj7MMydPLtnevGVL8vvTdIElMK+ePs3o1FRGYvnagw8yMTOzYJvLbqe9tpZQQwOB+npKVlgCE4lG2Z+hJTCnhob40TPPLNleWlCQOGYbGti9aCY91emREbqGhjISy50vvcSLi2boFbC9vJxQYyOhhgbqLnDT6Us9PUwuWrZyMVbLyaGGBjrr6lbMyVOzsxzs6Vl3HLCxcvLPDhzgdcnJC6w3J6sPf/jSnEH2ejy8edeudX/OfS+/TERrsNnYUljIZU1NhJqaaKuuTuuGAK/bnZE4AH7xyitgs6GAFrPQCTU1UV1SktYNAbWVldRWVq47jrNjYxy7916w2TDcbjrq6wk1NtLZ0IA/zRs2OnfsWHccADc/9xxx88y3qriYUFMTocZGWqqq0rohwO928+YLFIrp0lrzkwMHwGZLXD6qqkrGUlFcnNZnNFZX01hdve5Yus6do2dsDGw2/B4PgYYGQk1NtNfVYaR5J/xlLS3rjgPg+48+mpyZristTRRdTU3sqKhI6ya9ErebN2/evO44orEY1z75JNhsOGw29tTWJk4UGhvZUlSU1mdsr6tj+7ojgUM9PQxOTYHNxiafj6D5Pd5XW4snjZsoFWRsTPn6ffcl+6exrCxxzDY10XyBE4VUW8rK2FJWtu44ZiIRvv7II2Cz4XI42Fdbm2yXlQrRxVobGtYdB8DTx44xEYmAzcbmgoLkOLuntjatm/RcGRzzH7nttuSYv72iItEmjY3Upyy5uZDKrVup3Lp13XGMT03xpQceAJsNj9OZHPMDjY0rFqKL7WluXnccsDAnlxcWJo/ZdHOy7xLNycdTcnJnfT1BycnrzsnpyrsCGaVgnXfsx+NxXu7v5//9lV8h1NxMTQ4fyXTizBkKCwr48//+3+lsbKQwh39G+/ETJ3h3IECouZnWNAelbIhEoxw9d44PXXEFoeZmqkpKchIHwCunTlFbXs773vIWOhoa0i5Es+GJEyd435veRLC5mZ2VlTl7zNvU7CynJya48u1vJ9TcTHkGBr2L9fyxY7TV1/Oh5mbaGxpWvCnQCk93dfGBt7yFUHMz2yoqcjamjIbDjM7O8tF3vpNgUxOlOXwk09NHj/LmnTsJNTezp65uxZsCs01rzYFTp/idX/5lQs3NNFxgxjrb+kdGwG7nT3/91wk2NbEph4/he+KVV7hizx5Czc3srq3FmaPH8ElOXt5jx49LTl7Eypycd0ssAs3Nev8Xv5jrMIQQQgghRJ5R733vpbnEAqUgR2e5QgghhBDi0pd/laZS8qemhRBCCCFE1uRfgQxSIAshhBBCiKzJvwLZZgOL/wSmEEIIIYR448i/AlnWIAshhBBCiCzKz0pTllgIIYQQQogsyb8C2WZb93OQhRBCCCGEWEn+FcggM8hCCCGEECJr8q9AljXIQgghhBAii/Kv0pSnWAghhBBCiCzKvwIZZImFEEIIIYTImvwrkGWJhRBCCCGEyKL8qzSVythTLLTWfPfHP6amspJAezvFmzZl5HMvxun+fm67+25CHR3sbm3F6XTmLJb7HnqIsYkJgu3t1FZXo5TKSRyxWIzvXHcd25uaCOzbh9/vz0kcAMdOnODhJ54g1NFB644dOHJ4knb73XcTjUYJdXRQVVmZszgikQjfue462lpa6Ny7F8MwchbLocOH2f/CC4Q6Oti5fTs2my1nsfz05z/H43YT6uigfMuWnMURDof53vXX075nDx179uDxeHIWy3PPP8+RY8cItrezvbk5Z2MKwA9vvJHNJSUE29sp3bw5Z3EMj4xw/c9+RrC9nb1tbbjd7pzF8uiTT3J6YIBQRwcNdXU565+NlJP7Tp/m9nvukZyc4o2Wk5XWOuMfCqCUuhZ4N3BWa922zOsK+ArwLmAK+D2t9fOrfW6gvV3vf/jhjMV530MP8Z/f+hYA25ubCXV2EurooD4Hg8T//cxneOnQITweDx179xLs6CDY3k5RUZGlcZw9d44r/+zPiMVilG/ZkmyTttZWywvDW26/nWt/+EOUUrTs2EGwo4PLOjuprqqytH+01nzi//wfTnR1YRgGHXv3EurooDMHg0RXdzd/8qlPAVBVWUmoo4NgRwetO3dit3j50Q+uv56f3nordrudXS0thDo6CHV2UrF1q6VxRKNR/viTn+TM2bP4/X4C+/YR6uykfc8eywv3Q6++yt98+tMA1NbUJNtkx7ZtlhfuX7/6au6+/34cDgd7du0i1NlJsKODLWVllsYxMzPDH/zpnzI2NsamoiKCZpvs273b8sL96eee47P//u8ANNbXJ8a3zk6aGxstH/P/5Utf4omnn8blcrG3rS0ZS0lxsaVxjI+P8+E/+RNmZmYo3bw52T97du3CZfFjVTdyTg51dhLYt09ycp7nZLVp0wGtdWC135HNAvmXgUngBysUyO8C/oREgXwZ8BWt9WWrfe6e3bv1T6+/PmNxxmIx/umznyUcDi/YXlpaSigYJBQMsrutbckgEYlEOHnyZMbiADj82mtc893vLtimlGL79u2EAgFCwSB1ywwSg4ODDA0NZTSWH/74xxx88cUF27xeLx3t7QQDAQKdncsOEidOnGBubi5jcczOzvLpf/5nIpHIgu1bt25N9E8gwK5du5YMEtPT05w6dSpjcQDsP3CAG268ccE2pRStLS3JY6VqmUHizJkzjI6OZjSWq6+9liNHjizYZhgGnR0dXBYK0dHeTkFBwZL3HT16lHg8nrE4xicm+MxnP8vicaSqqirZPy0tLUsK98nJSfr6+jIWB8BjTzzBz2+7bcE2u91O265dyf7Zukzhfvr0aSYmJjIay1e+9jV6enoWbCssLCTQ2UkoGKR93z58Pt+C17XWvP766xmN49zgIP/6b/+2ZHt9fX1yTNm2TOE+NjbGwMBARmO55777uO/++xdsczqd7Nm9m1AwSDAQoGyZwr2np4epqamMxvL5L3xhyZhZUlKS7J99e/cumdGNRqMcP348o3F0nzrFV7/+9SXbm5ubCZqxNDU1LRlThoeHOXfuXEZjufnWW3nyqacWbHO73ezbu5dQMEigs5OSkpIl7+vq6mJ2djZjcWyknPzq4cNc+73vLdgmOXlj52SbzUZrSwtBs3+Wy8nK5cpMgayU+jjwI631yFqDV0rVA3esUCB/G3hYa329+fMR4K1a6/4LfWZ5ebkOBYNrDWVdPB4P+/btSwwSgQDFxcX09vbykY9+1NI4ALZs2ZLo+FCI3bt343Q6ue6667jxpz+1NA6lFDt37kwktmCQ2tpalFJ8+A/+gLNnz1oai8/no6OjI9k/fr+fw4cP86m//mtL4wCoqKhIDBKhEK3m2f03v/lN7rzrLkvjsNlstLa2JmOpqqoC4P0f+ADT09OWxlJQUEAgECAYCNDZ2YlhGDz77LN85p//2dI4AGpqapJtsnPnTmw2G1/4t3/jscceszQOh8NBW1tbMpby8nJisRjv/c3ftDQOgKKiIgJmMuno6MDj8fDAAw/w5a98xfJYGhoakmPK9u3bUUrxd3//9xw8eNDSOFwuF3v27EnGUlpaytjYGB/83d+1NA5IFO6hUIhgIMBes3C/9dZbuebaay2PZdu2bcljtqGhAaUUn/jkJzN+4rCa5XJyT08PH/3YxyyNAyQnL2ej52Rlt6dVIKczN78VeE4p9TxwLXCPzsy0cxWQOsXSa25bUiArpa4ErgTw+/1orL3MMj0zy9Fjx9lUvJnizWW0byohjs3yOADOnhvk6PETbCopZcvWSiorK3MSi9Zwsqub4pLNFBVvpqy8Ao/Hg0ZZHkt4ajrZPyWlW2hra8tZ//QPnFnQP1u2bMlJLLG45sTJLopLEsfs5rJyXC5XTvpnYjLM0WPHKdpUQumWrezcuTNn/dN3un9B/5SUlOSkTeaiMY6fOElxyWY2lZRSvLkMpXLTJqNj4xw7foLiklLKyitoamrKWf/09PYl22TL1kqKiopy0j+zkTmzTRLfn00lpTlrk6HhkeT3Z8vWSmpra3MWS1f3qWT/lJVXYBhGTvpHcvJSkpOX1z9whmMnTlK8uSyZk9OV1hILc73wO4DfBwLAjcA1WusLnjauMoP8C+DzWuvHzZ8fAD6ltT5woc/csWOn/sIXvrhqzOnSWvPjH/9wyeUcgO3btxMIhAgGQ9TX1y+Ypp+cnOTRRx/JWBwAAwP93Hbbz5ds93g8tLd3EAgECQSCSy6jHDlyhOPHj2U0lkcffYTXXju8ZPuWLVsIhS4jEAjR1ta25DLKQw89mNEZyng8zg9+8L0ll3MSZ8stBIOJ/qledOPC8PAwTz/91OKPW5eurpPce+89S7YbhkF7ewfBYIiOjs4l658OHTrEqVPdGY3l/vvv5cSJE0u2V1VVEQyG6OwM0tLSsqR/7rnnbmKxWMbiiEQifP/7312yxMJut9PauivZPxUVFQteP3PmDAcO7M9YHACvvXZ42e+k3++nszNAMBhi3772JWuSX3jhefr7L3jhas3uuOM2Tp8+vWR7bW1tckzZsWPHgqUNWmvuuuvOjMYRDof50Y+uW7Ld4XCwe/cegsEQgUBwSdLo7e3lpZdeXPK+9XjxxYM888zTS7Zv2rSJQCBIMBhi7959S9YkP/vsMwwODmY0lptuupHh4eEl2xsbG5P907zoZsLZ2VkeeOD+Je9Zj+HhYW666cYl2xMz2HuT/bN50c2EJ06cWHZ8Xo9nnnmaF188uGT75s2bk9/j3bv3LFna8MQTjzM2NpaxOC42J09MTPDYY49mLA6A/v7T3H77bUu2z+fkxFgbkJxMfuVkl0tlbAYZrbVWSg0AA0AUKAZuUkrdp7X+VDqfsYxeoCbl52pgaUZZxDAKuOKKX7/IX7nUCy8cYGIi8UV0u93s3dtOZ2eI9vbEZZt5i44FnM7MxgHw1a/+B/PLQ0tLywgEQnR2hti1a/eCO2gXL/eqr99Bff2OjMURDoe57rrriMfn11vtTMZSXV2TPOhjscQ/qd785l/NWBwAjz/+CDMzicb3+Xzs3dtBIBBi375OCgsLk/st7h/DKMl4/3zuc/+Y7J+tWyvo7AwRCITYuXPhjRKL+2fbtja2bVtyjnjRhoeHueaaa4jHE0spWlp20dERJBAIUVlZldxvuf5561vfmbE4AO666w5isURxXFBQQHt7gM7OEPv2dSwoRBe3yaZN5RntH601DzzwULJ/qqtrkv2zffvOBYXo4lhaWztobc1YKJw+3ce3v/1ttE4Uoq2tbclYtmwpT+63dFmgyvgx+9OfXp9sk6KiIjo6gnR0BNm7tx1vyh9cWtwmZWXVXHFFdcbiiMfj3Hbb7clY6usb6OxMjCnNzdsWFaIL37t376q3pqzJ668fYXAwURy7XC52796bbJfS0tLkfovHFHBnvH+uvfaqZJsUF5ckx9m2tj0L1kAvbpOqqkaqqhozFkckEuEnP7kxGUtT07ZkLPX1Dcn+0XppLIHA5RmLAy4+J7tc/oz3z3/+5xeTbVJWtoVAIERHR1Bycp7n5HStWiArpf4U+H+BQeA7wF9preeUUjbgKHCxBfJtwMeVUjeQuElvbLX1xwDx+HID18XRWnP//fdzxRXvoqMjRGvr7gVnx5n6PekYGOinv3+A//E/fpeOjhA1NXULBiUrY7nvvvtpbd1HR8f8QX/+7DiDa/1XFY/HeeSRR/i1X3sPHR0hdu5cuPDfyjY5ceIYU1Oz/PZvf4j29iCVlecX/mfymEzH3XffTWfnm+jsvIw9ezoW3IxnZRyRSISnn36ad73rN+noCLF9+8Kb8ayM5dChl3A6PXzwg39Ie3uQrVvPz1hHo9bFAXDXXXdx+eW/Snt7kN272xfcjGdlm4TDYV588SXe857309ERorl5+4JC1MpYnn32aUpLt/KOd7yH9vYgpaXnb8azckwBuOeee/iv//UddHSEaGvbu2DG2so2GRkZ5tix4/w//8//or09SENDU87656GHHqG+fhu/9Vsh9u0LUFx8/mY8K/tnI+Xk/v7TDAyckZyc4o2Wk9O5Se+fSCynWHKNWCnVorVe9jqPUup64K1AKXAG+AfACaC1/pa5bONrwDtJPObt97XWq15z3bs3oO+5JzOXZuf/33P5TM55WusNEQdsnFikf5a3UWLZKHGAxLKR4wCJZSPHARsnFhnzl7dRYrlU+qeiIkNLLLTWf3+B11ZcBKW1/u1VPlcDa77lVOtMzgjlvpPPk1iW2ihxgMSynI0SB0gsy9kocYDEspyNEgdsnFg2ShwgsSxno8QBVsSSf39Jj6VrbIQQQgghhMiUvCuQtZYCWQghhBBCZE9eFshWLgQXQgghhBBvLHlZIGfwr1oKIYQQQgixQF4WyLLEQgghhBBCZEteFsiyxEIIIYQQQmRLXhbIVj/4XwghhBBCvHHkZYEsSyyEEEIIIUS25GWBPD2d6yiEEEIIIcSlKi8LZJlBFkIIIYQQ2ZKXBbKsQRZCCCGEENmSlwXyep9iEY/HeeKJ66mubqWmpg2Hw5mZ4C7C2bNdnDixn+bmEJs316BU7v7W+Usv3Y/NZqepKYDX689ZHNFohCef/Al1dXuprm7Fbs/dYdrX9xp9fa/R3ByipKQyZ3EAPP/8L/D5iqivb8fjMXIWx8xMmGefvZnGxgCVlTuw2Ww5i6Wr6yCDgz1s23YZRUVbchYHwLPP3sKmTVupr2/H5fLkLI7JyRFeeOFOmpqCVFRsy+mYcvToM4TDIzQ1BfH7N+csDq01Tz31U7ZsaaC+fi8OhytnsYyM9PPqq4/Q3Bxiy5aGnPbPq68+SjQ6S1NTEMPYlLM4JCcv76WX7sNmc0hOTmFlTs7LAnn9SyxsKOXgJz/5e5xOD/X1HTQ3h2hsDODzFWUizLQVF9fy0ktf4OGHv09RUTlNTSGamkLU1LRZfhCWlNTxwx/+OaCorm6lsTFoHoTVlg4SSrmYnZ3l+uv/L263QUNDJ01NIRobO/F4CiyLA6C0tIlbbvkXHnzwGoqLq2hqCtHcHKKqqgWbzW5pLIWFldx0099js9mprt6VPFaKiyssjcPpNBgbG+SHP/wUXm8hjY0BGhuDNDR04Hb7LI2lrGwbt9zyr9x//1WUltYl26SiYrvlhbvPt5mbb/4cNpuDurq9ye9PYWGZpXF4vcX09x/niSduwDCKaWwM0Nx8GbW1ey0v3Lds2cbVV/8hd9/9dbZsaTLH2SBbtzZbXHgoXK4Cbrrpn3A4XNTV7TOPlSAFBSUWxgF+/1aOHz/AY4/9CL+/1BzbgtTV7bG8cC8ra+aaa/4YgIqK7cnxrbS0zuL+sQF2ycmLlJTUL8jJ88es5GRrcrLSWmf0A7Otrm6f/uu/vnfdnxOJTPHjH/8F0WjqdLSiomJHcsC60CARi0WZnBxedxwAr7/+BI8+eu2CbU6nl/r6DpqaQjQ0BPD5Cld8/8xMmNnZcEZiueuuL9LX9+qCbZs2VdDYmGiT6updFxwkJiYGicfj644jHB7hhhs+hdbnP0spG1VVrTQ2JgaskpKqFd8fjUYIh0fXHQfAyy/fyzPP/GTBNre7IDlI1Nd3XHCQmJ6eIBLJzJ2lt9zyaYaGTi3YVlJSQ2NjkKamEJWVOy84SIyPnyMT3/nR0dPcdNPfLdhmszmorm5Lfn82bdq64vvn5maZmhpbdxwA+/ffwsGDdyzY5vUWmYV7yJzR9a74/qmpMebm1v/nObWO85Of/A2Tk4MLtpeW1pttkijcVxpTtNaMj59bdxwAZ84c4/bbP79gm93upKZmTzLh+/2lK74/Eplheno8I7E88cR1HD788IJthlGSPGZra/fidLpXfH84PLponL44sdgc11//V8zMTCzYXl7enBxTtmxpXLF/4vE4ExODy762VqdOHeTee7+6YJvD4TYL98tobAxgGMUrvn92doqZmcmMxPLgg9/ixInnFmzz+8uS/VNTs/uChfvk5DCx2PrXPa6Wk5uaQmzeXPuGy8l33vnvnD59eMG2+Zzc1BSiqurCM7qSk5f64AfVAa11YLXfk3cFcmFhuW5oCFnyu/z+LdTXh2hoCFFZufCyz8hILz/60UcsiQMUW7fupKEhRH19iJKShZd9nnrqOg4cuNGSSFwuH7W1HdTXh6ivD+DxLLzs8/3vf5iJibOWxFJUVGm2SZCKioWDRH//YX72s09ZEodSNiordyWPlU2bFl72efjhb3Lo0J2WxOLx+KmrC1BfH6K2th23e+FSjG9/+/3MzVnzGJji4hoaGi6joSFEefnCpRgnTz7LL37xGUvisNkcVFXtpr4+SEPDZRQWLlyKcffdX+DYsccsicXrLaK+PpjsH6fz/IxuPB7jG994ryVxAJSWNpptEmLLloVLMQ4ffoAHHviyJXHY7S5qavaaY0qQgoKFSzF+/vO/o6fnoCWxGMbmZJtUVy9cijE1Nca1137QkjggMfs+P6aUli5civHCC7fyxBPXWBKHw+GhtrbdPG6D+HybFrz+k598gnPnjlsSy4Vy8vBwDz/+8UctiUNy8vLyJSdfeWV6BXLeLbGAxDILK4yPn+W11x4kHB4lEolQXx9KfgliMeviAE1//2GmpkaZnBylre1dCzpca+timZ2d4tixJwmHx5iamqC19dcWzP5YGcvo6GleffV+c4YpRk1Ne/I1K/tH6zi9vS8TDo8SDo/R1vYu/P7zl9XjcetimZ6e4PXXHyMcHmV6epKdO9+2YJCysn+Gh3uYnh43+ydOZeWu5GtWtkksFuXUqRdS+ufXF8zOWdkmU1NjHDnyKOHwGDMzU2zf/ivJEwcr2wTg3LkTyTZpbVVs2bIt+ZqVsUSjEU6efG7B9yc1yVsZy+TkEEeOPEw4PMrMzAzNzZcnx3yr++fMmaNMTY0xNTVGa+uvsXlzffI1K2OZm5vh+PGnzf4Zp63tXQuuyFgZi+TkpSQnL7VaTk5X3hXIHk8h7e0fyMAnaV588VZisaWX7goLt1JXF6KuLkRFxfklBalXKZxOf4bigPHxfo4de3TJdqVsbN3aSn19IpZNm85fvkhdh711627a2zOzHqmr6xmGh7uWbHe5DGprO6mvv4yamg7c7vOXL1Jj2bXr3Rm5tBSPx3jxxZsXXM6Zt2lTNXV1iTP38vLzSwpS4/B6N2esf4aHu+nqenrJdpvNQWVlG7W1iRnBwsLzSwpSY6mu7sTlyswNFseOPcr4eP+S7R5PIXV1QerqQlRXL1xSkBrL3r2/RSw2t+44YrEIL754y7KvlZTUJ4/ZLVu2L0hg8woKKjPWP+fOHaWn5/kl2+12J5WVe5KxFBScX1KQGkt9/Zvx+zNzs8eRI/cTDg8t2e7zlZj9E6Sqal8ygaXeUxGPq4y1yezsJK+88otlXysra06Ob6Wljcv2T3FxQ8Zi6e9/hf7+Q0u2Oxxuqqv3UVcXorY2gGGcXwucGktz81spK9uRkVheeeVOZmcnlmw3jNLkcVJZeX5JQeqYr5Q7Y20yNTXMa6/dt8wrivLyHWb/BCkpqVu2f8rKdmQslp6e5zl37uiS7U6nl5qajmT/eL3nlxSkxrJz5zsIhzOxtOFCObnCvOoSXDEnu1yZqg02Wk5+muHh7iXb3e4Camo6qa8PSU42pZuT05V3SyxqagL6k5/cv+7P6enZz733ftr8SVFe3kJtbYiamhCbNlm7AP6hh/6NEycSX0aXy6C6upPa2hBVVR1LLpdk0+zsJD/5yYeZm5sCoKioipqaELW1IcrLrb0p7dixh3jkkf8AQCk7W7fuorY2EUthobU3pd199z/Q15cowNxuPzU1AWpqQlRVLV3CkE2Tk4P89Kd/SDyeWO9XXFyXPGbLyqy9Ke3Qodt45pmrgcSgVFGxx4wliN9v3dMktNbcdttfMDiYSPBe7yZqaoLU1oaorNy3YAlDto2