{ "cells": [ { "cell_type": "markdown", "metadata": { "id": "N6JfZSJ8QwIZ" }, "source": [ "\n", "## Ejemplo resuelto: cálculo de líneas de corriente, trazas y trayectorias\n", "\n", "Asignatura: Mecánica de Fluidos\n", "\n", "Departamento: Ciencia y Tecnología de Materiales y Fluidos\n", "\n", "Centro: Escuela Universitaria Politécnica de Teruel\n", "\n", "Profesor: Adrián Navas Montilla\n", "\n" ] }, { "cell_type": "markdown", "metadata": { "id": "VEl6BE5sVV-W" }, "source": [ "**Enunciado (de la colección de problemas MF GIEA del Departamento de Ciencia y Tecnología de Materiales y Fluidos)**\n", "\n", "Disponemos de una fuente ornamental que genera un flujo no estacionario descrito por el siguiente campo de velocidad:\n", "\n", "$$\\mathbf{v}=u_0\\sin\\left(w\\left(t-\\frac{y}{v_0}\\right)\\right)\\mathbf{\\hat{i}}+v_0\\mathbf{\\hat{j}}$$\n", "\n", "Se pide lo siguiente:\n", "\n", "**a.1)** Calcular la expresión general de las líneas de corriente\n", "\n", "**a.2)** Calcular la expresión de la línea de corriente que pasa por $(x,y)=(0,0)$ en el instante $t=0$.\n", "\n", "**b.1)** Calcular la expresión general de las trayectorias de la partículas.\n", "\n", "**b.2)** Calcular la trayectoria de la partícula que pasa por el origen en $t=\\pi/2w$.\n", "\n", "**c)** Hacer una representación gráfica de las anteriores" ] }, { "cell_type": "markdown", "metadata": { "id": "PHi3ePUfo1Nu" }, "source": [ "**a) Cálculo de las líneas de corriente (streamlines)**\n", "\n", "Las líneas de corriente son aquellas curvas tangentes al vector velocidad. Por lo tanto, cumplirán:\n", "\n", "$$ d\\mathbf{r}\\times \\mathbf{v}=0$$\n", "\n", "donde $d\\mathbf{r}=(dx,dy)$ y $\\mathbf{v}=(u,v)$.\n", "\n", "Se calculan mediante la siguiente ecuación diferencial:\n", "$$ \\frac{dx}{dy}= \\frac{u}{v}$$\n", "\n", "Vamos a utilizar Python para integrar esta ecuación diferencial y obtener $x(y)$, que representa las lineas de corriente." ] }, { "cell_type": "markdown", "metadata": { "id": "Qzy_kkCCQwIa" }, "source": [ "Lo primero que debemos hacer es cargar las librerías necesarias de Python. Para este problema, en particular, será de gran utilidad la librería *sympy* que permite realizar cálculo simbólico." ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "id": "pMFLnRC7QwIb" }, "outputs": [], "source": [ "from sympy import * # Librería para trabajo simbólico\n", "import math # Librería para utilizar símbolos matemáticos como el número pi, que se escribe como math.pi" ] }, { "cell_type": "markdown", "metadata": { "id": "_SgQId7QQwIc" }, "source": [ "Y después definiremos las variables simbólicas necesarias (aquellas con las que tendremos que trabajar y que no se les ha asignado ningún valor, por lo que son \"símbolos\")." ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "id": "1x6-SLoaQwIc" }, "outputs": [], "source": [ "x,y=symbols('x y') #Declaramos x e y como variable simbólica.