M9HDzzR8DEmPq5s2Nye9Paam1N6UdOPAjDh68AUgsYaiq2mfGEsTns+6mtHg8xs9+9lHGx08DiUJ0vn8qKqy9Ke3Mmde4446/Mn9SlJVtTx6zJSX1lvbPk09+i8OHEycwDoeH6uoOampC1NQE8HqtuyktGo1w441/wPT0CAAFBeXJcXbrVmtvSjt16jnuu++fzJ8U5eWt1NYG39A5eWZmghtv/APJyYusNyf/xV9cokssMvEUC601L7/8c+rqLqemJkR1dWDJJT2rjI72cO7ccVpafoPa2hBbtixct2PlH0U5dOgOSkqazIE6SFHR+bNjK/9ASzwe45VXfkFj469QUxOkqqoDl+v8QW9lm5w9+xqTk+doa3ufWYguXEtrZSwvvXQr5eW7zQLjMgoKzheiVvZPNBrh9dfvp7n5bdTUhKisXLiW1so26ek5QCwWZc+eD1BTE6K0dOFaWmv75xaqqgLU1oaorg5iGOfX0lo5pszOTnLy5BNs3/5OamrmC9Hzl1ytbJNjxx7F6TTYt+93qKkJUVLSkNP+qan5peT45vVuSr5mZf+Ew4P09h5k5853U1MzX4ieX0trZZscPnwvBQVbaWl5j1mI1uSkfyQnL++VV36RkpNDFBUtXMYhOTm7OTnvZpArKwP6j/5ofTPI8XgcreM5fZbfvGg0ktNncqbaKLHEYlGUUpY/Rm05G6VNYOPEEotFsdnsOX0+6LyN0iawcWKJxeaw2RzSPym01sRicxsilmg0gt3ulP5JITl5eRsllkstJ//jP16iM8iQmecgg21D/MlqpVwbIg7YSLE4NsyfFN84bbKRYnFYOqNzIRunTTZSLE7pnyXUholFKZf0zxKSk5ezcWJ5Y+bkvCuQN0onCSGEEEKIS1PeFcggBbIQQgghhMievCuQ43GIrP+PKgkhhBBCCLGsvCuQtYbZ9f9VWCGEEEIIIZaVlwWyLLEQQgghhBDZkpcFsiyxEEIIIYQQ2ZKXBXI0musohBBCCCHEpSrvCmSQJRZCCCGEECJ78q5AliUWQgghhBAim/KuQI7H5SkWQgghhBAie/KuQJanWAghhBBCiGzKywI53SUW0egEIyOPUFQUwuXakt3AVjEx8RKx2CR+fwd2uyensQwO3o3X24jPtw2lVM7iiESGGB9/jsLCAC5Xac7iABgfP4DWcfz+vdhsrpzFobVmcPAXGEYrXm9DTvtnZqaPcPhVCguDOJ2bchYHwOjoU9hsHgoK2rDZnDmLIx6PMjR0J37/Ptzumpz2z/T0SaanuygsDOBw+HMWB8DIyKM4HJswjFZsttyllXh8lqGheyks7MTtrsxZHADh8BEikbMUFnZgtxs5jWV4+AHc7kp8vh0oZctZHBsvJ4fx+9slJ5sikUHGx/dTWBjE5dqcszhgY+TkrI5kSql3Al8B7MB3tNb/suj1twI/B06am27WWv/Tap+b7gyyUn7Gxp6nt/fbeDx1FBaG8PuDORkknM5qTpz4Q7SOU1CwB78/ZB6E1g8SsViM11//CxyOYgoLA/j9IQoK9lk+SNhsJQwNPUBPz9fxehvNNgnh9TZbPkg4HFs5cuQj2GxOCgr2JfvH6SyxNA5QzM1NcuTIn+F0llJYGDT7Z4/lg4TDUcGZM//MqVNfxefbnvz+eDz1lveP3V7KsWN/js3mwe/vMPsngMNRZGkc4GBm5gy9vR/D5So32ySEYbRZXhg6HFWcPv1puru/hGG0JL8/bne15f2jVAHHjv1f7HYDv78Tvz+E39+Rg8LdzeTkUXp7r8LtrkrpnxaUslsaidNZzfHj/0A8PoNh7ErpnwpL4wDQ2snrr38Ku92P3x8w26UDu91naRwbPyeHcLnKLI0DNlJO3szQ0P2Sk01Ka52dD06MRq8Dbwd6geeA39Zav5qyz1uBv9Ravzvdz/X7O3V7+zNpxzE9fZQTJz61YJvDUURBwfxB2I7d7k378+Yl2m1taz36+7/D8PAvFmzzeOrNZBLC691+UQeh1jEg/X6MxyMcPfoRotHh5DalnBjGnmRCcTovbkZX67U9g29y8gW6uxeeEzkcJfj95wcJm819EXGsvX96e7/E2NijC7Z5vc3J/vF4Gi3pn1gszNGjf0QsFk5us9ncGMY+M5YgTmfxmuNIxLK2/hkdfYS+vi8v2OZ0luH3B83CY/dFFe4X0z/d3Z9hcvL5lC0Kn29HMha3u86S/pmbG+bo0T9a0JY2m5eCgg6zfwI4HIUXEcfa22Ro6BcMDHxnwTaXqyJ5nBjGLpRae+GudRyIr2F/zcmTf8309NHkNqVs+Hytye+P21215jgSn722Y3Z2to9jx/6E1D612wsoKDhfuNvtBRcRx9r75+zZn3Du3A0Ltrnd1ck28fl2XlThvvb+iXP8+J8yO9uX3KaUA8NoSx4rLtfWNceR+Oy19c/GyslXMzx854Jtb/ScPDHxPKdOfWbBtkROnp+s2Zv3OfnRR9UBrXVgtf2yWSC/CfhHrfWvmT//DYDW+vMp+7yVNRbITme5NoxQBuN04PW2YRghDOMynM70ZnQjkV66uz+SsTgA7PYiDCOIYQTx+Tqw2dI7exwauo7h4RszGovb3WjGEsLtTv+yT1fXh5mbO5uxOJRy4fPtxTBC+HyBtAeJ6enD9PZ+avUd18DhKDGPkxBeb/qXfc6e/SZjY3euvuMaeDzbkrG4XOkvxTh+/P3E49MZi8Nm8+DztePzJY5bh2NTWu+bnHyW/v7PrL7jGjidW5Jt4vGkvxSjv/8LTE4+lsFIFB7PzpT+SW8phtYxjh17bwbjAJvNh8/XYcYSwG5Pb0Z3fPwBzpz5ckZjcTork2OK19uaduHe1/d3TE0dzFgcStnweHal9E96SzGi0TFOnvxgxuIAsNv9+Hyd5viW/lKMkZFbGRy8JqOxuFw1GMZl5vcn/RndU6c+wezs8YzFcfE5uYfu7o9mLA5IzckhfL52yckszMmJMT+9pRgbKSfv359egZzNa4JVQE/Kz73AZcvs9yal1IvAaRLF8iuLd1BKXQlcCWCz+VnLmdlqtJ5jauoFpqcPEQ4foLj4fXi9rWm8L57ROABisVHGx+8jHD5AQcGbKSn5AHb76peQsxHL7OxxZmePEw4foLDwHRQWvj2tATNxwpXJ/pklHH6WqakX8fn2U1z8fjye5jTel/k2iUaHGBu7i3B4PwUFl1Nc/P40E1rmY5mZeZ2ZmaOEwwcoKnonBQVvTXPAzGz/xOPTTE4+ydTUC0xNPU9Jyf/E5apJ550ZjQNgbu4Mo6O3m/3zyxQX/1aaCS2zbQKamZlXmZl5jamp/RQVvQfDuGzV/snGMRuPh5mcfMzsnxcoKfkATufql/izEcvcXB+jo31MTR3A7/8Viorek1ZCy/yYEmN6+iVmZl4lHN5PcfF78fk60nhnNsb8cSYmHmJq6nkM45coKfkADkc6kwCZjyUSOUUkcopweD+FhVdQVPSuNE9iMt0/kpOXsxFzcqJ//kce5uT0ZLNAXi4bLG6d54E6rfWkUupdwK3AtiVv0voq4CoAt7tRFxZekXYQWkeZmHhk2dfs9k0YRgDDCJpnH/PJdPVLVzabh7XEAYlZ55mZI8u+Nn926PMFcbubUpLp6rG43Y1rjiUcfo5YbHzJ9sTZ4T4zlk4cjtT1PqvH4vdfTiw2lnYc8fgMk5NPLPuaw7E52SZeb+ql/NXjcDgK19wms7MnmJ09ucwrCo9nW3KW1OWqW1P/eDw70HptD++enHyKeHxqaSQqMWObmEnoTBms0xsE/f63rimWWGyCcPjZZV9zOsuTbeL1pl7KT6d/Nq+5f2ZmjhCJ9C7zisLjaUlefXE6q9bUP15v25qXiUxMPLLspUubzUjO2Pp87SmX8tPpH73mNolGh5maemHZ187P2AbxeFLX4K7eJk7n1jXHMj39CnNzA8u8Ysfr3WXGElhUoK8ei2G043Smf8OQ1nEmJh5mufY+P2MbNGcE59fgrh6HUvY1t8nc3Bmmpw8t+5rLVZdsE7d7e0qxs3osLlfNmmOZmjpINDq0ZHtixnaP2SYBnM7UNbjp9E8It7s+7Tiyl5O9F5GTe5iZeX3Z1yQnL3Wp5OR05XSJxTLv6QICWuvBlfYxjA7d0rJ85y1nbOxuzp27Ovmz292AzxcwB6WmtC9TrJfWmr6+/4+ZmdeAxEHv9e42B4POtC9TZMLcXD/d3X/K/IHkcGw2k3oAr9fam8GGh3/G8PCPkz+73duSbeJyWXczmNZxeno+mSzAEoXoXgwjgM/XkfbSgUyYmTm+4FKUw1GWLIgThah1T3EYHPwuo6N3mD8pPJ4dyQS2sBDNLq3n6O7+WDLBJwrRfWb/tKe9dCATpqZe5PTp8+vmnc4Ks00CeDw7L2rN78U6c+ZrTEw8ZP5kw+ttNdukM+2lA5kQi4Xp7v4o8fhkIhKbH8OYH1P2WvoUh4mJJzhz5j+SPyeWDgTw+QJ4PNvTmnXLlP7+zxMO7wfmC9FdyfyT7tKBTIhGR+ju/mjy5DixdCDRJj7fnrSXDmSC5OSlNlZOvonh4euTP5/PyYFFhWh2ZTMnHzjgy/kSi+eAbUqpBqAP+J/A/0rdQSm1FTijtdZKqRBgA5ae4i6R3hmC1nOMjt5uzrgFMIyORZevMn1pdWXT0y8xN3eGwsIrzIN+96KF7pk761nN8PBNuN0NGEanedAvLkStiSUen2J8/J5kweXzteNwpN58Zl3/TE4+QTw+Q1HRr5n9s7gQta5/RkZuNAvRDny+wDJrWK2JJRodYWLiMQoK3oRhdJqFaOrNZ9b1z/j4/SjlYNOmX8fnC+D1Li5ErWkTrTUjIzfh9baaM5GBZQpRa2KZmxswlyv8F3y+DrN/UgtR647ZsbFf4HAU4fNdgWF0LrOG1ar+iTM6evOCQsfpLF+0lzWxzMwcZ2bmdfz+t5rfn73YbKk3n1nXP6Ojt6ScyHUss4bVqv7ZiDn5bebkg+TkWCzM+Pi9ySsbb/ScnLUZZABz2cSXSTzm7Vqt9WeVUn8MoLX+llLq48BHgCgwDfy51vrJC31mYgZ5+cszi8XjMwCWnh2vJBYbx2bz5/QZh+djGUtrHVW2JZYQOHL63OF5sdgYNlthzvtHa008PrGoEM2NWCyMzea2dEZ05Vg2Sv9EicdnLuopCJkWi01gs/ksf3zZ8rFslDElAkRTlk7kTqJ/jJw+d/h8LBulfyQnLx/LRumfN0ZOPnCgMLdPscgWw9inW1ruz3UYQgghhBAizxw4UJbzJRZZZN2lDyGEEEII8caShwWyRgpkIYQQQgiRLXlaIM/lOgghhBBCCHGJysMCGdb65wqFEEIIIYRIVx4WyJrEQy+EEEIIIYTIPCmQhRBCCCGESJGnBbIssRBCCCGEENmRhwUyWPWXXIQQQgghxBtPHhbI8hQLIYQQQgiRPVIgCyGEEEIIkSIPC2SQPxQihBBCCCGyJQ8LZM3sbDfx+CweTx1K2XMazeTkIdzurTidpTmNIxabYnr6GD7fdmw2T05jmZnpRmuNx1OLUracxjI5+RJudw1OZ3FO44hGx5md7cHrbcZmc+c0lunpEyjlxO2uRimVszi01kxOHsTrbcLhKMxZHABzc0NEIufwepuw2Zw5jWVq6ih2ewEu19Yc90+UycmX8fm2YbcX5CwOgEjkDNHoOF5vA0rlNm2Fw4dxOktwOrfktH/i8Qjh8Kv4fNux2305iwNgdrZPcvIiGy0nA7jdNZKT1yAvC2SHo4Curm+glAOfbzuG0WIO4tYPEvH4JN3dX8DpLMMwWjCMnWZhaO0gYbe7GRt7gjNnrsfjaTBj2YHTudnSOBKx+Oju/iJ2uxefb0eyf3JRGM7NnWNg4Ie4XFuT/ZMYJKxNbHa7j6Ghe5ib+xFeb2MyFodjk6VxANhsTnp6vordXohhJPonURi6LI1DqURiPXPmetzuqmSbuFyVlvePw1FAX99VxGKT+HzN5jG7E4fDb2kckGiXnp4v4XBswjB24vPtxOtttLxwV0oxPX2MM2duwOOpwefbafaP9YW7w+Gnt/ebQAyfbxs+X2J8s9sNS+MA0DrCqVNfxOncnNI/9ZYX7jabncnJFzlz5ga83jqzTXbicpVZGgewoXJyLDZBd/cPJCcviMVLd/d/SE5eI6V1fj0RwjB26JaWbzM4eDejo4+mvKLweuuTic3lsubsUesY3d1fJBodTW6z2bwYxg58vp3mIOG1JJbp6RP09X1nwTaXq8xskxY8HuvOHs+evZnx8f3Jn5Wy4/U2mEm2xbKzx3g8QlfXvxKPTye32e3GokHCmsJwcvIQAwM/XrDN7a5IFh5Wzuj29/+QcPjV5M9KOfB6m5KDuMNRZEkcsdgkXV3/htbn7ytwOAqT/WPljO74+HOcPXvLgm0LC/cKy/qnr+9qpqdPJn9WymUW7jvNwt2aGd25uWG6u/+D1GVt84V7on+sm9EdGXmEoaF7UrYoPJ6aZP9YNaOrtaan56tEIgPJbTab2ywMd+Lz7bCsMJydPU1Pz9cWbFtauFtTGOZDTk4cs81v0Jz8M8bHDyR/Pp+T578/b5ycfODArxzQWgdW2y/vCmSns0T7/XvROobWkQvsV2p+IXZk5ewxEhmkt/cqIDGjoPVKz2a2mYPEjqydPQ4PP8Lo6BMACw66JZHYfBjGNnPwbM7KZZ9Tp75ONDqG1tEFRc9iLle5eRKxA4+nOuODxMxMD6dPXwdAPD7LSuvWE4NEYzIWp3NTRuOAROIYH38e0MTjMyvuZ7f7k/2TrRndrq4vEo/Prto/bndlMuG73Zmf0Q2HX+fMmZuA1frHic/XaJ5EbM/KUoyzZ29hcvIwq/WPw1GUbBOvtyHjhbvWMU6e/Ffzvy/UPwqPp9pMKDtwucoz3j8TEy9x7twdAGabLJ8nUgt3w9ielRnd/v7rzZOFuHmsLM/hKDbH2ewUhrFYmO7urwCg9Rxar/QHqxQeT23KmF+W8f4ZG3uWoaH7gdXGfA8+3/yYn53Jmr6+a5mdHZCcnCKfc7Jh7DAnay7dnHzgwDvSKpDzcIlFnHh8atW95ubOMTp6jrGxpzCMFkpL35bhWbG5tOKAGNPTx5mePs7IyKMUF7+ZoqJQRgcHrWfSiiUeDzMxcZCJiYN4PFVs3vwOvN7ajMWR+B1TacUSiQwQiQwwOvoEfv9uNm++IqPJVetIWnFoHWVq6nWmpl7H4XiE4uL/QmFhR0YHh3T7JxYbZ3z8AOPjB/B669m8+e14PJUZiwMSx0A8vnISmzc728fsbB+jo49TWNhOScmvYLdncvBOt38ihMOvEQ6/xuhoMSUl/5WCgj0ZLTji8fT6JxodZXz8WcbHn8Xna6a09B0ZvpwdS3NM0czMnGJm5hSjo49RVNRJcfEvZ/SESuvZNPtnlnD4FcLhV3C5Sikp+VUMY2eG+2c6zf4ZZmzsKcbGnsEwtlNa+naczpKMxZH+mK+ZmeliZqaLkZFH2bTpl9i06U0ZPaFKf8yfZnLyJXPd51Y2b74Cn685Y3HM/46NkZPTG1MkJy/vjZST05V3BbLN5sLn20YsNsHsbP+y+9jtBoax3VyrljoTl7nZcpvNgc+3DUhc5orFJpfdz+3eas46bV80E5e5WFyuzWYscaamji27j1JOvN4GDGM7hrEtZSYus1cQfL4GotEw0egYkciZZfdJXELfhmFsXzQTl7lY7HZPsn9mZnpWPItPXEJP9M/CmbhM9k8ZPt82tJ5bcNk8VWImrsk8bptTLqFnun+aiMejzM0NMTc3tOw+iUvoOzCMbXi9dSmX0DPZP75k/0xPd60w85SYKU30zw6cztKs9I/bXU48HiEen03ezLJYYibufP+cv4Se6f5JtMnc3Dnm5kaW3SdxCT1xzCYu0c4n9szF4nD4U/rnxAqzpTa83joMYxs+33ZcrtSZuMzF4vFUopSdeHyKmZneZfdJzMQ1m2NKU8rJXCb7x5Zsk8RNg2PL7uVybTGPk+14PFUpiT2T/VNkxqLNMX/pZydm4uqT+ef8TFxmj1mPpwa7vWAD5GSn5ORlnM/Jo0QiZ5fd542Wk9OVd0ssDKNZt7T8OwMDtzA5eX4NZWJQ2oZhbMvKJeGVxGLTdHd/PXnpb35dT2Kw3mbp3fkTEy9z5sxtyZ/t9gKzTZqzckn4Qk6fvp6pqRPJn93uimQsVt7kE42O0939jeTltsQl+wYzqTdbtpYTYHT0WQYH70v+7HAUmnFsw+uttax/tNb09n43JZkpPJ7KZCwuV+YvCa8kEhnk1KmrmB/8EifATeZl+2ZLb/IZGnqEkZHHkz87ncUp/VOT8UvCK9E6xqlTVzE3N2xuUXi9NWYC27aoEM2umZleenu/n/z5/IlCotDJ7FWFCzt37m7Gxs6voXS5Ss02aTYLUWv6Jx6fo7v7G8kCTCm7uaQiEYuVd+eHw0fp778x+XPixLPZ7J8GS2/Ckpy81MbKyT9maur8BM35nLwtK8u0VrIRcvKBA795qS6x0EQiZwiHj6Q0ahNOZ+qlGuuekzw6+jRK2Sks3G3OuNUvutS50jqozNI6xvDwY7jd5RhGMz5fM2734kLUmlhmZvqYnu7GMJrMBNa06GkA1vXPyMjj2O2+ZJssLUStaZN4fI6RkSfxeCqSSX1pIWpNLFNTx4hEzpln6c0YRtOiS2nW9c/w8KPmiUKzmTQWr020pk1isWnGxvabM9bNZqGzOSf9Mzl5iFhskoKCFvO4bVy0dtSaOCDRP4kThURxsbQQtSaWaHSc8fEXzRnrRIG+tBC1Jpbx8QNoHcXv37VCIWrVmK8ZHn7UvOmrySxEKxZdirYmlkhkcAPm5D3mmCI5eXq6l+npU8k4JCenJw9nkJt0c/PfYrd7LH8s1XIikSGczpKcP6IkHp8lHo/k5LFUi83NjWG3G9hsuT//ikQGlyl0rBeLTaN1HIfD+sdSLTY3N4LD4c/582S11szNjeB0Fue8f6LRMErZLLu7/UIikWGczqKcP09W6xhzc2O4XJlcx3txotFJlHJYOmO9kkT/bMr582Tj8TlisalFhWhuzM2NS05eRHLy8jZCTj5w4P2X7gyy0zk/SK5+s1G2uVx+NsKfvrbZlDmLkfs2cTq9JM5Icx+Ly1XIRugfu90O2NkIbeJ0GmyE/lEKXK4CNkL/OBzzMxi5759Em8TI9UzK+f7JfZs4HPOFV+5jSbTJSk+wsI7Nlnh82UZoE8nJS0lOXt5GycnpyMsCOdeJQwghhBBCXLrysEAGK9fLCCGEEEKIN5Y8LJA1G+HylhBCCCGEuDTlaYEsSyyEEEIIIUR25GGBDLLEQgghhBBCZEseFsiajXAnphBCCCGEuDTlaYEsSyyEEEIIIUR25GGBDLLEQgghhBBCZEseFsjyFAshhBBCCJE9eVogyxILIYQQQgiRHXlaIMsMshBCCCGEyI48LZDz4+94CyGEEEKI/JPVAlkp9U7gK4Ad+I7W+l8Wva7M198FTAG/p7V+fvVPlpv0hBBCCCFEdmStQFZK2YGvA28HeoHnlFK3aa1fTdntvwHbzH8uA75p/nsVUiALIYQQQojsyOYMcgg4prU+AaCUugH4DSC1QP4N4Adaaw08rZTapJSq0Fr3r/ShU1MDHDjwr1kMWwghhBBCvJHZsvjZVUBPys+95ra17oNS6kql1H6l1P6MRymEEEIIIUSKbM4gq2W26YvYB631VcBVALW1tfro0aO43e71R3iR5ubmuOqqq6irq+Pd7353zuIAOHLkCHfddRfvfve7aW5uzmkst956K/39/Vx55ZXY7facxTE9Pc3VV19Na2srb3vb23IWB8DBgwd5+OGHed/73kd1dXVOY7nhhhsIh8N86EMfIrH8PzfGxsb47ne/SyAQ4PLLL89ZHADPPPMMTz31FB/84AcpLS3NaSzf//73sdvtfPCDH8xpHAMDA9xwww1cfvnlBAKBnMbyyCOPcPDgQT70oQ/h9/tzFofWmquvvpqSkhLe97735SwOgK6uLm699Vbe9ra30dbWltNY7r77bo4ePcqVV14pOdn02muvcffdd0tOTrHRcnJ7e3ta+6rE6obMU0q9CfhHrfWvmT//DYDW+vMp+3wbeFhrfb358xHgrRdaYhEIBPT+/TKRLIQQQggh1kYpdUBrverZfzaXWDwHbFNKNSilXMD/BG5btM9twP9WCb8EjF2oOBZCCCGEECLbsrbEQmsdVUp9HLiHxGPertVav6KU+mPz9W8Bd5J4xNsxEo95+/1sxSOEEEIIIUQ6svocZK31nSSK4NRt30r5bw18LJsxCCGEEEIIsRbZXGIhhBBCCCFE3pECWQghhBBCiBRSIAshhBBCCJFCCmQhhBBCCCFSSIEshBBCCCFECimQhRBCCCGESCEFshBCCCGEECmkQBZCCCGEECKFFMhCCCGEEEKkkAJZCCGEEEKIFFIgCyGEEEIIkUIKZCGEEEIIIVJIgSyEEEIIIUQKKZCFEEIIIYRIIQWyEEIIIYQQKaRAFkIIIYQQIoUUyEIIIYQQQqSQAlkIIYQQQogUUiALIYQQQgiRQgpkIYQQQgghUiitda5jWBOl1ARwJNdxiDUrBQZzHYRYM+m3/CN9lp+k3/KT9Fv+2aG19q+2k8OKSDLsiNY6kOsgxNoopfZLv+Uf6bf8I32Wn6Tf8pP0W/5RSu1PZz9ZYiGEEEIIIUQKKZCFEEIIIYRIkY8F8lW5DkBcFOm3/CT9ln+kz/KT9Ft+kn7LP2n1Wd7dpCeEEEIIIUQ25eMMshBCCCGEEFkjBbIQQgghhBAp8qpAVkq9Uyl1RCl1TCn1f3Idj1idUupapdRZpdShXMci0qOUqlFKPaSUOqyUekUp9We5jkmsTinlUUo9q5R60ey3T+c6JpEepZRdKfWCUuqOXMci0qOU6lJKvayUOpjuY8NE7imlNimlblJKvWbmuDetuG++rEFWStmB14G3A73Ac8Bva61fzWlg4oKUUr8MTAI/0Fq35ToesTqlVAVQobV+XinlBw4A75Xv2samlFKAobWeVEo5gceBP9NaP53j0MQqlFJ/DgSAQq31u3Mdj1idUqoLCGit5Y+E5BGl1PeBx7TW31FKuQCf1np0uX3zaQY5BBzTWp/QWkeAG4DfyHFMYhVa60eB4VzHIdKnte7XWj9v/vcEcBioym1UYjU6YdL80Wn+kx8zIG9gSqlq4NeB7+Q6FiEuZUqpQuCXgWsAtNaRlYpjyK8CuQroSfm5F0naQmSVUqoeaAeeyXEoIg3mpfqDwFngPq219NvG92XgU0A8x3GItdHAvUqpA0qpK3MdjEhLI3AO+K65pOk7SiljpZ3zqUBWy2yT2REhskQpVQD8DPiE1no81/GI1WmtY1rrfUA1EFJKybKmDUwp9W7grNb6QK5jEWv2Fq11B/DfgI+ZywnFxuYAOoBvaq3bgTCw4v1s+VQg9wI1KT9XA6dzFIsQlzRzDevPgB9prW/OdTxibczLhg8D78xtJGIVbwHeY65nvQH4VaXUD3MbkkiH1vq0+e+zwC0kloGKja0X6E25snYTiYJ5WflUID8HbFNKNZgLq/8ncFuOYxLikmPe7HUNcFhr/R+5jkekRylVppTaZP63F3gb8FpOgxIXpLX+G611tda6nkROe1Br/cEchyVWoZQyzBuYMS/RvwOQJzVtcFrrAaBHKbXD3HQFsOLN5w5LosoArXVUKfVx4B7ADlyrtX4lx2GJVSilrgfeCpQqpXqBf9BaX5PbqMQq3gL8LvCyuZ4V4G+11nfmLiSRhgrg++YTf2zAjVpreWyYEJlXDtySmEvAAfxYa313bkMSafoT4EfmROsJ4PdX2jFvHvMmhBBCCCGEFfJpiYUQQgghhBBZJwWyEEIIIYQQKaRAFkIIIYQQIoUUyEIIIYQQQqSQAlkIIYQQQogUUiALIYQQQgiRQgpkIYQQQgghUkiBLIQQlwClVFAp9ZJSymP+pa9XlFJtuY5LCCHykfyhECGEuEQopf4Z8ABeoFdr/fkchySEEHlJCmQhhLhEmH8+9TlgBniz1jqW45CEECIvyRILIYS4dJQABYCfxEyyEEKIiyAzyEIIcYlQSt0G3AA0ABVa64/nOCQhhMhLjlwHIIQQYv2UUv8biGqtf6yUsgNPKqV+VWv9YK5jE0KIfCMzyEIIIYQQQqSQNchCCCGEEEKkkAJZCCGEEEKIFFIgCyGEEEIIkUIKZCGEEEIIIVJIgSyEEEIIIUQKKZCFEEIIIYRIIQWyEEIIIYQQKf5/DDEkZFrh1rQAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "nq=1 #separacion entre vectores en quiver plot\n", "Nx=20\n", "Ny=9\n", "Lx=6.0\n", "Ly=2.0\n", "xp = np.linspace(0, Lx, Nx)\n", "yp = np.linspace(0, Ly, Ny)\n", "X, Y = np.meshgrid(xp, yp)\n", "\n", "def velU(y):\n", " return 1-(y-1)**2\n", "\n", "def rotV(y):\n", " return 2*(y-1)\n", "\n", "t=0.0\n", "U = velU(Y)\n", "V = np.zeros(np.shape(X))\n", "\n", "ypos=1.0\n", "XP=[0,ypos]\n", "\n", "fig, (ax) = plt.subplots(figsize=(10, 4))\n", "ax.contourf(X,Y,velU(Y),256,cmap=\"Blues\",alpha=0.8)\n", "Q = ax.quiver(X, Y, U, V,alpha=0.7,scale=20,width=0.004)\n", "\n", "ax.set_xlabel(\"x\")\n", "ax.set_ylabel(\"y\")\n", "ax.set_ylim([-0.15*Ly, 1.15*Ly])\n", "ax.set_xlim([0, Lx])\n", "ax.plot([0,Lx],[0, 0], 'k-',linewidth=2)\n", "ax.plot([0,Lx],[Ly, Ly], 'k-',linewidth=2)\n", "\n", "ax.set_title(\"Campo de velocidades\")\n", "\n", "xc=2\n", "yc=0.50\n", "delta=0.25\n", "ax.plot([xc-delta,xc-delta,xc+delta,xc+delta,xc-delta],[yc-delta,yc+delta,yc+delta,yc-delta,yc-delta], '--',linewidth=1.5, color=\"b\")\n", "\n", "xc=4\n", "yc=1.0\n", "delta=0.25\n", "ax.plot([xc-delta,xc-delta,xc+delta,xc+delta,xc-delta],[yc-delta,yc+delta,yc+delta,yc-delta,yc-delta], '--',linewidth=1.5, color=\"r\")\n", "\n", "plt.tight_layout()\n", "\n", "fig2, (ax) = plt.subplots(figsize=(10, 4))\n", "ax.contourf(X,Y,rotV(Y),256,cmap=\"seismic\",alpha=0.8)\n", "Q = ax.quiver(X, Y, U, V,alpha=0.7,scale=20,width=0.004)\n", "ax.set_xlabel(\"x\")\n", "ax.set_ylabel(\"y\")\n", "ax.set_ylim([-0.15*Ly, 1.15*Ly])\n", "ax.set_xlim([0, Lx])\n", "ax.plot([0,Lx],[0, 0], 'k-',linewidth=2)\n", "ax.plot([0,Lx],[Ly, Ly], 'k-',linewidth=2)\n", "ax.set_title(\"Rotacional\")\n", "plt.tight_layout()\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Para entender la definición de rotacional vamos a ver la figuras anteriores.\n", "\n", "Consideremos dos trayectorias cerradas con forma cuadrada, una de ellas centrada respecto al eje del canal (en rojo) y otra descentrada (en azul). Si calculamos la circulación de la velocidad en ellas obtenemos los siguientes valores:\n", "\n", "- En la trayectoria azul, la circulación por unidad de longitud es distinta de cero, puesto que en el segmento superior es mayor que en el segmento inferior. Esto estará relacionado con una vorticidad negativa (rotación en sentido horario).\n", "\n", "- En la trayectoria roja, la circulación por unidad de longitud es nula, puesto que en el segmento superior e inferior tiene la misma magnitud. Esto estará relacionado con una vorticidad nula.\n", "\n", "Se muestra con un mapa de colores el rotacional de la velocidad. La zona roja indica un rotacional positivo, la zona azul un rotacional negativo, y la zona blanca un rotacional nulo. \n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "A continuación se muestra una manera sencilla de calcular la divergencia y rotacional de la velocidad mediante Python utilizando las funciones ```div()``` y ```rot()``` para el siguiente campo de velocidades\n", "\n", "$$ \\mathbf{v}=(x,zy,t). $$\n" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "La divergencia del flujo es:\n", "z + 1\n", "El rotacional del flujo es:\n", "(-y, 0, 0)\n" ] } ], "source": [ "from sympy import*\n", "\n", "x, y, z, t = symbols('x y z t')\n", "\n", "def div(u,v,w):\n", " return u.diff(x)+v.diff(y)+w.diff(z)\n", "\n", "def rot(u,v,w):\n", " dudy = u.diff(y)\n", " dudz = u.diff(z)\n", " dvdx = v.diff(x)\n", " dvdz = v.diff(z)\n", " dwdx = w.diff(x)\n", " dwdy = w.diff(y)\n", " rot_x = dwdy - dvdz\n", " rot_y = dudz - dwdx\n", " rot_z = dvdx - dudy\n", "\n", " return rot_x,rot_y,rot_z\n", "\n", "u=x\n", "v=z*y\n", "w=2*t\n", "\n", "T=x*y+z**2+6*t\n", "\n", "print(\"La divergencia del flujo es:\")\n", "print(div(u,v,w))\n", "\n", "print(\"El rotacional del flujo es:\")\n", "print(simplify(rot(u,v,w)))" ] } ], "metadata": { "celltoolbar": "Edit Metadata", "colab": { "provenance": [] }, "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.6" }, "widgets": { "application/vnd.jupyter.widget-state+json": { "10b6af32de424c41a47d294afbb5ceeb": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "1148c23a4cda4067959c415c30570bca": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_561ebe95e82f4c9893ba05d224506a6b", "msg_id": "", "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "La fuerza total es: [46.5975] KN\n", "El momento total es: [41.3655] KN·m\n", "El centro de presiones está en z_cp= [0.8877193] m\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXgAAAF3CAYAAACvy1BzAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAAsTAAALEwEAmpwYAAA/D0lEQVR4nO3dd3gU5drH8e+zLZWEdCAJvXcQFQuKeOyKHTn2gnjsBcV2RDzqa1fUoyiiYuGoiFhAioWq2ECq9J6EQBICpG+y2ef9YxcMkEBIdjK7k/tzXXuxO7v7zC9Lcmcy8xSltUYIIYT12MwOIIQQwhhS4IUQwqKkwAshhEVJgRdCCIuSAi+EEBYlBV4IISzKYWTjSqktQCFQCXi01v2M3J8QQoi/GVrg/U7TWuc1wH6EEEJUIadohBDCoowu8Br4Tim1WCk13OB9CSGEqMLoUzQna62zlFLJwPdKqTVa6/lVX+Av/MMBoqKijuncubPBkYQQwjoWL16cp7VOqu451VBz0SilRgNFWusXa3pNv3799KJFixokjxBCWIFSanFNHVgMO0WjlIpSSjXZdx84E1hp1P6EEEIcyMhTNCnAl0qpffv5n9Z6poH7E0IIUYVhBV5rvQnoZVT7QgghDk+6SQohhEVJgRdCCIuSAi+EEBYlBV4IISxKCrwQQliUFHghhLAoKfBCCGFRUuCFEMKipMALIYRFSYEXQgiLkgIvhBAWJQVeCCEsSgq8EEJYlBR4IYSwKCnwQghhUVLghRDCoqTACyGERUmBF0IIi5ICL4QQFiUFXgghLEoKvBBCWJQUeCGEsCgp8EIIYVFS4IUQwqKkwAshhEVJgRdCCIuSAi+EEBYlBV4IISxKCrwQQliUFHghhLAoKfBCCGFRUuCFEMKipMALIYRFSYEXQgiLkgIvhBAWJQVeCCEsSgq8EEJYlBR4IYSwKCnwQghhUVLghRDCoqTACyGERUmBF0IIi5ICL4QQFiUFXgghLEoKvBBCWJQUeCGEsCgp8EIIYVFS4IUQwqKkwAshhEVJgRdCCIuSAi+EEBYlBV4IISxKCrwQQliUFHghhLAoKfBCCGFRUuCFEMKiDC/wSim7UmqJUmqa0fsSQgjxt4Y4gr8bWN0A+xFCCFGFoQVeKZUGnAeMN3I/QgghDmX0EfwYYCTgNXg/QgghDmJYgVdKnQ/kaK0XH+F1w5VSi5RSi3Jzc42KI4QQjY6RR/AnAYOVUluAT4FBSqmPD36R1nqc1rqf1rpfUlKSgXGEEKJxMazAa60f1lqnaa1bA0OB2Vrrq43anxBCiANJP3ghhLAoR0PsRGs9F5jbEPsSQgjhI0fwQghhUVLghRDCoqTACyGERUmBF0IIi5ICL4QQFiUFXgghLEoKvBBCWJQUeCGEsCgp8EIIYVFS4IUQwqKkwAshhEVJgRdCCIuSAi+EEBYlBV4IISxKCrwQQliUFHghhLAoKfBCCGFRUuCFEMKipMALIYRFSYEXQgiLkgIvhBAWJQVeCCEsSgq8EEJYlBR4IYSwKCnwQghhUVLghRDCoqTACyGERUmBF0IIi5ICL4QQFiUFXgghLEoKvBBCWJQUeCGEsCgp8EIIYVFS4IUQwqKkwAshhEVJgRdCCIuSAi+EEBYlBV4IISxKCrwQIeikk05CKbX/Fkj9+vUzrG3RsBxmBxBCHB273Y7X6z1gm1IKrXW9246MjKS0tNSQtkXDkyN4IULMwcV9H5ut/j/OBxf3fZxOZ73bFg1PCrwQIaSkpKTG5+p7lH24tj0eT73aFuaQAi9ECImMjAzJtoU5pMALYRFbt241rO0ff/zRsLaFcaTACxFiqjsVEx8fT8uWLQ1pOyEhgUGDBtW7bdHwpMALEYK01hQXF7NmzRq01uzatSugbRcVFbF69Wq01uTl5QWsbdGwpMALEaIiIyPp1KmTIW1HRUXRuXNnQ9oWDUcKvBBBZtOmTYwfP57jjz/+gAFHtb2Vl5fX2PaePXv4+eefufjii3G5XAFtWwQfGegkhInGjx/PzTffHNA2jznmGFasWAH4+sYHcpDSwIEDWbhwYcDaE8aSI3ghTDRs2LD9g4u01gfcSkpKmDJlCtdddx0pKSm1bnNfcQffoCilFFdeeeUBbVdUVJCTk8Nzzz1Hv379at22FPfQooJpCHK/fv30okWLzI4hRIOLjo7G4/FQVlZmSPtKqf3FXliLUmqx1rra39JyBC9EECgqKsLtdjN+/PjDvm7mzJl8+eWXR92+1vqIUxm0b98ep9PJ7t27j7p9EZzkHLwQQUJrjVKKYcOGHfJcdUfePXv2ZNmyZbVu/5133ql24rCD246Pj9+fR4Q2OYIXIohUdxqlptMqy5cvP6oJxoYNG4ZSioEDBx6x7SM9J0KDFHghgohSinbt2u0vrgcX2YsvvviAx/uO+mvL6/Uyb968at/3ww8/VJtHhC45RSNEkNmwYcMhi23su0ha9XFV6enpZGRk1Kr9g4t7VFQURUVF+587uGulzAcfuuQIXoggVLWgDhgw4JA54A8uuJmZmWzfvv2o93PppZfuL+77VDfffHh4+FG3LcxnWIFXSoUrpX5XSi1TSv2llHrCqH0JYTVVz63Pnz+/2teMHDnygMepqam1ajsmJmb//Q0bNlT7moN/gbjdbpYsWVKr9kXwMPIUjRsYpLUuUko5gZ+UUjO01r8GfE9lZRAWBnK+UISQCy64AKXU/lMi2dnZZGdns3379kNOkSQkJGC32w+4VXeB9WjPmS9btqzW7+nbt2+12+X0TfAyrMBr3//6vr/9nP5b4L8Tduzg3P9MIy82EaKjA968EEZxnHjPgY+BdKBllXpb7nazaPR57C4o4vgnvj3gGEZrSPHfqc0PVk11+Pd/n8GxT31/VNmrOu7pQy/OiqOTGB3G9LsHBLxdQy+yKqXswGKgPfCG1vq3al4zHBgO1G0+66IifvvyeSpsdjpc/xw6PKJ+oYVoIB5vLcqyzUmf/3zHklFnUuHxUGnAWdUT7nubX/59Bn3+813A2xa1U15Z/Tq79dUgUxUopZoCXwJ3aq1X1vS6