\n", "t,u0,v0,w=symbols('t u0 v0 w',positive=True) # Declaramos estas variables simbólicas, especificando además que van a ser siempre positivas (esto sirve para facilitarle a Python hacer las integrales)\n", "x_st = symbols('x_st', cls=Function) #Esta variable además será una función" ] }, { "cell_type": "markdown", "metadata": { "id": "fqrwOW0CXxs-" }, "source": [ "Ahora definiremos las componentes de la velocidad, $u$ y $v$, así como la ecuación diferencial de las trayectorias. Para esto último usaremos la función *equality* ```Eq(a,b)``` que permite escribir una igualdad del tipo $a=b$. Para expresar la derivada $df(y)/dy$ se utiliza ```f(y).diff(y)```." ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 104 }, "id": "YaemnY9ItaEe", "outputId": "1f38288f-7bba-4c00-8e01-2776541e080f" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Esta es la ecuación diferencial a resolver:\n", "\n" ] }, { "data": { "text/latex": [ "$\\displaystyle \\frac{d}{d y} \\operatorname{x_{st}}{\\left(y \\right)} = \\frac{u_{0} \\sin{\\left(w \\left(t - \\frac{y}{v_{0}}\\right) \\right)}}{v_{0}}$" ], "text/plain": [ "Eq(Derivative(x_st(y), y), u0*sin(w*(t - y/v0))/v0)" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "u=u0*sin(w*(t-y/v0))\n", "v=v0\n", "\n", "eq = Eq(x_st(y).diff(y), u/v) #Definimos la ecuación diferencial ordinaria (EDO): dx/dy=u/v\n", "\n", "print('Esta es la ecuación diferencial a resolver:\\n')\n", "display(eq)" ] }, { "cell_type": "markdown", "metadata": { "id": "ApSZMCAOd0zB" }, "source": [ "Ahora que ya hemos definido la ecuación diferencial y la hemos guardado en la variable ```eq```, vamos a resolverla. Para ello utilizamos la función ```dsolve```:" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 101 }, "id": "cKS9senBZaAh", "outputId": "20bb6391-9002-48bf-9dd3-b781cc1bcce4" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Al integrar la ecuación diferencial obtenemos la ecuación de la línea de corriente:\n", "\n" ] }, { "data": { "text/latex": [ "$\\displaystyle \\operatorname{x_{st}}{\\left(y \\right)} = \\frac{C_{1} w + u_{0} \\cos{\\left(t w - \\frac{w y}{v_{0}} \\right)}}{w}$" ], "text/plain": [ "Eq(x_st(y), (C1*w + u0*cos(t*w - w*y/v0))/w)" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "edo_sol = dsolve(eq) #Resolvemos la EDO\n", "\n", "print('Al integrar la ecuación diferencial obtenemos la ecuación de la línea de corriente:\\n')\n", "display(factor(edo_sol))" ] }, { "cell_type": "markdown", "metadata": { "id": "4oQyybQmerTt" }, "source": [ "Como podemos observar, la ecuación de la linea de corriente depende de una constante $C_1$, producto de la integración. Esto nos indica que existen infinitas líneas de corriente.\n", "\n", "Si queremos por ejemplo obtener la línea de corriente que pasa por $(x,y)=(0,0)$, lo primero que haremos será sustituir en la solución (almacenada en la variable ```edo_sol```) los valores $x=y=0$. Para ello haremos lo siguiente:" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 53 }, "id": "q67c7VzUfQZ0", "outputId": "679e4f60-d7b1-447a-cfbc-4b7196ec8bbb" }, "outputs": [ { "data": { "text/latex": [ "$\\displaystyle C_{1} + \\frac{u_{0} \\cos{\\left(t w \\right)}}{w} = 0$" ], "text/plain": [ "Eq(C1 + u0*cos(t*w)/w, 0)" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "C_eq = Eq(edo_sol.rhs.subs(y, 0), 0) #donde edo_sol.rhs se refiere al lado derecho de