uk5VMLBvX1i6jDkOOzsnT8M9YGCdswoRrFrHh7El321I220SwunYuSuzfv7TkPbF4RW6PXRvVrclE02fqkBrvQeYA5xtyA5iYijr2BkqK0m+ZgjOVX8ZshshzPTh5Km0jg8zpO3Nu8pYu/ovKmQ6YEsxshdNkv/IHaVUBHAGsMao/VXGJ5D//BhsBXtJHjIY+/Yso3YlhClOGXQmTqeTtonGnIbcku+mQ7MmhrQtzGHkEXxzYI5SajnwB/C91nqagfuj6MZb2HvPAzi2Z5I8ZDCqYK+RuxOiwa3fWYTX6yUvZ4ch7S9cutawvxJEwzOyF81yoI9R7Vf19ttvsy7XN6f2nn//B3tWJtGff0LSdVeQ89k34HI1RAwhGsSWfLdh5+NbtGyNUoqzTuor5+MtwBIjWTt16kSb9h19D2w2dr0+jtJTBhIxbw4Jdw6vuX+YECFq/Y4Cw8/HlxQXHfnFIqhZosBPnTqVud9N/3uDy0Xuh5Mo79qd6M8/oemTj5kXTggDOF1htOvQiTYJxkwhsCXfTdf0BEPaFg3HEgX+pZde4oO3Xjtgm46JJffdj/EkJBE75gWi3x9nUjohjPHjb8vRWjP/x1mGtL9y8w45Hx/iLFHgD6YKCnAtWYxzyyZ2P/cy3ugmxD9wNxEzDb3GK0SD25Lv5trLBxvSdnRsHDabjTNPbJBLacIAlivwjjWraDL2NcLnzYbyCryxTcl/9mWw20m86Wpci343O6IQAbV5V5lhR9qb8kpZt2YVe/fIMn6hyHIF3tOmHWWnDsKTlg52G57mLSi+ZAh5b4zHVlpK8pWX4NhU/Qx6QoQipRR33v+Qoefje7VtZkjbwliWK/CEhVHe/0RKBl9CRbsOOLIycG7eRMllQ9k96insebkkDxmMLS/X7KRCBMyIR55g864yw9o3aooEYSxLrOj00UcfsTan9MCNLheeTl3wtGkH/gUMCu6+H0fmNpq8N47kf17Czq9noSPrNv+DEEIEO0scwaenp9MsNa36J10u2LcajVLkPzeGknPOJ2zx7yTefA1UVjZcUCGEaECWKPCfffYZM7+eXLsX2+3kvfMR7mOOI3LGNOIfvEcGQgkhLMkSBX7s2LF89sH4Wr9eR0aS88kUKtq2o8l744h57SUD0wkhhDksUeDrwpuYRM6kb6hMSCTuiUeJ+vwTsyMJIURANdoCD+Bp256cT77EGxFBwh03Ez5/jtmRhBAiYBp1gQco73cceeM/gspKkq4ZgnNVjQtOCSFESGn0BR6g9JwLyH/hVWyFBSRfPhh7VqbZkYQQot4s0Q9+8uTJrN5ZcugTlZU4MraiHU4q09IP20bRDcNxZGYQ+8rzJA8ZzI4Zc9AxsQYlFkII4x2xwCul0oChwACgBVAKrAS+BWZorY1ZDvwoJCYmEuepUuArK3Fs24Jj8yaw2Sjv1qNW7exfLGTS/0i+Zgg7P58qi4UIIULWYQu8Uup9IBWYBjwH5ADhQEd8C2g/qpR6SGs93+ighzNhwgQy97q55tobsGVsI3LGVEDhSU/Hm5iMY9tW2La1Vm0V3jAc+/YMIhbMJfGOm8l7632wyZksIUToOdIR/Eta6+quOq4EpiilXEDLwMc6OhMmTKC43Ms1194AUVF44xNQhYUAeMPD/x7JWhtKkTt+Is0uOZeoyZ/iSUtnz6inDEouhBDGOWyBr6G4V32+HAiqqRm98QmUXDYU2648nOvX4czOoqJTFzyt2hxVOzmffU2zs04ldswLeFLTKLrpXwYlFkIIY9Tq3INS6nyl1BKlVL5SqkApVaiUKjA6XH14ExJx9z8R9zHH4a3DxdLK1DRyJn2DNyaW+AfvJWL6NwakFEII49T25PIY4DogQWsdo7VuorWOMS5W4HgTEvHGxdfpvRVdu5Hz0STfYiE3X4vrj98CnE4IIYxT2wKfAazUuvHNyuUeMPDAxUI2rjc7khBC1Ept+8GPBKYrpeYB+2f+11q/bEiqozR9+nT+2lFNP/gAKblsKLu3ZxI3+lFfH/mZ8/AmJRu2PyGECITaHsE/DZTg6yLZpMotKERGRhJh8MIdBXeOoGDYv3Bu3kTyPy9GFRcbuj8hhKiv2h7Bt9Badzc0ST28+eabbC8o5+ZbbjNuJ0qx+5mXcWzPInL6VBKHXU3uR5+DwxKDgYUQFlTbI/jpSqkzDU1SD5MmTWLWN1OM35HdTt64D3H3O57IWdOJH3m3LBYihAhatS3wtwIzlVKlodJN0ij7Fwtp154mE8YT88rzZkcSQohq1arA+7tF2rTWEaHWTdK2Ox/bnt0BbdObkOhbLCQxibinRhH12cSAti+EEIFw2AKvlGp9hOeVfzKyoGPbnY/rj98I+/2XgBd4AE+bduR8+hXeyEgS7hxO+NwfA74PIYSojyNdIXxBKWUDvgYWA7n4etK0B04DTgceB4JmAnVbfj5hC+Zg352PJ6UZnpatfLNLGtB/3RsbS/5zr5Bw960kXXsFO2bMoaKWM1cKIYTRjjQXzeVKqa7AVcCNQHN83SVXA9OBp7XWZYanPIK5c+eycl8/+KICHFlZaLsdNKjiElRJqWH7rujei/wXXyfhvttJHnIhO2bNO+Lc80II0RCO2MdPa70KeLQBsgSEt2VrCoffhmPrZhybN2ErK6W8Ww+8CYmG7bO8Vx8cWRnEvvTs34uFxDY1bH9CCFEblpjo/MUXX2TC2DF/b3A48LTrQNnA0/GkpqFKjRvlus+eR0ZTNPRqXGtWkXzNEHC7j/wmIYQwkCUK/LRp05j3/cxDn3A4qGjbnvLCQrxGzyGjFLvGjKX01EGE/zSPxNuHgdf0xa6EEI2YZYdhaq3xLl+C538f4l21EiKjiPjsa2N36nKR+8FnNDtvEFFTJvkWCxn9f8buUwghalCrAq+U+hHf6k7Tq2wbp7UebliyevDM+Z6KCe+it/s794SHY+97LJ7pU6t/g92G/dj+qPiEeu9bx8T8vVjIay/hSUunaNit9W5XCCGOVm2P4NsADyqljtVaP+Hf1s+gTPVW/p/HoNx/DtzhBJcL709z8f40t8b3eAedgeveBwOy/8oWqeRM+oZm5wwk/sF7qWzegtLzLgxI20IIUVu1LfB78PV5f00pNRW42rBEdRAREYHHVrn/seOKK/F8PQXcvh6cKjwcW8/eqMSk6huw2XGceU5AM1V06UrOx5+Tctn5JN58LTu/mkX5cf0Dug8hhDgcVZs1PJRSS7TWffz3rwdGAHFa64COYu3Xr59etGhRnd67ckcJTcL+/n2ly0rxTJ+KZ8ok2LsHmjQh4n9fBihp7UV+MYmkm6+hMj6BHTPn4mnfscEzCCGCW6HbQ/dmdZvyXCm1WGtd7RmV2h7Bv7XvjtZ6glJqBXB7ndI0EBUegfOSITjOvYDKH7+DqGhTcpRcOsS3WMjjD5N8+QXsmDUfb3KKKVmEEI1LbScbe/ugx4u11jcaE+noPfnkk7z18rPVPqfsDhz/OBvHwNMbONXfCu64l4Lht+HcukUWCxFCNBhL9IP/8ccf+e3gC6gVFTjWryV87o84N200Jdd+SrH76RcpOf9CwpYsJvGmq8DjMTeTEMLyrNcPvqIC17I/cWRsQ4eFU9GmLd7kZGz5u8xORv4zr2DLzibyuxnEP3AX+S+/AUqZHUsIYVGWK/CO9WsJ/2EWuMKo6NARR2YGZGaYHWu/3U8+S+Jdt9Dkg3fxpLei4L7AdM0UQoiDWa7Ae7p2pzA1DeeG9djzcvAmp1DRoRPa4EW5j0bOpG9odtapxD01isoWqRQPDapep0IIi7DEOfiEhASaxsXvf6xjm1J+zLGU9T8JPB7sGVtNTHcoT+u2fy8WctcthM/5wexIQggLqlU/+IYSyH7woSD8+xkkX3kpOiKSHd/+SEWPXmZHEkKYwKh+8JY4gg9VZWecQ/6Lr2MrKiT5iguxZ24zO5IQwkIsUeAffvhhxjw9yuwYdVJ03U3suf8RHDuySb58sCHrxwohGidLFPhffvmFZYt/NztGne19eBRF/7wG19rVJMliIUKIALFEgQ95+xYLGXg64T/Pl8VChBABIQU+WDid5E74lPIevYiaMommT4TMMrhCiCAlBT6I6JgYcj79Ck9aS2Jff5km494wO5IQIoRZosCnpaWR0ryF2TECorJ5C3ImfUNlbFPiHh5BxDSDlxkUQliWpfvB23JzcG5cjzemKRVduwUiYoMJW7iAlEvORdts5Hw5E/fxJ5gdSQhhkJDrB6+USldKzVFKrVJK/aWUutuofR3MtnMHYQsXELb4D7wxsVS0aeu7aBlCN3f/k8h7411sZWUkXXkJjvVrG+rjE0JYhJFDPz3ACK31n0qpJsBipdT3WutVgd7RPffcw67iCp56/hUcK5cT9fUX6LAwKjp0wrFtC45tWwK9ywahoyLZ/dBjxD37JM3OO53cDz7FfcLJZscSQoQIwwq81jobyPbfL1RKrQZSgYAX+KVLl1Jc7utW6OnSjWJlw7l1MwAVLdtQmZoGttC83FB61nngdBH35GOkXHQ2+c+/StF1N5kdSwgRAhpk8halVGugD/BbNc8NB4YDtGzZss77KK3wMntDge9BWEton0Z0dgYxSzZSuq2Q3e271rltU+0shAv+RcuYVpzy+K0k3HsbeXMX8uetj1AWX8Mi4kKIkBIX4ajzOfjDMfwiq1IqGpgHPK21nnK419b1IuvAgQPJL/HwzuRZhz7p9YLWYLcfdbvBJmLtX3QcNpTwbZupjIome9gd7Lj5LiqbxJgdTQhRD/klHs7pHFun95o22ZhSygl8AUw8UnE3jM1mieIevn4N2mZnxaxfyXjgcbTdTtqrz9JrQHeavfM6qqzM7IhCiCBjZC8aBbwLrNZav2zUfgA6duxIauv2Ru7CdLaKCmwVFXgjo9h+xwMsXbCC7f+6F3tJCa2eepheA3uR9MkEWetVCLGfYadolFInAwuAFcC+iVUe0VpPr+k99ekHP2PNXuIjQ2s++EBw7swm9bVnSfr0A2weD6XtOpA54jHyz7koZC8sC9HYhNwpGq31T1prpbXuqbXu7b/VWNxF3VSkNGfL06+y/MfF5A2+nIiN6+lw27V0G3wqsfN/9F1/EEI0SpY4xBs+fDivjWqwcVSmiFi3moh1q2t83t26HRtff58V0xeyZ+CZRK9YQudrLqTL0HOJ/jN0p1IWQtSdJQr8unXryNqywewYxvJW+m5HUNKtJ2s/mMKqz2dR2O8EYn5dQLeLB9Hh5qFErAv4EAQhRBCzRIFvDEo7d6e0c/dav77wuJNYNfk71r43meIu3Yn/bho9zjyetvfeTFiIjuwVQhwdSxd4VVZGxLpVhG3bbHYUcyjFntPPZuX0hWx49T3cLduQNOUTeg7qQ6tRI3Dk7jQ7oRDCQJYs8PsKe+zPc3Hs2Y0ntqnZkeotYt2qup9isdnYddEQlv+4mM1Pj8ETl0CzD96m9yk9SXvhCex79wQ0qxAiOFiiX2Hv3r3Zku9bx9S1ZSMJM75CO12UtWwDWhO55i+TE9ZfWMYWABy78+vVTmmHzmx86W3iZ3xNwtQvSP3vC6R8NJ7tt93HzutuwRsR+OHSQghzWGY++H394G1FRTT5/SeceTl44hIoa9kGb3STACe1Bm2zk/LROJq99yb20hLKU5qTdfdD5A65Fu10mh1PiEbDqH7wlivw+9iKiwjftAFXTjZlbdpT1rZDoGJajjNnJy1ef47kT97HVlFBWet2ZN73KLsuuEwGSwnRAEJuoFNDuvrqq3lh5PADtnmjoinp0ZuC/gMoT25mUrLAiVizkog1Kw1puyI5ha1Pvszy2X+Sd/FQwrZuov1dN9L9vJOInT1LBksJEaIsUeAzMzPJ25FV7XPeqGhrnKKx2X03A7lbtmHjmPGsmPkLu884j6hVK+h8w6V0GXIW0X/8Yui+hRCBZ4kC3xiUduxCaccuDbOvzt1ZN/4z/vriBwr6n0zM7wvpdtkZdLzhMiJWG/NXhBAi8KTAixoV9evP6k9nsObDryju1ou42TPpcc4JtLvrRsK2bjI7nhDiCKTAh4jIVSuIXLWi4XesFHtP/Qcrpy1g/RsfUNa6HYlfT6LnoL60fvQenDt3NHwmIUStWKLAn3DCCXTufZzZMQzldTrxmtl10WYj//xLWfH9H2x69nU8icmkfDyeXqf0IP3ZUdj37jYvmxCiWpbtJimMpcpKSflgHC3efAnnnnw8MU3J/tc97LjhVryRUWbHEyKkSDdJEVR0eAQ7brmbZQtWkHnXgyhPBenPj6bXKT1J/nAcqrzc7IhCNHqWKPCXXnopT911zaFPaI1zZzaOvJyGDxVgkX8tJ/Kv5WbHOERlTCxZIx5j6YIV7LjhVhx7d9PmsfvoefoxJHz5mW/RcyGEKSxR4Hft2kXhnipztPgLe5NfFxC5agW2igrzwgWINzwcb3i42TFq5ElMZuvoF1g2Zym5l19NWOZW2t9zEz3OOYGmP0yXwVJCmMByJ60dOTtpOmcmtnI35c1ScTdPxb53NxEWuQho1GjWQMoedge7zziPlAlvEbtwHp1uGkLhMf3JeHA0hcefbHY8IRoNyxV4vJWoSi9oAIXyeqFSThM0NHdaK7b9+xkcuTtp8fYYYhfOo+uQs9lz6hlkjBxNSfdeZkcUwvIsV+A9zVqQ+8/rcWVnEb55A878XZR06U5FSnOzo9VL5IqlAJT06G1qjrooGHgGMT/NIf25x2k673uazvueXRdcSsaIx3C3aW92PCEsyxLn4E8//XR69T/17w1KUd4ijYITT6W0U1dQof9leqOi8EaFbvfDgpNP469v5rFu7MeUtutIwtQv6HX6MbR56A5c2dXPIySEqB/pBy8ansdD0hf/I3XM/xG2PRNvWDg7rruF7NvuwxOXYHY6IRqc9IMX1uFwkHvFtSybs5Sto56jMiqKFuNepdeAHrR47TlsxUVmJxTCEixR4M855xweG36Z2TEMFbliCZErlpgdI6B0eDg7brqdpQtWknnvIyitSX/pSXqf0oOU98ei3G6zIwoR0ixR4EtLSykvKzU7hqEqm8RQ2STG7BiG8EY3IeueR1i6YAXZw+7EXlhA69EP0GtQHxInT4TKSrMjChGSLFHgGwN363a4W7czO4ahPPGJbHvsGZbNXUbOFdfh2p5JuxG30OOs44mbNVUGSwlxlKTAi6BT3iKNzc+/wfLv/2DXuRcRuX4NHYf/k24XDyJm4Tyz4wkRMqTAh4io5X8StfxPs2M0qLL2ndgw9mNWTp3P3gGDiF7yB13+eR6drx7c6D4LIerCEgX+/PPP57iBZ1f7nK20BFtJcQMnCjxPbFM8sU3NjmGK4p59WfPxN6z+5FuK+hxL7ILZdL/gFNrfejXhG9aaHU+IoGXZfvC20hLCN2/ElZ1JWau2lLXvFKiYwkxaE/fdNNJeeILI9WvQNhu5l11N1j0PU56abnY6IerEqH7wlhsZZCsuJnrxr7h2ZuNpGoc7vTXeqGgZLWkhxT37snbCFOJmTaXZuNdInvQhiV99ys5rhrP99hF4EpLMjihEULDEEfzAgQPJL/HwzuRZhG1aT8L0r/C6XLhbtbVM18LwDesAKGvf0eQkQaaigiaLfyNl4niceblURkWTffOd7Bh2p2X+74X1yRF8LbnbdiB72B2Eb97oGwbvCqO0YxcqY+r24QULd1pL378t25icJPgUnPoPsm+5m2bvvUnzt8eQNuYZUj4cx/bbH2Dn1cPQQTyPvhBGssRF1oPp8AhKu3Rn70mnUhkVjSM/z+xI9eZu2UaK+2F4o6LZfudIli1YwfZb7sFeXEyrJx+i12m9SfrsQ/B4zI4oRIOzZIHfZ1+ht/oAIfE3T1wCGY88xdL5y9l55Q24dmbTduRt9DzzOOKmfyWDpUSjYukCbyVRS/4gaskfZscIGRXNWrDlmddZ9uNi8gZfRsTGdXS89Wq6DT6VmJ/mmB1PiAZhiQI/ZMgQBpx9sdkxDFWRmExFYrLZMUKOu017Nr4+gRXf/syegWcSvfxPulx1AZ3/eZ78whSWZ4leNCDzwYvaafLbT6Q/N5omi38FIP+s88m8fxSlHbuanEw0ZjIf/GGUlJRQVlpidgwRAgqPP5lVX3zP2vc+p6RzN+JnTaPHWf1pO+IWXBlbzY4nREBZosCfe+65PH7L5WbHMFT04t+IXvyb2TGsQSn2nH4OK2b8woYx7+JOa0XS5In0Oq03rUY/gCMvx+yEQgSEJQp8Y1DerAXlzVqYHcNabDZ2XXwFy39czOYnX8bTNJ5m74+l94AepL70JPaCvWYnFKJerF/gtQav1+wU9Vaemi5zrRhEu1zkXDucZfOXs+3BJ9AOJ2mvPUevAT1o9varKIsvJiOsy7oF3uvFlZVBzM9ziVi7yuw0IgR4I6PIvm0ES39awfbbRmArK6XV/z1K71N7kfTJ+zJYSoQc63U70ZrwTesJ27IRVVnpGwGamh7yUwZH/fk7AMV9jzM5ifVpp4usO0eSc8V1NB/7Mkmff0Tbh+6k+duvkjni3+SfdwnYrHtsJKzDEgX++uuvZ3m2rxdNxOq/iJ8+Be0Ko7R9J8IytxKWGfq9Ixy7fNMt2OV0QYPac8a5FPfqS9wPM2g6eyYd7rie4rGvkDFyNHtP/QcoZXZEIWpkvX7wWuPKziJ80wZspcW401rhbtkG7XIFOK1oTLTDQcSav0h/8T/E/TAdgILjTyJj5BMU9etvcjoR6mQ2ycPIy8tj7+4C4iNTQCnKW6RR3jwVZ24O4ZvWQQaUdu5udsz62XehWE4NmKa0S3fWvTuJ6D9+If35x4n57We6XfoPdv/jXDIeGBX632PCcixxBF91Pniril7kG3kpR4tBQmti535P+vOjiVq1HK0Uuy66gsz7HpVZP8VRk5GsjZx0kwwySrH3tDNZ+e1PrH/9fdyt2pL45af0HNSX1v++F2fOTrMTCiEFPlSUN0+lvHmq2THEwWw28gdfzvIfFrHpmdfwxCeS8tE79DqlB2nPj8a+d4/ZCUUjJgU+VFRW+m4iKGmnk9wrb2Tp/OVse/gptCuM1DdepPfJ3Wk+9mVsMleSMIEU+BARveQPomV626CnwyPI/tc9LF2wgqw7HkBVlNPy2VH0OqUnyR+9g6qoMDuiaEQsUeBvvfVWzh16k9kxDOVOb4U7vZXZMUQtVcY2JfOBx1m6YAU7rv8Xjt27aPPve+l5+jEkfDXJEtNniOBniV40IPPBi+AWtm0LqWP+j8Qpn6C0prhrDzLvf5w9g86SwVJCetEcTkZGBrnZmWbHMJSqqJA/70OYu2VrNr08jhWzfiX/zPOJWrWCTjdeRpfLz6TJ7z+bHU9YlGEFXin1nlIqRym10qh97HPNNdfw4oO3HLLdXlhA5PI/ifhuKrYNa4yOYaioZYuJWrbY7Biinko7dWP9O5/y15ezKeg/gJg/fqHr5WfR8fpLifxrudnxhMUYeU5jAvBf4EMD91Ete2EB4ZvW41j0C95li9A7s4mIiqb4vS8aOkrAuNNbmx1BBFBR3+NY/el0YhfMJu350cTNmUXcnFnkDb6MzBGP4W7dzuyIwgIMK/Ba6/lKqdZGtV+T8HWraPLO65RvWod2l6GUQrlckJRCzJj/a+g4ARdxNC92OqFDF1RYuFFxRABk3j+KJn8sJOHrSSR+M5n46V+Re8W1ZN39MBUpzc2OJ0KY5a5KlrVqh3PVMpTHd75a2x1omx02b/DdQpTCdzFcc3QX5DzxiXjOOM+ISCKAirv3Iuu2ESRO/YLUMf9HysT3SJr8P3bccCvbb72XyqbxZkcUIcj0Aq+UGg4MB2jZsmX9GwwLwz30elxTJ6NKi1FeDQ47FX2ORyc3q/492t9lTQXvNWdXdhYAFUcxmlWHhVFx1gXo+ESjYokAyx16HXkXXUHKR+/Q4o0XaPHWKyT/7z2yh9/NjptuxxsZZXZEEUIM7SbpP0UzTWtdq2n26tpNcurUqSzOLOac8y74e2N5Oc45M3F9+QlqTz46qgnF707++3lvJbHb55O89mOic5dSFtOKTSe/gjsmOPuaO3J9c5t4klJMTiIair2wgGbjX6f5O69jLy6iPCmZ7XeMJOfKG2X6a4sxqpukJQo8HKYffHk5jp9nQ0QUnv4DsFWUEL/5G5LXTSSs8MCulXntLyXj2H/Xaf9CGMWxK5cWb7xIykfvYCsvpyytFVkj/k3ehUPAbjc7ngiAkOsHr5T6BPgF6KSUylRKGTbUdO3atWRuXl/9ky4XntPORvXsSIulY+j+zVmkL37ukOIOUOmKMSpivSm3G+V2mx1DmMCTkMS2Uc+xbM5Sci6/hrDtGbS792Z6nN2fuO+m+RaWF6IaIT+SdeLEidx000243W6apabzr5GjOfuiK/Y/H7VzESlrPyZ2+3zw1rxockHzk8jsOxKvM7LO+Y20rw98ca9jTE4izBa2eQMtxr5M3JzvACjq3oftt48I+bUCKp3ReJ2N8xpDSJ6iOVpHW+AnTpzI8OHDKSn5e6a+8IgIHnr2v5x94RC6fHshTXL/hJq+RAVeWziVjgiwmX69+fBkRSdxEOWpwF5UiK3c95ed1xVGZXQTtMNpcrK60TY7uR2uIKvvA2ZHaXAhd4qmITz66KMHFHeAstJS3np+NDFZ82iSU0NxV4pKRyQVYQlUupoEf3EHX2GX4i6q0A4nnqbxVDSNx+twYit348zPw7F3N6qy5r9Wg5XyVpK89n+E7d1kdhTLCIHKVrNt27ZVu33n9kw84fGgqL7Aa43SFSivE21zhshkT/u+kFDIKhqSdoXhiQ/D5i7zHdG7y1DuMrwRkXijon3jQEKEttnxOo5qOJ84jJAu8C1btmTr1q2HbE9pkUZJYk92dLmJ5HUfoyoPnaRLeSuxewvRdhcV4fG+C6xB3A/eVlwMgDeqcZ6jFLUQCTQFx558nDk7sBcVY8srwROfSEVSMtoR3D/unrA4cjpdQ0WUjN4NlOD+Hz+Cp59+utpz8P8aORqAbceOIjflCmJz5xG/czphRdXPOGmrrMBjD2fDwDdxNwnAYCsDOHblAr4eFUIciXK7Sf7fu6S+/jzOXVuwRe8ie/hdZN90B97oJmbHEw0keA9Za+Gqq65i3LhxtGrVCqUUzVLTfRdYL7iMsK2biP15Ls6sneS1vZRV533FppNfoiipT7VtuYqySFr7vwb+CmrPk5AkxV3Umg4LY+cNt7F0/goy7vs3WinSXn6a3qf0IOW9N6TLbSMR0r1o9lm6dCk/bS7k2GP64srcRtwP09FAeVpLKhKSDrk4GV6yibi8mcTs+QP4e2Wd/KTzyG0+pJ5fhTFs7jIAvDJxmKgDe8FeEidPJGH6l9jKy3GnppN5zyPkXfJPCPJTN42BdJM8jIEDB5Jf4uGdybNw5OcRs2A29qJCKpKb4U5riXaFVfs+hzuP+B3TiSpYhTuiBTtb3UClMzj/fI1cuQyAku69TE4iQpmqKKfZhLdImvQRqrKS0vadyLh/FLvPHhwinQ2syagCb7lf3Z74RPIvHIIjP4/wjesJ255FScculFe7nmlHirqe2OAZ68ITn+D7Ny7B5CQi1G1+9r9kD7+btJeeJGHaFDr+6yqKeh1DxsjRFJx8mtnxRACF9Dn4w/HEJ1J07AkU9elHZZPgPCo/Gp64BCnuImDK2nZgwxsfsmLaT+w59R9EL1tMl6suoPOV58vKYRZi2QK/jyc+0RJzaduKi7AVF5kdQ1hMSY/erP3wK1Z9Op3CvscT+/Ncug8+lQ63XEn4+tBe5lI0ggJvFZGrVxK52vDlbUUjVXjCKaya8gNrx39GSaeuxM/8hp5nHkeb+2/FlZVhdjxRR5a4yLpw4UJ+2VrEySedZECq4GDfkw9gib9GRJCrrCTh689Je/kpwjO24HW52Hn1MLbffj+exGSz01mSzEVzGCeeeCJd+xxvdgxDVTaNr7m4a439r6WEjXsV27bNDRtMWI/dzq5LhrJ89p9s+c9LeGKb0vy9N+l9Sk9SX34Ke2GB2QlFLVmiwC9cuJBVS34zO4ahbEWF2IoKD9zoL+wR/xlJxJMP4Zw9A8eiX8wJKCxHu1zsvO4Wls1fQcYDj6PtdtJefZZeA7rTbNxrqLIysyOKI7DEKZqq/eCtKnrRrwB/z/mdnUXUw3dg25Xje+xwUpnWCm96KwihyaVE8PCmtqR86PU19oe378mnxdhXaPb+WGzuMtzNU8m6+2FyL79aBkvVk/SDb+RKO3Q+4LHzl7nY/Atxg2/qWFvODmz+tVuFOGpLfqd88OUQFV3t05VN48l4+El23Hgbqa89S9KnH9D2oTto/s6rZI54jPxzLpIprYOM5Qu8fe9uACpj40xOUj+VsU0PeFxx4VBUmRvnj9NR/guwOiYW90VD0cnNTEgoQp1u1qLG4l5VRUpztjz9Ktk330XaS0+R+M3ndLjtWop69CFz5Gj2Dhgko2KDhGULvH1PPhGbNuDYvYvSDp1DvsDvu7BV2cS/bqzdTvmVN1I+5FocP83G9eUn2HZmYysrpfzY0BidK0Kbu3U7Nr7+Ptm33kfaC08QN3smna+5kIL+A8h48AmK+h5ndsRGz3IF3rZnN7E/z8WxdzcVSSm401qC10vYlo1mR6uXqBVLASju0fvQJ1u3o/LOh/BmbkWltQr5r1WElsrISLY+/hx5F19Bs3GvEvPrArpdPIjdZ5xHxgOjKO3UzeyIjZYlCvyYMWP4abOvh4mjcC9h2Vloux002EtKsJeWmpyw/jxxvi6SzvxdNb8opikU7G2YQEIcpDytFdueeImwTetp/t4bxH3/LU1/mE7exUPJuvdR3C1bmx2x0bFELxqAGWv2Eh/p+32lKipwZW4lfOtmtNNJSZfueOITAxlVCHE4Xi8JUyeT9tJThG/dhNfpJOfKG8m6cySepBSz0wUdGeh0GD/88ANLFs7d/1g7nbjbtKfgpIG4W6RhO2hh7lBk37sH+949ZscQonZsNnZdOITlPy5m89Nj8MQl0OyDt+l9Sk/SXngCu/yl2SAsUeCfeuopPn3rhUO27yv05WnBuQzf0YhYv4YImfxJhBjtdJJz9TCWzV/Otof+g3a6SP3vC/Q+uTvN33oFW2noH3wFM0sU+MagpHM3SjrLxSoRmrwRkWTfeh9LF6wg6/b7UeVuWj7zGL1O7UXyxHdRFRVmR7QkKfAhwhvdRBZLFiGvMrYpmSNHs2z+CnZcOxxHfh5tHrmbnv/oR8LXk8DrPXIjotakwIcI+578/TNKChHqKpJT2Prkyyyf/Se5l/yTsK2baH/XjXQ/7yRiZ8+CIOr8EcqkwIeIiA3riNiwzuwYQgSUu2UbNr3yDitm/sLuM84jatUKOt9wKV2GnEX0HwvNjhfyLNFNcu3atczfVEjPbl0MSBUc9q3m5K3FUHIhQlX04t9If/5xYn79CYDdg84mY+RoSrt0NzmZsaSb5GF06tSJtDYdzI5hKG9UtBR3YXlFxxzP6k9nsObDryju1ou42TPpcc4JtLvrRsK2bjI7XsixRIGfOnUqv82ZUe1zqqICVV7ewIkCz7F7F47dhxnFKoRVKMXeU//BymkLWP/GB5S1bkfi15PoOagvrR+9B+fOHWYnDBmWKPAvvfQSU97/7wHbVEUF4RvXEfPTHMK3bDApWeCEb1xP+Mb1ZscQouHYbOSffykrvv+DTc++jicxmZSPx9PrlB6kPztq/0yxomaWmIvmABUVRK1cQljmNrxhYbhbtaMiMTnkj37dLdIAQv7rEKIudp89mD0DzyTps49o9u5/aTH2ZZInvkf2v+5hxw234o2MMjtiULJcgQ/fuI6mc77H63JR2rYDrqwMWRVeCIso7tmHLc+8RpOF80j68lPSnx9NyvtjybrrQXKHXo92ucyOGFQsV+DLOndjR/NUwjetx5mfR0VyM8radcAbEWl2tHpx7MoFwJOQZHISIcyXf/4lZN33KC3eeJGUj8fT5rH7aP7O62Te9292XXi5rCzlZ8lPoTK2KcV9jqWw3wkoTwWuzG1mR6q38M0bCd8s87wLsY8nMZltjz/PsjlLyb38asIyt9L+npvocc4JNP1hugyWwiL94DMyMpizoYBO7VoHPlSQUGW+Oe11eITJSYQIThHrVpP24n+InzUVgMJj+pPx4GgKjz/Z5GRHJv3gDyM9PZ2k5mlmxzCUDo+Q4i7EYZR27ML6cZ+w8qs57D3xVJos/pWuQ86m07UXE7lymdnxTGGJAv/ZZ58xb/oUs2MYypGXgyMvx+wYQgS94j7HsuaTb1k9cSpFPfvSdN739DjvJNrfcR1hm0O/y/TRsESBHzt2LNM/fdfsGIYK37KJ8C0ykk+I2io4+TT++mYe68Z+TGm7jiRM/YJepx9Dm4fuwJWdZXa8BmGJAt8YFPfoQ3GPPmbHECK0KMXucy9i+Xe/s/GFsZSnNCf5kwn0OrUX6U8/avlxJVLgQ4QOC0OHhZkdQ4jQ5HCQN+Qals1ZytZRz1EZFUWLca/Sa0APWrz23P7J/KxGCnyIcOTuxJG70+wYQoQ0HR7OjptuZ+mClWTe+whKa9JfepLep/Qg5f2xKLfb7IgBJQU+RIRv3Uz41s1mxxDCErzRTci65xGWLlhB9rA7sRcW0Hr0A/Qa1IfEyROhstLsiAFhiX7weXl5/LC+gDapKQdsd+zKJXzTeipjYintFNrrme6bEVOGYgsReK7tmaSOeYakzz9Ceb2UdOhM5gOPs/vM80Epw/dvVD94SxR4gBlr9hIf6Zt5wZGbQ/im9TgK9+JObUlZ63Zy/loIcUThG9aS9vJTJMz4GoCiPseS8cDjFJw00ND9GlXgLTEXzYQJE1ieXcIVV11HxKqVxE+fgnaFUdquI2FZ2wjLCv2pChx7fFOjeprGmZxECGvLu+wqCvudQPz0L4lZ/BtdrjyfvQMGkTFyNMU9+5od76hY4gh+4MCB5Jd4eGfyLKisJHz9GiL8q7+UtWpLefPUkJ98KGrJH4BvEIcQwniVEZHE/P4z6c+PJtr/87fr3IvIHPEYZe07BXRfcgRfW3Y7ZZ27UdahM2FZGf5lvjSlnUN7TcfCE04BQDudJicRovEoOPFU/vpyNnHfTSPthSdImP4V8TO/Ifeyq8m652HKU9PNjnhYoX1Yezh2O+6WrSk4aSCl7TubnabetNMpxV0IMyjF7rMuYMWs39j48jjcLdJJnvQhvU7rTcv/PLR/Ku9gZN0Cv4/NBo7Q/0PFuTMb585ss2MI0XjZ7eRdeiXLZ//JltEvUNkkhubv/pfeA3qQOub/sBUVmp3wENYv8BYRlrGVsIytZscQotHTYWHsvOFWls5fQcb9o9A2G2mv/B+9B3Sn2fj/osrKzI64nyUuspaUlDBr7V5aJMQYkCpI7Bt4Ybebm0MIcQDH7l00H/sKzSa8hc1dhrtFGln3PELupVfW+uyBzAd/GJGRkYSH+JJ8R2S3S3EXIgh54hLIeOQpls5fzs4rb8C1M5u2I2+j55nHEf/tl6auLGWJAv/mm28y7X/jzY5hKFd2VqOZ4lSIUFTRrAVbnnmdZT8uJm/wZURsXEeH266h2+BTiVkw25RCb4kCP2nSJBbM/NLsGIZyZWXgysowO4YQ4gjcbdqz8fUJrPj2Z/YMPJPo5X/S5erBdP7nefvHszQUQwu8UupspdRapdQGpdRDRu7L6or6HkdR3+PMjiGEqKWS7r1Y+8EUVk2aSeEx/Yn9ZT7dLzqNDsOHErFuVYNkMKzAK6XswBvAOUBX4J9Kqa5G7a/aDGVlRKxbRdg2C8zCaLOF/GhcIRqjwuNPZtUX37P2vc8p6dyN+FnT6HFWf9qOuAWXwT3jjKwYxwEbtNabtNblwKfAhQbub799hT3257k49uzGE9u0IXZrKNf2TFzbM82OIYSoC6XYc/o5rJjxCxvGvIs7rRVJkyfS67TetBr9AC6DBksZOQIoFah60jgTON7A/QHg2rKRhBlfoZ0uylq2Aa2JXPOX0bs1XMQa3590pZ0b9I8gIUSAlbdIZfMzr9N09gwSvvyUZu+PJfGzD+H336BbYKc1N32Ip1JqODDc/7BIKbW2jk0l9m8VnRcLtrMgujk4c8CzHtx7wRuguPVWCXF22G12jiORnIEVCjlDISNYK+cuqMyHSkqKoXud58tqVdMTRhb4LKDqTDxp/m0H0FqPA8bVd2dKqUUHdPZXqgnQAWgBrEXr9fXdRyAckjNISc7ACoWcoZARJOfRMLLA/wF0UEq1wVfYhwJXGri/A2ldCPyJUusA45dkEUKIIGNYgddae5RSdwCzADvwnta64U+Ga23N5dKFEOIIDD0Hr7WeDkw3ch9V1Ps0TwORnIElOQMnFDKC5Ky1oJpsTAghRODIyBkhhLCokC/wwTAdglJqi1JqhVJqqVJqkX9bvFLqe6XUev+/cf7tSin1mj/vcqVU3yrtXOd//Xql1HUByPWeUipHKbWyyraA5VJKHeP/ujf431uni9k15BytlMryf6ZLlVLnVnnuYf8+1yqlzqqyvdrvBaVUG6XUb/7tnymlXHXMma6UmqOUWqWU+kspdbd/e9B8pofJGFSfp1IqXCn1u1JqmT/nE4drWykV5n+8wf9867rmD1DOCUqpzVU+z97+7ab9HFVLax2yN3wXbzcCbQEXsAzoakKOLUDiQdueBx7y338IeM5//1xgBr6ePf2B3/zb44FN/n/j/Pfj6pnrFKAvsNKIXMDv/tcq/3vPCWDO0cD91by2q///OQxo4///tx/uewGYBAz1338LuLWOOZsDff33mwDr/HmC5jM9TMag+jz9X1+0/74T+M3/dVfbNnAb8Jb//lDgs7rmD1DOCcBl1bzetJ+j6m6hfgRv2nQItXAh8IH//gfARVW2f6h9fgWaKqWaA2cB32ut87XWu4HvgbPrE0BrPR/INyKX/7kYrfWv2vdd+mGVtgKRsyYXAp9qrd1a683ABnzfB9V+L/iPhgYBk6v5mo82Z7bW+k///UJgNb4R20HzmR4mY01M+Tz9n8m+Hm5O/00fpu2qn/Fk4HR/lqPKH8CcNTHt56g6oV7gq5sO4XDfzEbRwHdKqcXKNzIXIEVrvW8R1R1Aiv9+TZkb6msJVK5U/30j897h/zP3vX2nPeqQMwHYo7X2BDKn/xRBH3xHdEH5mR6UEYLs81RK2ZVSS4EcfAVv42Ha3p/H//xefxbDf54Ozqm13vd5Pu3/PF9RSoUdnLOWeQz9OQr1Ah8sTtZa98U3c+btSqlTqj7p/80cdN2VgjWX31igHdAbyAZeMjVNFUqpaOAL4B6tdUHV54LlM60mY9B9nlrrSq11b3yj3I8DOpubqHoH51RKdQcexpf3WHynXR40L2HNQr3A12o6BKNprbP8/+YAX+L7Zt3p//ML/785/pfXlLmhvpZA5cry3zckr9Z6p/8Hywu8g+8zrUvOXfj+THYctL1OlFJOfIVzotZ6in9zUH2m1WUM1s/Tn20PMAc44TBt78/jfz7Wn6XBfp6q5DzbfypMa63dwPvU/fM09OcoICfyzbrhG6i1Cd/FlX0XUro1cIYooEmV+wvxnTt/gQMvvD3vv38eB16E+V3/fRFmM74LMHH++/EByNeaAy9eBiwXh14cOjeAOZtXuX8vvvOsAN048KLaJnwX1Gr8XgA+58ALd7fVMaPCd450zEHbg+YzPUzGoPo8gSSgqf9+BLAAOL+mtoHbOfAi66S65g9QzuZVPu8xwLPB8HN0SP5ANWTWDd9V63X4zt89asL+2/q/eZYBf+3LgO/84I/AeuCHKv+ZCt9CKBuBFUC/Km3diO8i0QbghgBk+wTfn+MV+M7t3RTIXEA/YKX/Pf/FP3AuQDk/8udYDnzDgQXqUf8+11Klx0FN3wv+/6Pf/fk/B8LqmPNkfKdflgNL/bdzg+kzPUzGoPo8gZ7AEn+elcCow7UNhPsfb/A/37au+QOUc7b/81wJfMzfPW1M+zmq7iYjWYUQwqJC/Ry8EEKIGkiBF0IIi5ICL4QQFiUFXgghLEoKvBBCWJQUeCFqoJQas29UslJqrn9mwmVKqZ+VUp0O874kpdTMhksqRPWkwAtRDaVUAtBf+yZC2+cqrXUvfJNevVDTe7XWuUC2Uuokg2MKcVhS4EWjopRqrZRao5SaqJRarZSarJSKrOallwI1HYXPB9r721qglPrTfzuxymu+Aq4KcHwhjooUeNEYdQLe1Fp3AQrwzTV+sJOAxTW8/wJ8oxRzgDO0b6K5K4DXqrxmETAgYImFqAMp8KIxytBa/+y//zG+4f0Haw7kHrRton/a2JOA+/HNDf6OUmoFvmH0Xau8NgdoEcjQQhwtx5FfIoTlHDw/R3XzdZTim/+kqqu01ov2PVBKjQZ2Ar3wHSyVVXltuL8NIUwjR/CiMWqplDrBf/9K4KdqXrMaaH+EdmKBbO2bgvcafLMY7tMR3wRSQphGCrxojNbiW5hlNb6pW8dW85pvgYFHaOdN4Dql1DJ8iz8UV3nuNH8bQphGZpMUjYp/GbtpWuvutXjtT8D52rfQw9HuZz5wofatvymEKeQIXoiajQBaHu2blFJJwMtS3IXZ5AheCCEsSo7ghRDCoqTACyGERUmBF0IIi5ICL4QQFiUFXgghLEoKvBBCWNT/A3sGchyN8c0JAAAAAElFTkSuQmCC\n", "text/plain": "