la ecuación (right hand side)\n", "display(C_eq)" ] }, { "cell_type": "markdown", "metadata": { "id": "nn-KUxZfxSbQ" }, "source": [ "Y ahora despejaremos $C_1$ de esta ecuación:" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 35 }, "id": "MSTcYyd4w5FW", "outputId": "e7140d1b-76a3-48b8-b554-a8373830c1ca" }, "outputs": [ { "data": { "text/plain": [ "{C1: -u0*cos(t*w)/w}" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "C1 = solve(C_eq)[0]\n", "display(C1)" ] }, { "cell_type": "markdown", "metadata": { "id": "e-UWgP9lxFdy" }, "source": [ "Finalmente, sustituimos el valor obtenido de $C_1$ en la solución (almacenada en ```edo_sol```), obteniendo:" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 65 }, "id": "WN5YYQE-xB19", "outputId": "70ace6d1-358c-4d61-eda9-f4685c1165a5" }, "outputs": [ { "data": { "text/latex": [ "$\\displaystyle \\operatorname{x_{st}}{\\left(y \\right)} = \\frac{u_{0} \\left(- \\cos{\\left(t w \\right)} + \\cos{\\left(t w - \\frac{w y}{v_{0}} \\right)}\\right)}{w}$" ], "text/plain": [ "Eq(x_st(y), u0*(-cos(t*w) + cos(t*w - w*y/v0))/w)" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "linea_corriente = edo_sol.subs(C1)\n", "display(factor(linea_corriente))" ] }, { "cell_type": "markdown", "metadata": { "id": "HlBgjlVGrAIO" }, "source": [ "Si ahora queremos obtener la línea de corriente en el tiempo $t=0$:" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 65 }, "id": "-jOqWPlJrAk2", "outputId": "624917ba-fc91-4e57-bcab-12096f53f1b1" }, "outputs": [ { "data": { "text/latex": [ "$\\displaystyle \\operatorname{x_{st}}{\\left(y \\right)} = \\frac{u_{0} \\left(\\cos{\\left(\\frac{w y}{v_{0}} \\right)} - 1\\right)}{w}$" ], "text/plain": [ "Eq(x_st(y), u0*(cos(w*y/v0) - 1)/w)" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "display(factor(linea_corriente.subs(t,0)))" ] }, { "cell_type": "markdown", "metadata": { "id": "TY3BdeSflQkK" }, "source": [ "**b) Cálculo de las trayectorias (pathlines)**\n", "\n", "Las trayectorias vienen dadas por los puntos del plano por los que ha pasado una partícula fluida. Se calculan mediante la ecuación:\n", "\n", "$$ \\frac{d\\mathbf{r}(t)}{dt}= \\mathbf{v}(\\mathbf{r}(t),t)$$\n", "\n", "que en realidad es un sistema de dos ecuaciones:\n", "\n", "$$ \\frac{dx(t)}{dt}= u(x,y,t)$$\n", "$$ \\frac{dy(t)}{dt}= v(x,y,t)$$\n" ] }, { "cell_type": "markdown", "metadata": { "id": "sEo3oZmvzIsJ" }, "source": [ "Para comenzar vamos a importar la función ```dsolve_system``` del paquete Sympy que permite resolver sistemas de ecuaciones diferenciales:" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "id": "LW0rTgVdzmNj" }, "outputs": [], "source": [ "from sympy.solvers.ode.systems import dsolve_system" ] }, { "cell_type": "markdown", "metadata": { "id": "gKUhF3GpzqT8" }, "source": [ "Ahora vamos a definir las coordenadas de las trayectorias como variables simbólicas de tipo \"función\". Además, vamos a definir las coordenadas iniciales y el tiempo inicial como variables simbólicas también. Finalmente, también definimos las dos ecuaciones diferenciales que componen el sistema:" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "id": "5Sl0RE_vznUd" }, "outputs": [], "source": [ "x_tr,y_tr = symbols('x_tr y_tr', cls=Function) #Definimos las funciones de las trayectorias\n", "t0,x0,y0 = symbols('t0 x0 y0')\n", "\n", "eqs = [Eq(x_tr(t).diff(t), u0*sin(w*(t-y_tr(t)/v0))), Eq(y_tr(t).diff(t), v0)]" ] }, { "cell_type": "markdown", "metadata": { "id": "qcnBzbvVzmtq" }, "source": [ "Para obtener las trayectorias debemos resolver el sistema de ecuaciones mediante la integración de cada una de ellas:\n", "$$ \\mathbf{r}(t)= \\mathbf{r}_0 + \\int_{t_0}^{t}\\mathbf{v}(\\mathbf{r}(t),t)dt$$\n", "\n", "donde debemos tener especial cuidado en la dependencia temporal de los argumentos de las funciones $u$ y $v$ (las ecuaciones de las trayectorias no son independientes, forman un sistema y están \"acopladas\").\n", "\n", "Gracias a la función ```dsolve_system```, podemos obtener facilmente la solución del sistema de la siguiente manera:" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 245 }, "id": "fSJm128f0K8d", "outputId": "d0060e2b-0449-4e0f-bc4a-e48cbf4d487c" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "La solución del sistema es:\n", "\n" ] }, { "data": { "text/latex": [ "$\\displaystyle \\operatorname{x_{tr}}{\\left(t \\right)} = C_{1} - u_{0} \\int \\sin{\\left(\\frac{C_{2} w}{v_{0}} - t w + w \\int 1\\, dt \\right)}\\, dt$" ], "text/plain": [ "Eq(x_tr(t), C1 - u0*Integral(sin(C2*w/v0 - t*w + w*Integral(1, t)), t))" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/latex": [ "$\\displaystyle \\operatorname{y_{tr}}{\\left(t \\right)} = C_{2} + v_{0} \\int 1\\, dt$" ], "text/plain": [ "Eq(y_tr(t), C2 + v0*Integral(1, t))" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "\n", " Al integrar, obtenemos:\n", "\n" ] }, { "data": { "text/latex": [ "$\\displaystyle \\operatorname{x_{tr}}{\\left(t \\right)} = C_{1} - t u_{0} \\sin{\\left(\\frac{C_{2} w}{v_{0}} \\right)}$" ], "text/plain": [ "Eq(x_tr(t), C1 - t*u0*sin(C2*w/v0))" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/latex": [ "$\\displaystyle \\operatorname{y_{tr}}{\\left(t \\right)} = C_{2} + t v_{0}$" ], "text/plain": [ "Eq(y_tr(t), C2 + t*v0)" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "edo_sol2 = dsolve_system(eqs, t=t) #ics={x_tr(t0): x0, y_tr(t0): y0}\n", "\n", "trayectoria1 = edo_sol2[0][0]\n", "trayectoria2 = edo_sol2[0][1]\n", "\n", "print('La solución del sistema es:\\n')\n", "display(factor(trayectoria1))\n", "display(factor(trayectoria2))\n", "\n", "trayectoria1 = edo_sol2[0][0].doit()\n", "trayectoria2 = edo_sol2[0][1].doit()\n", "\n", "print('\\n Al integrar, obtenemos:\\n')\n", "display(factor(trayectoria1))\n", "display(factor(trayectoria2))" ] }, { "cell_type": "markdown", "metadata": { "id": "w1SzMYRS0aHh" }, "source": [ "De la misma manera que en el cálculo de las líneas de corriente, si queremos obtener una trayectoria particular debemos dar valor a las constantes de integración $C_1$ y $C_2$.\n", "\n", "En este caso, en vez de dar un valor numérico a $x_0$, $y_0$ y $t_0$, vamos a dejar la solución en función de éstas (que hemos declarado previamente como variables simbólicas para ello.