" }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ] } }, "144c22befa6747cc82ccd2d6129bcdc4": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "14c0b65661404e2e8d44345b55f15180": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "15a934f0af054a5e8654576aedd27943": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "1a5353edc10f4d498931d663b988ce3f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "VBoxModel", "state": { "_dom_classes": [ "widget-interact" ], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "VBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "VBoxView", "box_style": "", "children": [ "IPY_MODEL_d3861921b160405ab3e0460ab3f3c256", "IPY_MODEL_687f3a713bed4bbb8f7660bfbdbed995", "IPY_MODEL_388cb8d75c2f482490643837b9b8ba93", "IPY_MODEL_543522955c274325973a25a45ae1a683", "IPY_MODEL_1148c23a4cda4067959c415c30570bca" ], "layout": "IPY_MODEL_15a934f0af054a5e8654576aedd27943" } }, "1d1ce153356f41e7883a2c156ab9f148": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "IntSliderModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "IntSliderModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "IntSliderView", "continuous_update": true, "description": "rho1", "description_tooltip": null, "disabled": false, "layout": "IPY_MODEL_e6f4408b6c11443ab4427d04e44b01b2", "max": 1000, "min": 500, "orientation": "horizontal", "readout": true, "readout_format": "d", "step": 100, "style": "IPY_MODEL_36f406100b444595870971aa9c7d4ea3", "value": 700 } }, "28b5b75d3c204183b05bac05cce24a26": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_5d53f025c78545948938170ade03822c", "msg_id": "", "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXgAAAF3CAYAAACvy1BzAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAAsTAAALEwEAmpwYAAA/bUlEQVR4nO3deZxO5f/H8dd1z76YMZvd2LILobKWLIXIlxTJvoUURchWIqVNKypJKmWJimQnpI2yb9m3YVaz73P9/pib36ihMebcZ+4zn+fjMY/u+9z3fc7b+X7n7Tj3da6jtNYIIYSwHpvZAYQQQhhDCl4IISxKCl4IISxKCl4IISxKCl4IISxKCl4IISzK1ciVK6VOAfFAJpChtW5k5PaEEEL8P0ML3u4+rXWkA7YjhBAiBzlFI4QQFmV0wWtgnVJql1JqiMHbEkIIkYPRp2iaa63PK6VKAOuVUoe11ltzvsFe/EMAfHx8GtaoUcPgSEIIYR27du2K1FqH5PaactRcNEqpF4EErfUb13tPo0aN9M6dOx2SRwghrEAptet6A1gMO0WjlPJRShW78hi4H9hv1PaEEEJcy8hTNCWBFUqpK9tZpLVeY+D2hBBC5GBYwWutTwD1jFq/EEKIG5NhkkIIYVFS8EIIYVFS8EIIYVFS8EIIYVFS8EIIYVFS8EIIYVFS8EIIYVFS8EIIYVFS8EIIYVFS8EIIYVFS8EIIYVFS8EIIYVFS8EIIYVFS8EIIYVFS8EIIYVFS8EIIYVFS8EIIYVFS8EIIYVFS8EIIYVFS8EIIYVFS8EIIYVFS8EIIYVFS8EIIYVFS8EIIYVFS8EIIYVFS8EIIYVFS8EIIYVFS8EIIYVFS8EIIYVFS8EIIYVFS8EIIYVFS8EIIYVFS8EIIYVFS8EIIYVFS8EIIYVFS8EIIYVFS8EIIYVFS8EIIYVFS8EIIYVFS8EIIYVFS8EIIYVFS8EIIYVFS8EIIYVFS8EIIYVFS8EI4oWbNmqGUuvpTkBo1amTYuoVjuZodQAhxc1xcXMjKyrpmmVIKrfUtr9vb25vk5GRD1i0cT47ghXAy/yz3K2y2W/91/me5X+Hm5nbL6xaOJwUvhBNJSkq67mu3epR9o3VnZGTc0rqFOaTghXAi3t7eTrluYQ4peCEs4vTp04ate+PGjYatWxhHCl4IJ5PbqZjAwEBCQ0MNWXdQUBCtWrW65XULx5OCF8IJaa1JTEzk8OHDaK2Jiooq0HUnJCRw6NAhtNZERkYW2LqFY0nBC+GkvL29qV69uiHr9vHxoUaNGoasWziOFLwQhcyJEyeYN28ed9999zUXHOX1Jy0t7brrvnz5Mj///DNdunTB3d29QNctCh+50EkIE82bN4/BgwcX6DobNmzIvn37gOyx8QV5kVLLli3ZsWNHga1PGEuO4IUw0aBBg65eXKS1vuYnKSmJ5cuX07dvX0qWLJnndV4pd8i+KEopRc+ePa9Zd3p6OuHh4cycOZNGjRrled1S7s5FGX0JslLKBdgJnNdad7zRexs1aqR37txpaB4hCiNfX18yMjJISUkxZP1KqatlL6xFKbVLa53r39KOOIIfCRxywHaEcFoJCQmkpqYyb968G75vzZo1rFix4qbXr7X+z6kMbrvtNtzc3IiJibnp9YvCydBz8EqpcsCDwMvAs0ZuSwhnp7VGKcWgQYP+9VpuR95169Zlz549eV7/xx9/nOvEYf9cd2Bg4NU8wrkZfQT/NjAWyH12JCHENXI7jXK90yp79+69qQnGBg0ahFKKli1b/ue6/+s14RwMK3ilVEcgXGu96z/eN0QptVMptTMiIsKoOEI4BaUUVapUuVqu/yzZLl26XPP8ylF/XmVlZfHTTz/l+rkNGzbkmkc4L8O+ZFVKvQL0BjIAT8APWK617nW9z8iXrEJky+0oPuc0wf98vVy5cpw9ezZf6/fx8SEhIeHq89yGVsrpmsLLlC9ZtdbPa63Laa0rAj2ATTcqdyHE/8tZqC1atPjXHPD/LNxz585x4cKFm97Oww8/fE25Q+7zzXt6et70uoX5ZBy8EIVQznPrW7duzfU9Y8eOveZ52bJl87RuPz+/q4+PHTuW63v++RdIamoqf/31V57WLwoPh1zJqrXeAmxxxLaEcBadOnVCKXX1lEhYWBhhYWFcuHDhmoJVShEUFISLi8s1P7l9wXqz58z37NmT5880aNAg1+Vy+qbwMvxCp5uRr3PwGRl0mLScSA8fcPcwJpgQBnC15V6sOfs2LTWVnS8+iM3Ng7un/nDNa1qDtj/Iy2/x9X7Vf5/Uljunr89rbGGAYF8PVo9ska/P3ugcvPPPRbNzJyc2LiLRw5uQtn2hAO5LKYQjZGTloZZtbtzx0jr+mnI/6RkZZBpwVrXJsx/yy6S23PHSugJft8ibtExjRpI7f8E3bszhDvXgpZdIsYVxaflqcHExO5UQBWtEKhUDPTgVnWrAyu+l0qyhJH31DGt//tOA9Yv/Ep9qzD1vrXG4O2UKCc3vxXPbFvxnTjc7jRCGWLhsJRUDjTkNeTIqhSOHDpAu0wFbiiUKvmXr1rRKSSGzREn833wFz01yPlFYzz2t7sfNzY3KwV6GrP9UdCpVSxUzZN3CHJYoeADt5k7ExwtBKYKH9scl7ObHBAtR2P19KYGsrCwiwy8asv4du48Y9q8E4XiWKXiA1BYtiR03GZfICIIH9YYMY85rCWGmU9GpNKpRwZB1lwmtiFKKB5rlPiRSOBdLFTxA7OjxJN/XBs9ftlN8xotmxxHCEH9fjDP8fHxSYsJ/v1kUapYreGw2Ij9cQEbpMvi//Tqe6380O5EQBc7N3YMqVatTKciYKQRORadSq3yQIesWjmOJgn/00Ud54KGuV59nBYcQOe9ztIsLwUMH4HIu75MwCeEsNv62F601WzeuNWT9+09elPPxTs4SBT98+HB69BtyzbLUJs25PHEqLjHRBA/sBenpJqUTwjinolPp88hDhqzb1z8Am83G/U3vMGT9wniWKPikpCSSk5L+tTzu6dEktW2H5x+/UnzaZBOSCWG8k1Ephh1pn4hM5ujhg8Reltv4OSNLFHyHDh0Y3qvrv1+w2YgdN4mMEiXxf38WXmtWOT6cEAZTSvHUmPGGno+vV7mUIesWxrJEwefG9dhR/GdOx/+NV4gfMgLt6krQ8EG4nD1tdjQhCtzoCVM5GZVi2PqNmSJBGM1yBe96/G+CBvYi+Il+uJw5TVK7TqRXq07s0KdwuRxDSP/HQS7HFkIUARYs+GO4H9yHSktDZaTjduo4Hn/tJO3upiS174jHn38Q8OIEs2MKIYThLFfwKfe35+KGHcSOHIPKyMAWF0viw91JfvAhoj6YR0b5CvjNfQ+vVd+ZHVUIIQxliYLv168fnbs/fvW59vEhqVsPot79kJQmzXE5fw6ArOIBRMz/Eu3mRvCIwbieOmFWZCGEMJzz39HJbv/FJIp55G16+2Jz3yNwwhhS6zfg4o9bwEMu5hBCmCc+NYM6pbzz9dkb3dHJEkfwkZGRxERF5vn98U+MIKljZzx2/0nAlHEGJhNCCPNYouC7devGs4N75f0DShH53kekV6iI38dz8F6xzLhwQghhEksUfH5o/+JEzl+EdncnaORQXI//bXYkIYQoUEW24AHS7mhIzLSZ2BLiCRnwOKQYd6GIEEI4WpEueID4QcNI7Pww7vv2EDhhtNlxhBCiwBT5gkcpot6ZQ3rlKhRbMA/vZV+bnUgIIQqEJQp+2LBhdO87KN+f137+RHz6FdrDg6BnhuN69HABphNCCHNYouC7d+9Ou87dbmkd6bfXI/qVN7ElJhLSvycql+mHhRDCmVii4M+ePctF+9WqtyKh7yASH+6O+6EDBI57pgCSCSGEeSxR8L179+b5p/J/iuYqpYh66wPSb6uK75cL8Pn6i1tfpxBCmMQSBX8jKiEBFXs5z+/XxYoRseBrsjw9CRzzFG6HDxkXTgghDGTZglfx8fgs/pKgEYPx+W75TX02vVYdol97B1tSEsH9H0MlJhqUUgghjJO32bmcSVwcfh/PxnP7T2QGBpH0QAfSa9+O2749N7WatLr1SejyCL4rlhI45imiZn8CShkUWgghCp7lCt7nh+8o9slctIcn2tML7w1rYcPafK0rpUVL3A/ux3fxl6Q0u4fEXv0KNqwQQhjIEgU/evRoTsdk3zMy8bHepDZuis83S3D/8w/S6t1B4qM9ySxVOl/rTm3cjFJtmhI4diRpDRqRXqtOQUYXQgjDWOIcfKdOnWh5f4erzzMqVSF2zPPEvPw6pKfj+dOmfK87vUZNot94D1tKCiH9H0PFxxdEZCGEMJwlCv7IkSOcPHb0X8szKlUhbvR4EnPc7Sk/Env0IuHxfrj9fZSg0SOgEN0kRQghrscSBf/EE0/w0tinDd1G9MxZpNWsjc+yr/H97BNDtyWEEAXBEgXvCNrbm4gFX5Hl40Pg88/e9KgcIYRwNCn4m5BRtTpRs2ajUlOzz8fHxZkdSQghrksK/iYldetBfN+BuJ04TtDIoXI+XghRaEnB50PMjDdJq1MXn+++wfeTuWbHEUKIXFliHPykSZM4Ge242+1pLy8iPl1E6fuaEDhpLGmN7iatfgOHbV8IIfLCEkfwbdq0ock9rRy6zYwqVYl6Zy4qLS17vpqbmNBMCCEcwRIFv3v3bg7vd/yolqQu3YgbNBS306cIfmqInI8XQhQqlij4UaNGMXPKOFO2HTPtNVLrN8B71XcU+/B9UzIIIURuLFHwpvLwIHL+l2T5+RPwwvO47/rD7ERCCAEUhYLX2vBTJxkVKxP5/seo9HRCBjyOLSba0O0JIUReWLfgtcbj158JHDsS308/MnxzyR07E/fECFzPniZoxGA5Hy+EMJ0lhkleQ2s8N2/A+7vl2KKjSG7zAMn3t3fILJCXn5uAx++/4v3jKvzen0XcU88avk0hhLgeSxT8jBkzOBGVPQ7e97NPKP7KVLS7B2nVquO9ZhXea1Y5LEti5664njxO8ZcmkXpXE1LvbuKwbQshRE6WKPimTZvidzEJgIRe/cgMCMB79UpUcjLJbduRfF9r8PB0SJas4gFkVKtOiZ4PEzywF2E//UZWULBDti2EEDlZouB37NjBiagUWjRvDq6uJHd+mOQHO+O5/Se8VyxDpaWSMHCow/Ikt+tI7Ihn8H9/FsHDBhD+9bdgs+7XHUKIwknpQvRlYKNGjfTOnTtv+nMtW7YkMS2LZT9s+PeLWVnZP64O/rssPZ2Sndri+fsvxEyZTtyo5xy7fSGE04hPzaBOKe98fVYptUtr3Si316x/WGmzOb7cAdzciJz3OZmBQRR/+QU8ftnu+AxCiCLN+gVvosxy5YmcMx+VmUnwoN7YIsLNjiSEKEKk4A2W0rYdsaOewzXsAsFP9IPMTLMjCSGKCCl4B7g84UVSmjTHa8tG/N+aaXYcIUQRYdjJaaWUJ7AV8LBvZ5nW+gUjtvX2229zLDLZiFUXDFdXIj9eSOmWd+M/cxopjZuS2qKl2amEEBZn5BF8KtBKa10PqA+0U0o1NmJD9evXp0adekasusBklilL5NxPQWtCBvfBdumi2ZGEEBZnWMHrbAn2p272H0PGZG7YsIFftm4yYtUFKqVVW2JHP49L+CVChvSV8/FCCEMZeg5eKeWilNoNhAPrtda/5fKeIUqpnUqpnREREfnazvTp0/no7dduLayDxI6bREqLlnhu24L/ay+bHUcIYWGGFrzWOlNrXR8oB9yllKqTy3s+0lo30lo3CgkJMTJO4eDiQuSHC8gsURL/N2bguTmXi7OEEKIAOGQUjdb6MrAZaOeI7RV2maVKE/nhAgCCn+iHS9gFcwMJISzJsIJXSoUopYrbH3sBbYHDRm3P2aTc24rYsZNwiYwgeHAfyMgwO5IQwmKMPIIvDWxWSu0F/iD7HLzj5u0FXC6cp9gHb+P9zRJHbjbPYsc8T/K9rfDcsY3ir75kdhwhhMUYNg5ea70XuMOo9ef04YcfcjTi/8fBu1w4j/eKpXj+vJW0+g1JKqxzsru4EPnRZ5S+9y7835pJSuNmpLR5wOxUQgiLsMRskgD7LyZRzMMVr28WE/jiBLSnJ2k166CL+RVwyoKXXrkKxV+ZSlbxAMJ++p3MsuXMjiSEcCCjZpO0xHzwK1eu5HRMKp06PURqy9YkdOuB5x+/oT08SW7WgowqVUEps2NeV0aV20ApAqZPIXhQby59vw7c3MyOJYRwcpY4gs9tPnhbdBTe36/Aa9M6ktp1JLFnn4KMWvCysijRvTNeG9cR+9SzXJ76itmJhBAOIvPB36SswCAS+g0i6p25JLd1gtGZNhuRcz8lo3RZ/N97C6+1P5idSAjh5Cxb8FdkBQSSFVLC7Bh5khUUTOQnX6BdXAgaNhCXs6fNjiSEcGKWL3hnk9q4KZcnT8PlcgwhA3pBWprZkYQQTkoKvhCKG/EMSQ90wGPX7wRMnWh2HCGEk7LEKJrPP/+cI+GFeD74m2WzETX7E9zvvRu/Oe+S0rQ5yQ92NjuVEMLJWOIIvnz58pSy2NjxrIBAIuZ/iXZ1JfjJwbiePml2JCGEk7FEwS9evJg13y0zO0aBS2t0FzEvzsAWF0vwgMchNdXsSEIIJ2KJgp8zZw6LP5tndgxDxA97mqQHH8Ljr10EvDDe7DhCCCdiiYK3NKWIfP9j0itUxO+j2Xh/t9zsREIIJyEF7wS0f3Ei5y9Cu7sT9NQQXE8cMzuSEMIJSME7ibQ7GhIzbSa2hHhC+veElBSzIwkhCjkpeCcSP2gYiZ0fxn3fHgInjjE7jhCikLPEOPhly5Zx6FLSv19IScFr41q0bzFS7m3l+GAFTSmi3pmL+96/KPbpx6Q0bUHSw93NTiWEKKT+8wheKVVOKTVGKfWdUuoPpdRWpdRspdSDSqlC8S+A4OBgAoKC/39BSgpeq74jaORQvNesJsvP37xwBUz7+RHx6VdoDw+CnhmO699HzI4khCikbjhdsFLqU6AssArYCYQDnkA14D6gITBea721IMLkd7rgBQsWcC42ld59+uPx00YCJ40DZSOtdh0yKlYGW6H4e6hAqcQE/N99k7Radbi4fjvay8vsSEKIfDLrhh9vaq3357J8P7BcKeUOhOYrVQFasGABiWlZ9O7Tn8ySpckoH4rLxTBwcSGzRAm0bzGzIxa41AZ34nr+HD7fLCZg/LNEvzPH7EhCiELmhgV/nXLP+XoaUKjG7GXUqEXEl9/gdnA/Psu+xmvTehJ69SP5gQfNjlbgot76APc9f1Ls8/mkNmtB4qM9zY4khChE8vQlq1KqIzANqGD/jAK01rpw3vBUKdJr387lWnVwO7gfbC5mJzKELlaMiE+/olTb5gQ++ySp9e4go3pNs2MJIQqJvJ6cfhvoCwRprf201sUKbbnnZC/69Jq1zE5imPTatxPz6ixsSUmE9O+JSkw0O5IQopDIa8GfBfbrwnQDV3FVQu/+JHR/HPfDBwkcO8rsOEKIQiKv4+DHAquVUj8BV6c01Fq/ZUiqm7R69WoOXMxlHHxRoRTRb7yH+1+78P1qISlNm5P4eF+zUwkhTJbXI/iXgSSyh0gWy/FTKHh7e+Plnb8hRlahfXyI/PQrsry9CRw7EreDB8yOJIQwWV6P4MtoresYmuQWzJ49mwtxaQx+YrjZUUyVXrMW0a+/S/CTgwjp34Owjb+gfX3NjiWEMElej+BXK6XuNzTJLViyZAlrv5dpdAESH+tNQs++uP19lMDRI0C+NhGiyMprwQ8D1iilkpVScUqpeKVUnJHBRP5Fv/Y2aTVr47v0K3wXzjc7jhDCJHkqePuwSJvW2suphkkWUdrbm4hPF5Hl40Pg+Gdw27/X7EhCCBPcsOCVUhX/43WllLLW3a4tIqNaDaLf+gCVmkpI/8dQcfIPLiGKmv86gn9dKfWNUqqPUqq2UqqEUipUKdVKKTUN+BmQSycLqcRHHiO+zwDcjh8j6Jnhcj5eiCLmv+aieUQpVQt4HBgAlCZ7uOQhYDXwstba9FsLbdmyhf1FeRz8DcS88hYef+7EZ8VSUpo2J2HgULMjCSEc5D+HSWqtDwITHZCl4Gl9dS4aK09XcCPay4uITxdR+r7GBE58jrSGd5FWv4HZsYQQDmCJidLfeOMNFsx5+/8XaI3b/r0UnzqR4q++hOvZU2ZFKxQyqlQl6u25qLQ0ggf0RMXFmh1JCOEAlrhl36pVq0hMy+KpUWNwPXSAgJcm4XLpIum16pDcqi222Fh8ln5ldkzTJTzyGL5LvyJoxBAiP/salDI7khDCQJYo+JxcL4bheu5s9l2cMjNxCQ+HyEizYxUK8QOH4nb0MD6rviX1ow+If2KE2ZGEEAbK63zwG8m+u9PqHMs+0loPMSxZPqXc14aw9dvx2rAW75UrcD13lviBT8h5Z7vI+V9SumVjAqaMJ7XR3aQ1vNPsSEIIg+T1HHwlYJxS6oUcy3K9B2Ch4OlJcsfORL0zl6R2HbDJOeerMipVIeq9j1Dp6YQMeBzb5RizIwkhDJLXgr8MtAZKKqVWKqX8jYt087y8vPDw9Pz3C56eJD/YmZR77nN8qEIs6aEuxA15EtezpwkaMVjGxwthUXkteKW1ztBaDwe+AbYDJYyLdXN+/PFH5i761uwYTiXmpVdJbdAI79UrKTb7HbPjCCEMkNeCn3vlgdZ6AdAPWGdAHuEo7u5EzP+STP/iBEydiPvvv5qdSAhRwPI62diH/3i+S2s9wJhIN2/atGnMfetVs2M4nczQikTNnofKyCBkYC9s0VFmRxJCFCBLXOi0ceNGftu+xewYTim5fSdinxyF6/mzBA0fCFlZZkcSQhQQSxS8uDWXp0wn5c7GeK/7Eb/3C8VtdoUQBUAKXoCbG5GffEFmQCDFp03B49efzU4khCgAUvACgMxy5YmcOx+VmUnwwN7YIiPMjiSEuEWWKPigoCCKBwSaHcPppbRtT+zIMbiGnSd4aH85Hy+Ek7NEwX/zzTfM+mSR2TEs4fLEqaQ0bobXpvX4vf262XGEELfAEgUvCpCrK5HzPiczKJjiM17EY/tPZicSQuSTJQr++eef5+2Xp+T6mi0mGltEuIMTObfMMmWJnPspaE3w4D7Ywi+ZHUkIkQ+WKPhffvmFPbt+v2aZLToK3wXzCBo5FK91P5qUzHmltL6fuGfH4XrpIsFP9IXMTLMjCSFukuXmg7dFRVLs/Vl4/vEbGaXLktiuIxlVqsql+PmQ1Op+PLZvxeunzfi/8Qqx4yaZHUkIcRMsV/AeWzbhu+xrtKcnmYFBeP28DX7eZnYspxX35EjcThzD/7XppDZuSsq9rcyOJITII8sVfPLDj3KxSTO8VyzF8+etpIdWIOHxPmSWCzU7mtOKLOZHia4dCB7Sl7CffiezVGmzIwkh8sAS5+DLlStHydJlrj7PLFOW+CdHEf3Ge2T5+uLxm5yeuRUp97Yi9rmJuESEEzy4D2RkmB1JCJEHSheimz00atRI79y5M1+f3X8xiWIelvsHSeGRmUmJbg/i9dNmYkeP5/LEqWYnEsIy4lMzqFPKO1+fVUrt0lrneoc9w47glVLllVKblVIHlVIHlFIjjdqWcAAXFyI//IyMkqXwe2smnhvldgBCFHZGnqLJAEZrrWsBjYEnlVK1jNjQqFGjmDn5OSNWLXLIKlGSyI8XglIED+2Py/lzZkcSQtyAYQWvtQ7TWv9pfxwPHALKGrGt3bt3c/jAPiNWLf4htfm9XH7+BVyiIgnp9xguF86bHUkIcR0OOWmtlKoI3AH8lstrQ4AhAKGh+R/pkpyexaZjcfn+vLgJnYbSZst2yv+8nhJ312XXk5M53LUf2Czxnb0QDhfg5Zrvc/A3YnjBK6V8yb5R9yit9b8aWGv9EfARZH/Jmt/t2BTUKumV75zi5lxYuJSs+bMp9+Y0mrw2jjobV3Dy1fdIrlbT7GhCOJ3oJGNGphl6yKWUciO73L/UWi83clvCscq/OQ23mCj2rf+Dy/e0ptiuX6nToSll35qOSk01O54QAmNH0SjgE+CQ1trQ+8BVq1aNshVvM3IT4h9cY6JwjYkiNbQiRxZ+y7FZ88gs5ke5d17l9naN8ft5i9kRhSjyDBsHr5RqDmwD9gFX7hwxQWu9+nqfuZVx8D8ejiXQW8bBm8k1OpLQlycSsuxLACK79OD0xJfJCClpcjIhCrfopAza1/DP12dNGQevtd6utVZa67pa6/r2n+uWu3B+GYHBnHjzQw4u/pHkKtUIXvE19Vo1pMSXn8jdoYQwgSWGPQwZMoR3p8h1VI4UOn0CodMn5PpafOMW7FvzK2fHTMGWmkKlCSOp1bUN3gdlKKsQjmSJgj969CjnTx3L/cXMTJk7xQC2lGRsKcnXfV27u3PhqbHsXf87l+9tQ7G/fqdOx+aETp+ALTHBgUmFKLosUfC5ysjAb9smKj3/NCUWzTc7jeWcmj6LU9Nn/ef7UitU5shnK/j7g89IDwqh9MfvUrdNIwLWrXJASiGKNut9K5mRQcCa7whc9wMqNYXLrR4gtnkrXCPltn1mimvcgoNL1lJmzluELP6MaoN7ENP2QU5NfYO0suXNjieEJVmu4EOWLKTcm9PQ7h4kV6lG4NpVBK6Vo8WC5nX0IADJ1W5+eqH4u5vhevkyAet/wG/7Zs49M5FLA4aj3dwKOqYQRZolCr5+/fqcis6+uCbisf6klqtA4OpvcYuO5HLLtsS0bk+Wj6/JKa2l/KuTATg7ftrNf9jFhSx3D0ou/JDyb0yjwoyJhCxfxMmX3yGhUeMCTipE0WWZ+eD/NQ5ea3x3/krQ90tJrlaT8N6DCyilKEhuFy9Q4aVxBP2wAoBLPftzdtxUMosHmpxMCMcxahy8dQv+Cq1BqVtMJozmv2ktFaeMxvPsKdKDgjkz6RUiu/SQ/+1EkeB0Fzo5Uq9evXh97JDcX5SCMETFSc9QcdIzBba+2FYPsG/975x/cgwucbFUeWYwNR57EM/jRwtsG0IUNZYo+HPnzhF5UeYld6QsTy+yPAt29s4sL2/OjX2R/at3EHdXU/x/2crt7RpnT2CWklKg2xKiKLBEwQvHOzNpBmcmzTBk3cnVanJoyVqOvzGXTB9fyr3zKnUfuBu/bZsM2Z4QViUFLwonpYh8pBd7N/9F+KN98Dx1nJq9HqLKU/1xC79kdjohnIIUvMiXSuNHUGn8CMO3kxEQxMnXZ3Nw6VqSqtYg+Pul1G3dgBKffywTmAnxHyxR8E2aNKFG/bvMjlGkZAQEkREQ5LDtxd/VjP2rd3Bm3FRUWhqVJj1D7a6t8T6w12EZhHA21h8mKSzH48wpKk5+luJb1qFtNi72H8650ZPkYjbhtGSYpBB2qaEVObLgG/6e/TnpISUp/cn71G3dkIC1K7OvexBCABYp+IcffpjpT/c2O0aRUnnMUCqPGWpeAKWIfrALezfuImzAcNwvhVFtyGNUG9Qd93NnzMslRCFiiYKPiooi/nK02TGKlNTSZUktXdbsGGQW8+PMC6+x//ufSKjbgIANq6nbphGl585CpaebHU8IU1mi4IXjnR89mfOjJ5sd46qk2+/gwLebOTX1DXBxIfSVydR5sBm+f/xidjQhTGPpgvc4fYIy784kePlXZkcRjuDiwqV+Q9mz6U+iOnbF+8hBandrS6VxI3CRf+GJIsiSBX+l2Cu8NB7t7kFss/vMjmQ5VUYOpMrIgWbHyFV6ydIc+2Ahhz9bQUpoJUp8vYB6991B8DeL5EtYUaRYYlxh69atORqRPVdJ0DeLCJ05hSwPT5Kr1sRn/1/47P/L5ITW43X0EAC3jehrcpIbS6xTjww/f7yPHKDKs0MIWfI5J19+m5TbqpsdTQjDWaLgJ0+ezI+HYwGIub8j7hfO4/fbNjK9fYht2ZakmrfLrJJFWEYxP2wpyVSaNAq/X7dxe7vGhA19hvMjnkMX8IRpQhQmlr3QyZYQT+C6VRTfsJrYFq2JeKxfAaUUTktrgr9ZROjLE3CLjiKlQmVOTZ9F7D2tzU4miji54ccNtG/fnojEDD744tt/vWZLTEBlZJDpX/zWA4qrrpyaOfb+ZyYnuXmuMVGUf/UFSny9AICoTg9zevJM0kuWMjeYKLLkStYbSE5OJi0lOdfXsnx8pdwNkFirLom16podI18yAoI4OfN9DixbR1K1mgSt/CZ7ArOFH0FmptnxhCgwlih44Xhhw0cTNny02TFuScKdTdn/w8+cGf8SKj2dSpOfpXaXVnjv2212NCEKhBS8KNK0uzthw55l74adxLRqh++eXdR56B5Cp47FlhBvdjwhbokUvMiXqk/0pOoTPc2OUWDSylfg6PylHJ37JeklSlF6/mzqtW5IwOpvZey8cFqWKPiOHTtyV8t2ZscoUuIb3E18g7vNjlGwlCKmfWf2bNxF2MAncQu/SLVhvajWvxseZ06ZnU6Im2aJUTQg88GLgue9fw+VJjyN755dZHp6cX7keC4Ofhrt5mZ2NGExMopGCAdLqlOPAys2cXLaW2g3N0JnvkCdDk3x/WOH2dGEyBNLFHzLli0Z1+dBs2MUKdUGPkq1gY+aHcN4Li6E9xnC3o1/EvlQN7yPHqJ2t/upNPZJXGOizE4nxA1ZouCF48U2u5fYZveaHcNh0kuW4vh7Czj8+XekVKhMicWfUfe+Owhe+oV8CSsKLSl4kS+XBjzJpQFPmh3D4WLvac3edb9x7ulxuCTEU2XMUGp2b3d18jUhChMpeCFukvb04vzoyexb8yuxTe7B77efqdOhKeVeexFbcpLZ8YS4ytIFb0tKJOi7JfhvXmd2FMup3qcL1ft0MTuGqVJuq87hr37g+KyPyfTzp+wHb3B727vw37Le7GhCABYp+EcffZQW7f6/bGxJiQR9u4TKY4dT7PcdpJUuY2I6a4pp056YNu3NjmE+pYjs+hh7Nv3JpZ798Tx7ihp9u3Dbk31wuxRmdjpRxFluHLz/pjWEvjwR7epGUs06pJUuK3PBC4dxDzuP36/b8LhwjkzfYpwdM4VLfYaAi4vZ0UQhZtQ4eEtcGZSUlERKchJ4+5FcuSpJNergeeYk2sWF1NBKZAQEmh1RFBGJdRtwqd8w/H7ZStm3Z1DxxecI/mYRJ195l6Tb7zA7nihiLHEE37JlS6KTMvh42dqryzxP/E3Q90vx2bebiEd6EdPuoYKMWuTV6NkRgMOLVpmcpPByP3eGii+MIWDDarTNxqU+Qzg3ejKZfvk7UhPWJUfwNymlclXOj5qAx8ljZkexpKhOD5sdodBLKxfK0U+WELBuFRVeGEOpBXMJXP0tp198jegOXeTUoTCcJb5kvZHUSreRWuk2s2NYTsRj/Yl4rL/ZMZxCzP0d2bthJ2GDn8YtKoKqw/tQvW9XPM6cNDuasDjLF7wQhUGWjy9nJs1g/6rtxN9xF8V/Wk/dNndS5v3XUWlpZscTFiUFL/KlZvd21OwuUzTfrKRat3Nw+QZOzniHLA9Pyr8+ldvbN6HYr9vMjiYsyBIF369fP9p0sc7NJ5xBRLdeRHTrZXYM52SzEf74QPZs2kXk/7rjdewItbq3p/LoJ3CNjjQ7nbAQS4yiAZkPXjgvv+2bqTjpGbxOHiO9eCBnJ0wn4pFeYLPE8ZfIA5kP/gYiIyOJlalbHUqlp6PS082OYQlxze9j35pfOffMBFySEqg8drh9ArODZkcTTs4SBd+tWzdmjOxjdowipUavTtTo1cnsGJahPT05P2oC+9b+Rmyzlvj9voM67WUCM3FrLFHwwvHCu/cjvHs/s2NYTkrlqhz+ciXH3plPZvGA7AnM2tyJ/6a1//1hIf5BCl7kS1TXHkR17WF2DGtSiqj/PZo9gVmvgXicP0ON/g9z27BeuF28YHY64USk4EW+2JKT5NSBwTL9Azj18jscXL6RxJp1CFr9LfVaNaDk/A8gI8PseMIJSMGLfKneryvV+3U1O0aRkNDgLvav2s7piTMgK4uKU8dRp3NLfPbsMjuaKOQsUfDDhg2jQ4+B/35Ba3z//B3v/XscH8riLvUaxKVeg8yOUXS4unJxyNPs3biL6Ps74rN/N7U7t6TClNG4xMWanU4UUtYcB28v9qDvl+IWfpHwngOIa9GqAJMKYa4rE5h5XDhHWkhJTr8wk+iOD8sEZk7KqHHwlij4s2fPsvlYHNWrVMR731+EzpiES3wcSTVqk1i7HtrTy4C0RZstJRmALNm3plFpqQRsWI3/9s2orCwu39uGU9PeIrVCZbOjiZvkdNMFK6XmAx2BcK11HaO2A9C7d++r88HbEhNxSUwErUGDLTkZ5IKcAlfy848AuNR7iMlJirbYFq0J796X0p98QPGfNlC37V2cH/EcYU+MQnt4mB1PmMzIa/sXAO8DCw3cxr8kNG7OgeUb8P95C4GrluNz5ACXeg8moVFjR8awvNTyFQCIad/Z5CQCIKbD/wj5egGhr0yh/JvTCP52MSdffpv4JveYHU2YyLAvWbXWW4Foo9Z/Q66uxN7bhpOvvEvkwz1BZ5kSw8pi2neWci9MbDYieg7InsCsSw+8jh+lVo8OVH52CK5REWanEyaxxCia63J1Jfae1iTc2dTsJJbjGh0pMx8WQhkhJTn+9jwOLVpFcuWqhHyziHr3NSDkqwWQJQc6RY3pBa+UGqKU2qmU2hkRIUcazqLqsF5UHSbTBRdWcc1aZk9g9uxEbClJVB4/glqPPIDXkQNmRxMOZHrBa60/0lo30lo3CgkJydc6Ro8eTdf+Iwo4mbiRsMFPEzb4abNjiBvQHh6cH/k8e9f+Rmzz+yi28xfqdGhG+VcmY0tKNDuecADTC74gdOrUibvva292jCLlcpsOXG7TwewYIg9SK93G4S++59i788kICKTM3FnUbXsnxTf+aHY0YTDDCl4p9RXwC1BdKXVOKZXLpaYF48iRI5w7+bdRqxe5cAu/hFv4JbNjiLxSiqjOj7J3459c6jUI9/NnqT7gEao+0RP3sPNmpxMGscSFTi1btrw6Dl44xpX7sR5avMbkJCI/fP76g0oTRuJzcC+ZPr6ce3YSF/sNBVe5K5oZ5I5OolC5MGw0F4aNNjuGyKfEO+5k/8qtnJ78KmhNhWnjqdPpHnz++sPsaKIAScGLfIlt2ZbYlm3NjiFuhasrFweNyJ7A7IFO+BzcS+0urag4cRQusZfNTicKgBS8yBf3C+dwv3DO7BiiAKSVKcffH33FkU+WkFamHCW/mEfd1g0I+m5J9pQfwmlJwYt8qfLMIKo8I9MFW8nlNh3Yu2EnF4Y+g2tMNLc9PYAavTvjceq42dFEPlniG5VJkybx+xkZ1+tI558aZ3YEYYAsbx/OPj+NyC7dqTRhFP7bNlH3/ru48OQYLgx9ViYwczKWGEUD/5gPPge3SxdBZ5FeqsytxhOiaMnKImTxQkJfmYxrbAzJlatyavos4pq1NDuZ5cgomhvYvXs3xw/tvWaZ26WLlPrkAypNHInfL9tMSmZdHmdO4nHmpNkxhJFsNiIe68eezX8S0e1xvE78Tc2eHakyahCukeFmpxN5YIkj+Jzj4F0vhVH2vdfwObiXlAqViWtyD2llyxuQtmgLnTYegDOTXzU5iXAUr4N7KT3/AzwunCfDrzhnnn+JiB79wGaJ40RTOd0NP8xS7M/fKL5lHdrdA1upFHx37wS5OXGBSy2XPR984OpvzQ0iHOryfe3I8vSk5BefUPn5pwlZ+iUnZ7xDck1D7+kj8slyBR/T/n/E392cwB9W4L9tI5l+/oT36EtqxSpmRxPCMi71fYKKk56h+NaN3P5gM8IGjuD8qOfJ8vE1O5rIwZL/tsoIDCa892BOvvo+qWXL431wn9mRLMfz+FE8jx81O4YwSWqFyhxZ+C1/v7+A9MBgynz0DnXbNCJg3Sqzo4kcLFnwV1wp+pgO/zM7iuVUmvA0lSbIdMFFmlJEd+rG3k1/crHvE7iHnafa4B5UHdwD9/NnzU4nsMiXrDt27OCX0wk0b9bMgFQiN747fwWQe92Kq3z27MqewGz/bjK9fTj3zEQuDhguE5jlgQyTvIGmTZtS6467zY5RpCQ0aizlLq6RWK8h+7/bwqkXXwObjQovT6BOpxb4/vm72dGKLEsU/I4dOzj4129mxyhSvI4ckNu/iX9zdeVS/+Hs2biLqA7/w+fgPmp1bU3FiSNxiY0xO12RY4mCnzBhAp/NesnsGEVKxSmjqThFpgsWuUsvVYZjc77g8KffkFo2lJJffEK9Vg0I+lYmMHMkSxS8cLwzE17mzISXzY4hCrnYVg+wb8MfnH9yDC6XY7ht5ABqPN4JzxNyBzZHkIIX+ZJYryGJ9RqaHUM4gSwvb86NfZH9P+4g7s4m+P+8hdsfuJuyb89ApaSYHc/SpOBFvngf2Iv3gb3//UYh7JKr1eLQkrUcf30OmT6+lJs1g9vbNcZv+2azo1mWFLzIlwovjaXCS2PNjiGcjc1G5KO92bvpT8If6Y3XyWPUfLwTVUYOxDVCbuJe0CwxDn737t1sPxnPnQ0bGJBK5ObK0XtS7bomJxHOrNiv26g0cRRex46Q4Vecs+OnEv5Y/yI3gZmMg7+B+vXrU6WmFI0jJdWuK+Uubll84xbs+/EXzj73ArbUFCpNGEmtrm1kepECYomC37BhA3/t2JLrayotTb7IMYDPnl34yCydogBod3cujHiOvRv+4PK9bSn21+/U6dic0OkTsCUmmB3PqVmi4KdPn87Xc1+/ZplKS6P4+h+oNO5JQpZ+blIy6wqdMZHQGRPNjiEsJDW0Ekc+W87fsxeSHhRC6Y/fpW7rhgSsXWl2NKdluUkiVGoqQcsXEbB5PdrFxuX72hF3Z2Pcz542O5qlnB+efZGT7FdR0BLqNuTw599R+qN3CP5mEdWGPEZM2wc59eLrpJULNTueU7FcwQev+Jpyb7yEdvcguUo1Atd8R+Ca78yOJYTIh7im9+IaE03A+h/w276Z86MmcHHgk2g3N7OjOQXLFXxE9z4k1qxD0PfL8Dxzksv3tCG6w//I9C9udjRL8d2VPfdPQkOZ5E0YSCkASi78kPJvTCP0lUkEr/iKky+/I5Pd5YHlCh6lSKrXkKS6DfA+sJeg75cSuG4lEY/1NzuZpZR/axoAhxavMTmJKAou9R9OdIcuVJg6lqAfVlD74TZc6tmfs+Omklk80Ox4hZYlxsEfOXKErSfiqVu7pgGpRG6u3M0ppUo1k5OIosZ/8zoqTn4Wz7OnSA8K5sykV4js0uPq0b4zknHwN1C9enXKVapqdowiJaVKNSl3YYrY++5n3/rfsycwi4ulyjODqfHYg3ILyVxYouBXrlzJb5t/NDtGkVLs120U+3Wb2TFEEXV1ArPVO4i7uxn+v2zl9naNKfvmNFRKstnxCg1LFPybb77J8k/fNztGkVJu1suUmyXTBQtzJVeryaHFazj+xtzsCczenUnd++/Gb9sms6MVCpYoeOF4J16fw4nX55gdQwhQishHerF381+EP9oHz9MnqNnrIao81R+38KI9gZkUvMiX1NBKpIZWMjuGEFdlBARx8vXZHFy6lqSqNQj+fil1WzegxMKPIDPT7HimkIIX+eK3fbPM4y0Kpfi7mrF/9Q7OjJuKSkuj0uRnqd21Nd7795gdzeGk4EW+lH1vJmXfm2l2DCFypd3dCRs+mn3r/+Byy/vx3b2TOp1aEPrSOGwJ8WbHcxhLjIM/e/Ysm4/FUb1KxYIPJXLlfuEcAGllypmcRIj/oDUBP35HxRefw/1SGGmlynDqhdeIad+50Iydl3HwN1C+fHlCSkvROFJamXJS7sI5KEVMh/+xd+MuwgYMxy38ItWG9aLagEcsP1meJQp+8eLF/LR6udkxihT/Levx37Le7BhC5FlmMT/OvPAa+7/fSkLdBgRsWkPdNo0oPectVHq62fEMYYmCnzNnDqu//sTsGEVKmTlvUmbOm2bHEOKmJd1enwPfbubUS2+i3dwIfXUKdTo0xfePHWZHK3CWKPjr8TpygHKvvUjI4oVmR7GcY+99xrH3PjM7hhD54+LCpb5PsHfjn0Q+1A3vo4eo3e1+Ko19EteYKLPTFRhLFvyVYi/3xjTSS5Ympm0HsyNZTnqJkqSXKGl2DCFuSXrJUhx/bwGHF35LSoXKlFj8GXVbNSB42ZdQiAag5JflpgsOXvwZ5V+bar/hR1X8t27Ef+tGs2NZjltE9hWC6SFS8sIakitXJaN4AN4H91Jl9BOELP2ck9PfJqVqDbOj5ZvlCj7qoUexJSVRfOtGsry8uHzf/STUbwQulvujmqrKqEEAnJko89EI68jw88f1cgyVJo7C79dt3N6+CWFPjOL8U2PRnl5mx7tplhgHHxkZyYa/46hU9v+PJlVKCgEbfyRgzffEN25O+OMDCzJqkecaHQlARmCwyUmEMIDWBC//itDpz+MWHUVKaCVOTZ9F7L1tDNmcUePgLVHwAD8ejiXQ+99H6SolBZWVSZa3z63GE0IUMS6Xowl9dQolvloAQFTHrpyeMpP0kqULdDtyodMNLFiwgPUrvsz1Ne3pKeVugIAfvyPgR7mZubC2zOKBnHz1fQ4sW09S9VoErVpO3dYNKblgrlNMYGaZgt+wYpHZMYqUUgvmUGqBTBcsioaEO5uw/4efOfP8dFRGBhVfGEPt/92H977dZke7IUsUvHC8ox8v5ujHi82OIYTDaDc3woaOYu+GncS0bo/v3j+p89A9VHjxOVzi48yOlyspeJEvmX7+ZPrl75yhEM4srVwoRz9ZwtEPF5FWsjSlPp1D3dYNCfxhRaEbOy8FL/IlcOUyAlcuMzuGEOZQiph2D7F3w07CBo7ALTKcqsN7U61/NzzOnDI73VVS8CJfSn4xj5JfzDM7hhCmyvItxpkpr7J/5TYS6jciYPNabm97J6Vnv4lKSzM7njWGSSYlJbH2SCxlgvwMSCVyY0tOArLvbi+EADIzKbFoPuVfexHXuFiSqtbg1Ix3iL+r2X9+VIZJ3oC3tzeeUjQOleXlLeUuRE4uLoT3HmyfwOwRvP8+TK1HHqDSc8OvXhjoaJYo+NmzZ7NqkZwucKSg5V8TtPxrs2MIUeiklyjJ8fc+5dAX35NSsQollizMnsBs6RcO/xLWEgW/ZMkStq1ZYXaMIqXE4gWUWLzA7BhCFFpxLVqxd+1vnBs5HpfEBKqMGUrN7u3wOnrIYRkMLXilVDul1BGl1DGl1HgjtyUc6/AXKzn8xUqzYwhRqGlPT84/O4l9a34ltsk9+P32M3XaN6Hcay9e/R7LSIYVvFLKBfgAaA/UAh