\n", "\n", "Seguimos el mismo procedimiento que en el cálculo de las líneas de corriente:" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 281 }, "id": "cVbGdKKU0ZVF", "outputId": "c6534074-01e1-440a-c9c7-48d7cefb19aa" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "Imponemos la condición de contorno:\n" ] }, { "data": { "text/latex": [ "$\\displaystyle C_{2} + t_{0} v_{0} = y_{0}$" ], "text/plain": [ "Eq(C2 + t0*v0, y0)" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "{C2: -t0*v0 + y0}" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "\n", "Imponemos la condición de contorno:\n" ] }, { "data": { "text/latex": [ "$\\displaystyle C_{1} - t_{0} u_{0} \\sin{\\left(\\frac{C_{2} w}{v_{0}} \\right)} = x_{0}$" ], "text/plain": [ "Eq(C1 - t0*u0*sin(C2*w/v0), x0)" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "{C1: t0*u0*sin(C2*w/v0) + x0}" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "\n", "Y sustituyendo las constantes de integración:\n" ] }, { "data": { "text/latex": [ "$\\displaystyle \\operatorname{x_{tr}}{\\left(t \\right)} = t u_{0} \\sin{\\left(t_{0} w - \\frac{w y_{0}}{v_{0}} \\right)} - t_{0} u_{0} \\sin{\\left(t_{0} w - \\frac{w y_{0}}{v_{0}} \\right)} + x_{0}$" ], "text/plain": [ "Eq(x_tr(t), t*u0*sin(t0*w - w*y0/v0) - t0*u0*sin(t0*w - w*y0/v0) + x0)" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/latex": [ "$\\displaystyle \\operatorname{y_{tr}}{\\left(t \\right)} = t v_{0} - t_{0} v_{0} + y_{0}$" ], "text/plain": [ "Eq(y_tr(t), t*v0 - t0*v0 + y0)" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "print('')\n", "print('Imponemos la condición de contorno:')\n", "C_eq = Eq(trayectoria2.rhs.subs(t, t0), y0)\n", "display(C_eq)\n", "C2 = solve(C_eq)[0]\n", "display(C2)\n", "\n", "print('')\n", "print('Imponemos la condición de contorno:')\n", "C_eq = Eq(trayectoria1.rhs.subs(t, t0), x0)\n", "display(C_eq)\n", "C1 = solve(C_eq)[0]\n", "display(C1)\n", "\n", "trayectoria1_f=trayectoria1.subs(C1).subs(C2)\n", "trayectoria2_f=trayectoria2.subs(C2)\n", "\n", "print('')\n", "print('Y sustituyendo las constantes de integración:')\n", "display(factor(trayectoria1_f))\n", "display(factor(trayectoria2_f))" ] }, { "cell_type": "markdown", "metadata": { "id": "oP7iZPOw4YHC" }, "source": [ "lo que podemos reescribir como:\n", "\n", "$$\\frac{x_{tr}-x_0}{y_{tr}-y_0} = \\frac{u_0}{v_0}\\sin\\left(wt_0-\\frac{wy_0}{v_0} \\right)$$\n", "\n", "\n", "Si queremos calcular la trayectoria de la partícula que pasa por el origen en $t=\\pi/2w$, simplemente sustituiremos $t_0=\\pi/2w$, $x_0=y_0=0$." ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 123 }, "id": "B8Zz5siflRbI", "outputId": "9fe4f278-f796-431e-afdc-ab617c7d20a8" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Y sustituyendo las constantes de integración:\n", "\n" ] }, { "data": { "text/latex": [ "$\\displaystyle \\operatorname{x_{tr}}{\\left(t \\right)} = \\frac{u_{0} \\cdot \\left(2 t w - \\pi\\right)}{2 w}$" ], "text/plain": [ "Eq(x_tr(t), u0*(2*t*w - pi)/(2*w))" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/latex": [ "$\\displaystyle \\operatorname{y_{tr}}{\\left(t \\right)} = \\frac{v_{0} \\cdot \\left(2 t w - \\pi\\right)}{2 w}$" ], "text/plain": [ "Eq(y_tr(t), v0*(2*t*w - pi)/(2*w))" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "trayectoria1_fp=trayectoria1_f.subs([(t0, pi/2/w), (y0, 0), (x0,0)])\n", "trayectoria2_fp=trayectoria2_f.subs([(t0, pi/2/w), (y0, 0), (x0,0)])\n", "\n", "print('Y sustituyendo las constantes de integración:\\n')\n", "display(factor(trayectoria1_fp))\n", "display(factor(trayectoria2_fp))" ] }, { "cell_type": "markdown", "metadata": { "id": "ZZuD-LD15gRW" }, "source": [ "De donde se observa la relación:\n", "\n", "$$x/y=u_0/v_0$$" ] }, { "cell_type": "markdown", "metadata": { "id": "p6gsKatzuei4" }, "source": [ "**c) Representación gráfica**" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 515 }, "id": "YavZYgPjs3yE", "outputId": "833684da-486b-4537-be8d-687e3c1eaea8" }, "outputs": [ { "data": { "text/plain": [ "(-3.141592653589793, 3.141592653589793)" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6YAAAHgCAYAAAC2HHCzAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOydd3gUVffHv1uzu9lseg8JSQgBRaTaxYIISFcQC8rPV0VRQQWxva+9YEGKIKJiBVEgIihVepMWIISSkEp622ySbdk69/fHmkAkPXN3NuF+niePkpnM9+zu2Zl77j33HBEhBAwGg8FgMBgMBoPBYAiFWGgDGAwGg8FgMBgMBoNxZcMCUwaDwWAwGAwGg8FgCAoLTBkMBoPBYDAYDAaDISgsMGUwGAwGg8FgMBgMhqCwwJTBYDAYDAaDwWAwGILCAlMGg8FgMBgMBoPBYAiKVGgDLiUoKIh0795daDMYDAaD0QU4fvy4lhASLLQdnR32bGYwGnK8+HjrThQBA8MH0jWGwehkNPds9qjAtHv37khOThbaDAaDwWB0AUQiUZ7QNnQF2LOZwWiIZq4GBpuh5fO8NEh+lX13GIxLae7ZzFJ5GQwGg8FgMBiMVjKl7xTIxLJmz5GJZXik7yNusojB6BqwwJTBYDAYDAaDwWgls2+cDZmkhcBUIsOLN7zoJosYjK4BC0wZjM6E2QxUVQGECG0Jg8FgMBhXJPEB8UialASVTHXZyqlMLINKpkLSpCTEB8S36brFxQDH8Wkpg9G5YIEpg9GZSEoCAgKA7GyhLWEwGFcQTs6JclM5nJyz2fPMNjOyde67P3Ech9yqXOjMOrdpMprGwTmQV52Haku10KZQZ2TCSKQ+nYppA6dB46WBWCSGxkuDaQOnIfXpVIxMGNmm6xECDBsGxMcDb74JZGVRMpxHdGYd8qrzwLFo2iPQmrVu/zwyKzNhcViaPcfutKPCVAGOtGyXxwWmJ0+epK7hdDpx6tQp6jqVlZXIy6NfeyM1NRUOh4O6jjs+m66mw3EcUlJS+LtgebnrvyEhDX5dVVWF3Nxc/nSa4PTp07Db7dR1upIPuEuHd19rgurqauTk5FDXOXPmDGw2G3UdRuuwOCwoqCmA1qxt9jwbZ0OMX4ybrHIFQocLD+N85Xm3aTKahuM47M/bj/yafKFNcQvxAfFYcs8S1LxaA+ebTtS8WoMl9yxp80opAJSVAQYDcOEC8N57QEKC5wen2VXZOFBwQGgzGP9wpvwMjhQdcatmrH8sbI7mn9XlpnLk1+TD7mx5/OhRgWltbS0WLlxIXWf9+vXYsmULdZ2lS5e6JQCeO3cuLly4QFWDEIKnn36a+iyMwWDA7NmzqWoAQHp6OubPn09d548//sCmTZv4u2B5OeDlBfj4NPj1l19+6Zag5KOPPqIeABNCMH36dDidza/MdBSj0YgXX6S//ycjIwOffvopdZ1Nmzbhjz/+oK7z1Vdf4cSJE9R1PvnkE2SzzACPwVvuDR8vH5SZykCa2Urgp/CDVOy+gv9yqRzdfLshvyYfDo7+BC0fODgHCvWFLQ7mOiNyqRwKmQIGa8sVaxkNCQtzBaU7dgCPPgrceivQo8fF4//9L7BpE+CGdYhWY7AZoJapIRZ7VDjBCxaHBcX64k6zGmxxWFBkKEKMb4xbPw+pWAqNQtPkcSfnRIW5Av5Kf3hJvVq8nkd5UllZGdLT06lqEELwySef4Px5urOrtbW1WLx4MXWd3NxcrFmzhrrOtm3bcPToUeTn050F/eabb3DkyBHqN4J58+YhLS2NqgYA/n2tosK1WioS1f/KYrFg0aJF1H0gLy8Pq1evpq6zY8cOHDlyhPpky7fffusWX/vss886p681gtVqxcKFC6nrFBQU4JdffqGuw2gbYeow2J12VNZWNnteqbEUv6f9Dr1F7xa74vziYHfakVfdOboDac1a7MndgyJDkdCmUMFb5g291T2fvaewK3cXduXu6vB1xGJg6FDgxx+BvXsv/j49HfjwQ2D0aCAqCpg1C3DDukeLGG1G+Hj5tHxiJyS3Khe7cndBb+scvpytywbhCBICEtyipzVrsSF9Q4tZNFqzFk7OiTB1WKuu61GBqU6nw/nz55udje0o+/fvx9GjR6kPeH788UdUVFRQ15k/fz44jqOuU7fiQ3PiwG63Y8GCBTCbzSgqovfALikpwYoVK6j72sGDB3Ho0CF+P5vyciC4YU/in376CeXl5dR9YMGCBXA6ndQnj9zla/Pnz4fFYqE62VJWVoYff/wRGRkZVAPgQ4cO4cCBA9R9YOXKlSgtLaWus