5TStUyanu5cbkcTchXCwhYt8qRmy0StJsb2s3N7BhCOIWUKtU4/NUPHJ/1MZn+xSn7wRvc3vYu/DevM3S7Rh7B3wUc01qf0FqnAV8DnQ3c3lVXir3yuBF4HTtCcpVqjthskRK89Ivsc4pCiLxRisiuj7Fn059c6tkfz7OnqNGvK7cN64VHeJghmzRykvSywNkcz88Bdxu4PQAC1n5P+RmT0O4eJNaoDZkZlJDx2gUucPW3AHgf3GtuECGcUJanF1EPdsX3r98JWv0t9/y0EX77BWrXLtDtmH4XDKXUEGCI/WmCUupIPlcV3LiCb2RlcHsZytQEr+NHD6VsgfgLYM1bpudROvi7QawhK58/25DVOpKh+8cCZP9c363um0OQehBSSYyHOnXyu5oK13vByII/D5TP8bycfdk1tNYfAR/d6saUUjuvGeyvVPl60KMrtAC+ROsiOzPWv/aNuIbsnxuT/XN9hX3fGFnwfwBVlVKVyC72HkBPA7d3La3PAq+j1NeActh2hRCikDCs4LXWGUqpEcBawAWYr7U+YNT2bhDk7H+/SQghrMfQc/Ba69XAaiO3kcMtn+axMNk3Nyb758Zk/1xfod43hWqyMSGEEAXHElMVCCGE+DenL/iiNB2CUmq+UipcKbU/x7JApdR6pdTf9v8G2JcrpdS79v2yVynVIMdn+trf/7dSqm+O5Q2VUvvsn3lXKeU0X04rpcorpTYrpQ4qpQ4opUbal8v+AZRSnkqp35VSe+z7Z6p9eSWl1G/2P9NipZS7fbmH/fkx++sVc6zrefvyI0qpB3Isd+rfRaWUi1LqL6XUKvtz5983Wmun/SH7y9vjQGXAHdgD1DI7l4F/3nuABsD+HMteA8bbH48HZtofdwB+JHsEUWPgN/vyQOCE/b8B9scB9td+t79X2T/b3uw/803sm9JAA/vjYsBRsqfIkP2TnV0BvvbHbsBv9j/LEqCHfflcYJj98XBgrv1xD2Cx/XEt+++ZB1DJ/vvnYoXfReBZYBGwyv7c6feNsx/BmzYdghm01luB6H8s7gx8Zn/8GfC/HMsX6my/AsWVUqWBB4D1WutorXUMsB5oZ3/NT2v9q87+f+vCHOsq9LTWYVrrP+2P44FDZF9NLfsHsP85E+xP3ew/GmgFXLn34j/3z5X9tgxobf8XS2fga611qtb6JHCM7N9Dp/5dVEqVAx4E5tmfKyywb5y94HObDqGsSVnMUlJrfWUii4tASfvj6+2bGy0/l8typ2P/J/MdZB+lyv6xs5+C2A2Ek/0X13HgstY6w/6WnH+mq/vB/nosEMTN7zdn8TYwFsiyPw/CAvvG2Qte5GA/sizSw6KUUr7AN8AorXVczteK+v7RWmdqreuTfVX5XUANcxMVDkqpjkC41nqX2VkKmrMXfJ6mQ7C4S/bTB9j/G25ffr19c6Pl5XJZ7jSUUm5kl/uXWuvl9sWyf/5Ba30Z2Aw0IfvU1JXrYXL+ma7uB/vr/kAUN7/fnEEz4CGl1CmyT5+0At7BCvvG7C82buWH7Au1TpD9hcaVLy9qm53L4D9zRa79kvV1rv0S8TX74we59kvE3+3LA4GTZH+BGGB/HGh/7Z9fInYw+897E/tFkX1e/O1/LJf9k509BChuf+wFbAM6Aku59ovE4fbHT3LtF4lL7I9rc+0XiSfI/hLREr+LQEv+/0tWp983pu/QAvgfpAPZIyaOAxPNzmPwn/UrIIzs2THPAQPJPve3Efgb2JCjjBTZN1w5DuwDGuVYzwCyvwA6BvTPsbwRsN/+mfexXwjnDD9Ac7JPv+wFdtt/Osj+uZq9LvCXff/sB6bYl1cm+y+uY/ZC87Av97Q/P2Z/vXKOdU2074Mj5BhJZIXfxX8UvNPvG7mSVQghLMrZz8ELIYS4Dil4IYSwKCl4IYSwKCl4IYSwKCl4IYSwKCl4Ia5DKfW2Uuoe++Mt9tkA9yilflZKVb/B50KUUmscl1SI3EnBC5ELpVQQ0FhnT/B2xeNa63pkTzT1+vU+q7WOAMKUUs0MjinEDUnBiyJFKVVRKXVYKfWlUuqQUmqZUso7l7c+DFzvKHwrcJt9XduUUn/af5rmeM+3wOMFHF+ImyIFL4qi6sBsrXVNII7s+b3/qRlwvcmnOpF99Ws40FZr3QDoDryb4z07gRYFlliIfJCCF0XRWa31z/bHX5A9zcE/lQYi/rHsS/t0u82AMWTPqf6xUmof2Zeu18rx3nCgTEGGFuJmuf73W4SwnH/Oz5HbfB3JZM85ktPjWuudV54opV4ELgH1yD5YSsnxXk/7OoQwjRzBi6IoVCnVxP64J7A9l/ccAm77j/X4A2Fa6yygN9kzB15RjexJvYQwjRS8KIqOAE8qpQ6RPSXwnFze8wPZMwveyGygr1JqD9k3z0jM8dp99nUIYRqZTVIUKfbb+a3SWtfJw3u3Ax119g0ybnY7W4HOOvu+rkKYQo7ghbi+0UDozX5IKRUCvCXlLswmR/BCCGFRcgQvhBAWJQUvhBAWJQUvhBAWJQUvhBAWJQUvhBAWJQUvhBAW9X+He90VxQPZ7AAAAABJRU5ErkJggg==\n", "text/plain": "
" }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ] } }, "2ecab3da6e7f4e89a8b51168e8f686a4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "IntSliderModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "IntSliderModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "IntSliderView", "continuous_update": true, "description": "rho2", "description_tooltip": null, "disabled": false, "layout": "IPY_MODEL_40232ebde1ee4d77aafc1d23b177b801", "max": 2000, "min": 1000, "orientation": "horizontal", "readout": true, "readout_format": "d", "step": 100, "style": "IPY_MODEL_6e2e689db7df451f978b73cfcd68ec64", "value": 1500 } }, "3554d1c01cda4d17839a4bb3462f254b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "36f406100b444595870971aa9c7d4ea3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "SliderStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "SliderStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "", "handle_color": null } }, "388cb8d75c2f482490643837b9b8ba93": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "IntSliderModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "IntSliderModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "IntSliderView", "continuous_update": true, "description": "rho1", "description_tooltip": null, "disabled": false, "layout": "IPY_MODEL_56a79474949f4dee9761514c07cab44a", "max": 1000, "min": 500, "orientation": "horizontal", "readout": true, "readout_format": "d", "step": 100, "style": "IPY_MODEL_4adba181cbd2400081c20c718836e626", "value": 700 } }, "40232ebde1ee4d77aafc1d23b177b801": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "45ff1c2d11f04593a129e25981d514c3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "SliderStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "SliderStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "", "handle_color": null } }, "4adba181cbd2400081c20c718836e626": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "SliderStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "SliderStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "", "handle_color": null } }, "509f71f352e04f9f8e7b65a8c5f914ef": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "SliderStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "SliderStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "", "handle_color": null } }, "543522955c274325973a25a45ae1a683": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "IntSliderModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "IntSliderModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "IntSliderView", "continuous_update": true, "description": "rho2", "description_tooltip": null, "disabled": false, "layout": "IPY_MODEL_14c0b65661404e2e8d44345b55f15180", "max": 2000, "min": 1000, "orientation": "horizontal", "readout": true, "readout_format": "d", "step": 100, "style": "IPY_MODEL_5e094528825547fe8fd108d7e5c95aa9", "value": 1500 } }, "5507d083178e4a16a313ef643316b941": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "SliderStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "SliderStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "", "handle_color": null } }, "55bfd064995841be868d32e41e6d351b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "561ebe95e82f4c9893ba05d224506a6b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "56a79474949f4dee9761514c07cab44a": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "5d53f025c78545948938170ade03822c": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "5e094528825547fe8fd108d7e5c95aa9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "SliderStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "SliderStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "", "handle_color": null } }, "687f3a713bed4bbb8f7660bfbdbed995": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatSliderModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatSliderModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "FloatSliderView", "continuous_update": true, "description": "H2", "description_tooltip": null, "disabled": false, "layout": "IPY_MODEL_144c22befa6747cc82ccd2d6129bcdc4", "max": 5, "min": 0, "orientation": "horizontal", "readout": true, "readout_format": ".2f", "step": 0.1, "style": "IPY_MODEL_5507d083178e4a16a313ef643316b941", "value": 2 } }, "6e2e689db7df451f978b73cfcd68ec64": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "SliderStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "SliderStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "", "handle_color": null } }, "946a81804f134b229066fade36714dea": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatSliderModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatSliderModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "FloatSliderView", "continuous_update": true, "description": "H1", "description_tooltip": null, "disabled": false, "layout": "IPY_MODEL_3554d1c01cda4d17839a4bb3462f254b", "max": 5, "min": 1, "orientation": "horizontal", "readout": true, "readout_format": ".2f", "step": 0.1, "style": "IPY_MODEL_509f71f352e04f9f8e7b65a8c5f914ef", "value": 4.3 } }, "9e7c0381d42a4c8cad5550e5c33f31e9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "VBoxModel", "state": { "_dom_classes": [ "widget-interact" ], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "VBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "VBoxView", "box_style": "", "children": [ "IPY_MODEL_946a81804f134b229066fade36714dea", "IPY_MODEL_a2b7501dff5c4c129b440e8053d90e99", "IPY_MODEL_1d1ce153356f41e7883a2c156ab9f148", "IPY_MODEL_2ecab3da6e7f4e89a8b51168e8f686a4", "IPY_MODEL_28b5b75d3c204183b05bac05cce24a26" ], "layout": "IPY_MODEL_a5a6b0cfd7ae47f58fee65bba817e817" } }, "a2b7501dff5c4c129b440e8053d90e99": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatSliderModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatSliderModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "FloatSliderView", "continuous_update": true, "description": "H2", "description_tooltip": null, "disabled": false, "layout": "IPY_MODEL_55bfd064995841be868d32e41e6d351b", "max": 5, "min": 0, "orientation": "horizontal", "readout": true, "readout_format": ".2f", "step": 0.1, "style": "IPY_MODEL_ce5e2fcd184e46c186765d58233f69ab", "value": 2 } }, "a5a6b0cfd7ae47f58fee65bba817e817": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "ce5e2fcd184e46c186765d58233f69ab": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "SliderStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "SliderStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "", "handle_color": null } }, "d3861921b160405ab3e0460ab3f3c256": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatSliderModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatSliderModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "FloatSliderView", "continuous_update": true, "description": "H1", "description_tooltip": null, "disabled": false, "layout": "IPY_MODEL_10b6af32de424c41a47d294afbb5ceeb", "max": 5, "min": 1, "orientation": "horizontal", "readout": true, "readout_format": ".2f", "step": 0.1, "style": "IPY_MODEL_45ff1c2d11f04593a129e25981d514c3", "value": 3 } }, "e6f4408b6c11443ab4427d04e44b01b2": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } } } } }, "nbformat": 4, "nbformat_minor": 1 }