3DhQjgcDuq+xmgbGi8N1HJ1iyuTGrkGZocZaVr6EzIAEKGJgFKmRE4V/RRzPghRhUAmkaHYUCy0KVTwU/gJbYLbsTvtrUpTbAuXzD8jMNAVmCYmulJ+FywA+vUDrr0WmD/flQIsFBqvplfLOjMlxhIoZcpO48+5VbnwU/ghQBXgFr10bTrMdjM08uY/fwfngK/CFyqZqlXX9ajAlBCCmpoalJWVUdP45JNPALgGvbSCEqfTiXnz5tXr0EKr1eLbb7+lrnP8+HHs2uWaCaQ5IP31119RWFgIgO7r+fzzz2Gz2WA0GlFcTG9gQMXXyssb7C91Op347LPP6nVoodPp8M033wCg6wMnT57E9u3bqeusXbu2PiCl+b4tXrwYVqsVZrO53rdpUBfM05xs4TjOLfe16upqfP311wDo+gCjfSQGJbY4862Sq9DNpxtyqnLclq4a6x+LWkdtp0jnFYvFCPYORqmxVGhTqHBjtxvbXPiH0TzBwcBrrwFpacCRI8AzzwD+/kBqqqtQ0qVBrDszT8cmjsWgiEHuE3QTHMehwlTR6lU+obE5bHASJ2L9Y92iZ7aZkVeThzj/OMil8mbPjdREokdAj2bPuRSPCkzroDUYOXv2bP1+v6qqKmi1zS8/t5f169fX742iObBaunQpamtrqetcuj+O1oCUENJAh9brMRgM+PLLL6nrpKen1+/30+v1/E22/Csw/eOPP5CRkQGAblDy5Zdfwmw2A6AblNQFPjR13OVrRqMRS5cupa6TkZGB9evX12vSmmzZuHFj/WdC09eWLVsGo9EIgK6vMTqGyWZq9vhVIVfByTmRUZnhFnv6hfbD2MSxbt3f2hHC1eGotddeEdVrGfwhEgHXXQd88QVQUgL89ptrJVWtdh23WFxVfZ96Cjh4kHWWay9asxZ2px0RPhFCm9Iq5FI5xvUah95Bvd2id057DoQjzeoRQmC2m9t87SsqMJ03bx4kEglVnbo9rHU6Wq0WlZXN78dpD7W1tViyZEm9Dq33LCcnB+vWrav/Ny2dbdu24dy5c9R1vvnmm/pBL00dKr5GyMU9prjc12hNtlgsFnz++efUfS0vLw9JSUn1/6als2PHDpw+fZq6zrfffgu9/uLeFFo6n332WYNCB7R0Pv3003of4HWy5RKsVisWLVrUwNdoptsz2kdVbRXStenNFrgJUgUhUBWI85Xn3VI8pO470BlWTAEg0icSAFBiKBHYEv4x28zYnr39iqnMKxReXsC99wIzZ1783d69rgJKX38N3HKLq7Lvu+8CNGoW5lblYnv29i5ZxKsuzT7cJ1xgS1qG47j6+547ih45OAdyqnIQoYlotuhRtaUaaRVpbS6E5nGB6SeffAIDhWR5QgimTZuGOXPmQCQS4YsvvqCyj9FsNmPZsmUYPXo0YmNj8eabb1KpLFldXY1Dhw4hLi4Od955J+655x5UV1fzrsNxHLKysiASiTB16lRER0fzrgEAERER2LNnDwDg5ZdfhlzefGpAe7n11lvr058//vjjBkEqXxBC8MQTT+CVV14BAHzxxRf8rGKZTEBtbf0e09raWixduhTjxo1DTEwM3n77bWq+dvDgQSQkJOD222/HuHHjqEy22O12ZGVlQSKR4JFHHkH37t151wCAsLAw7Nu3DwAwZ84cKBQKKjo333wzvvvuOwCuasYmU/MrTO2BEILHHnsMr732GgCXr5WU8D/Qra2txaJFi3DvvfciKioK7777LjVf27dvH3r16oUhQ4Zg4sSJ1DJbGO3HV+ELmUTWYipq//D+GBQxyG0VIkuNpVh7dm2nSJHVKDQYkTACiYGJQpvCO3KpHGXGsitqNTjUOxSh3qFCm4Hhw4EzZ4CXXwYiIlwtz996C4iLA267Daip4U9La9ZCa9a2mMrZGekb2hcjEkZAIaUzPuCTAn0Bfjv3m9t6OYshxuCIwegb2rfZ80qNpfCSekEtV7dNgBDiMT8AiMFgIBzHEVpMnjyZREdHE0IIVZ0+ffqQESNGUNWx2+1EJpORWbNmUdVJT08nAMi3335L9T1bt24dAUAOHTpEVef9998nAEhNTQ1VnQcffJBERkYSQnj6bLKzCQEI+f77Br++9tprybBhw/jTaQSHw0Hkcjl54YUXqOpkZmYSAOTrr7+m+tls2LCBACAHDhygqvPhhx8SAESn01HVmTJlCgkLCyOE0L2vDRgwgAwdOpSqjtPpJEqlksyYMaPDOgCSiQc82zr7z8CBAy97b0sMJSS5KJmYbKaWPwg3YXfayarUVWR/3n6hTbniWXt2LfscBMbhIGTbNkIefpgQpZKQa64h5NLb6cGDrnPay47sHWRD+oaOG8roEDtzdpK1Z9cSp9MptCn16C16klyUTCpMFY0eb+7Z7FErplKpFGq1GqJLd3HzTFZWFnr80xiKlg7HccjOzqauU1BQALvdTl0n658Ozz169KD+2bhLJzg4GBqNpnP5WkWF67+X7DElhLjFp4uKimCz2ZivtUMnICAA/v7+ncvXGsFdvlZSUoLa2lrqOoyOEawKhkQsQZmx+ZRum8OGEyUnUG4sp26TVCxFtG80CmoKOkVKr9lmxqGCQ255b9yNt8yb9TIVGIkEuPtuYOVKoLQUWLXqYpGkzEzg5puBbt1cq6tnzrT9+kabse2rYZ2AYn0xjhQe6RQpyhaHBSXGErf1Li3WFyOlJKXF+2upsRQyiQwByrZXCKb6KkQikZ9IJEoSiUTpIpEoTSQS3djc+V5eLTde7Qj/HljR4t8DK1pcOrh2h058fDx1HY1Gg8DAQOo6tN8zKjrl/wxeLglMy8rKYDKZupQPuEtHrVYj5JL3kpZOp/S1RtBqtdDr9V3GB65k2vpsbgyJWIIgVRAMNgM40vQeUrFYjMzKTJzTnmvyHD6JD4iHk3Mit4rCpjqekYqlyKnOQb6+6+3F1HhpYLBdOYHp9uzt2J69XWgzmkSjAfr0ufjvoiKgRw9XAaVPPwWuuQYYOBBYtOjiHHhzcBwHo93YJVvF5NXk4UL1hU5RSC2rMsvVuzTQPb1LT5efRnZVNsTNhI8OzgGT3YQQ7xCIRW0PM2mH14sAbCWE9AJwLYBmm5rR2utVR2VlJWpqaqgPeOr2XnUlHaVSifBwupvA6wbXtFdIsrKyqL9nOp0OVVVV/OrUBaaX9DF1t6+5IwD28vJCVFQUdZ34+HjqvpadnU39s6mpqYFWq+1SPuAOnSucNj2bmyJcHY4+IX2aHXxIxVLEB8SjsKYQRhv/e/r/TZg6DN5y707R01QulSNAEYBSg+fviW0rQaog+Hr5uqXwlSfAEa7ZCRpP4/bbgYwMV+Xep54C/PyAEyeAF15wBaxWa+N/l63LxjObnoFmrgZT1k3B7d/fjmc2PYNsHf81B4Si2FCMYO9gt+2N7wg51TkIUAW4pddqpbkSFaYKJAQmNPveSMVSXBNyDUK82zfxT+1dF4lEGgBDAHwLAIQQGyGkurm/ob1i6u4VRnfoSKVSagWJLtWJj4+n/iV1x6qP0WhEaWkpdR0qg/hGAlN3+ppEIkFMTAx1nbi4uC7ha2azGUVFRZ3T1xrBnb4mFoupFb+60mnPs7kpJGIJxCIxCCHNDsp7BfWCSCxCWkW74t82MzhyMAZGDHSLVkcJV4ej2lINi8MitCm8khiUiOE9hneKwf2VikgE3HQTsGyZa+V0zRpg9GhgwgRXxV/AFaC++CJw8iSwJXML+i7ri+UnlsPkcBXzMzlMWH5iOfou64stmVsEfDX8oLfoUWuvRbja86vxAsANkTegX2g/t2iladMgEUvQK7BXk+fUPQfqng3tgeY6dRyACgDfi0SiawEcB/A8IaTJ0pQ+Pj4UzQGCgoLwyiuvoH///lR1rrrqKrz44ouIjaXb6Pa2226Dt7c3pFK66Qb33XcfrE1Nn/EEIQRPPfUUEhPpVih0OBx44403MHToUKo6AQEBePXVVzFgwAD+LlpSAvj4ACpV/a969+6NWbNmIS4ujj+dRhgyZAgUCgVkMhlVnfvuu49K9dp/M23aNOorjHa7HW+++Sbuuusuqjr+/v549dVXMXAg3YF4YmIiZs2aRf19u/XWWyGVSqlPVF7BtPnZ3Bwc4XCu4hz8Ff6I1EQ2eo5arkY3n27IqcrBtaHXUq/iGaWhm3HBJxE+EThTfgZF+iLEB7D0dYYwKBTApEmuH3JJh65Nm4CFC10/4mg/cIPHAr1/axA92Dk77JwdE9dOROrTqZ3aj4sMrm4dde2cPJ0QNd3tSHWYbWbk1eQh3i++2ft3ob4QJpvJNRnZzow0ESF0esSJRKJBAA4DuJkQckQkEi0CoCeEvPGv86YBmAYA0dHRA/Py8qjYw2B0eoYOBYxG4MgRoS1hMDoFIpHoOCFkkNB2eBI0ns05VTnQW/W4JuQaSMSSRs/RmrU4U34GgyIGuaVgitasRbYuG9dHXU9dqyNwHIeNmRuRGJiIxKCu0zqG4zj8mfEnYv1jW2wr0RXYlrUNADC8x3CBLeGXrCxgyRLgy+Vm2Ez/TIp7lwKDvgIGfg1oLrbCk4llmDZwGpbcs0QgazvOmbIzyNfn456Ee4Q2pVk4jsOx4mNIDEp0Sxqv3qLHseJjGBwxuMnepXanHafLTyNQGYgYv+az65p7NtPMsSgEUEgIqRtFJwG4bPmIEPI1IWQQIWRQ8CUpigwG41+cOdOwegGDwWC0Hd6fzaHeoXByTmjNTfecDVIF4fbut7utimeNpQaZlZko1vPQQ5oiYrEYYxPHdqmgFHC9LgfngN6qF9oUtxDpE9lpVtnaQo8ertVS+UvxwOingJDTgCkM2PsWsOIv4JK1LTtnx4rUFYLZygd9Qvt4fFAKuAo0ZVZmumXfPuDquzw0bmiTQSkAlJvKQQhBmDqsQ1rUAlNCSCmAApFIVHe3HQrAPWX5GIyuRnm56+eaa4S2hMFgdGJoPJu95d7w8fJBmakMLWVhVVuqmw1g+SLGLwYyiQw51Z5fBKmOrlYoSC1XXzGBaZ/QPugT2nUnjk2iMmDQ18D0vsD/3QZctRYYvBSoy9asiQSSn4TB2Hl9uDN9/3KqcqCQKRChjqCuVWoshd7S/PfYyTlRYa6Av9IfXtKObcOhvSt9BoCfRSJRKoB+AD6krMdgdE3qmoyxFVMGg9FxeH82h6nDYHfaUWWpava83bm7cbToaEflWuTSnqae3o/Q5rDht3O/4VxF15q7V8vVblvRYdClPtNBBKD7PuD++4Hrll48IflpYOPXIJ8V4MUXXX1SOxspZSnYkL7B4wNUs82MEkMJuvt1d0txsSOFR3Cg4ECz51TWVsLJOTu8WgpQDkwJISn/pAL1JYSMJ4Q0/8RiMBiNc/q0679sxZTBYHQQGs9mjZcGCYEJ8Ff4N3tez8Ce0Jl1KDeWd1SyReL9/+lpWu3ZPU3lUjmkYilKjCVCm8Irvl6+sDlsHj8xwAfbsrbV7zPtikzpOwUycTPFDyOPQdTtb8Dih4ULgZ49gZEjgY0bAafTbWZ2iFJjKeQSucdXks6q+qdCfgD9lmr5NfkwWA1IDGx+q0GwKhgJgQlQyVTNntcaPPvdZzAYLs6ccbWJCQ0V2hIGg8FoFI2XpsVKjAkBCZBJZDinpb86GKIOQbB3cKfoLxmmDoPWrIWDcwhtCm8EeQehu3/3LvWarlRm3zgbMkkzgWmvP6B8ehjW7yrAf/7jqvK7dSswZgzw3HPus7O9WBwW6My6TtMmJtwn3C1Fj85rz0MhUyDWr/kuIyKRCBqvpveftgUWmDIYnYHTp1kaL4PB8HgqTBXI0mU1eVwulSPOPw5FhiK3pHkO7zEcvYN7U9fpKOE+4XByTresJLuLMHUYbom+BSp5x1dRGMISHxCPpElJUMlUl62cysQyqGQqJE1Kwrg7uuHbb4HCQuDTT4Hu3YHJky+ee+oUcOKEe21vDSUGV7ZChA/9PZsdpW9oXwyNo9vyEAB0Zh3KjGXoGdizyVVkQgjOa8+j0lzJmy4LTBkMT4fjXCumLI2XwWB0AmosNTBYDU0e7x3cG1KRFBWmCrfZ1FLxDqGJ8ImASCxCsdGzqwi3B7Zi2jUYmTASqU+n4on+T0DjpYFYJIbGS4NpA6ch9elUjEwYWX9uYCDw0kuudjO33XbxGv/7HzBwIHDzzcCqVYDNQ7K8iw3FkElkCFIFCW1Ks7jzPlZhroBMIkPPwJ5NnlNtqYbRZoRYxF84KW35FAaDISh5eYDJxFZMGQyGxxOoCkSJsQSlxlL4ePk0eo5arsZ9V90Hqdg9Q5AD+QdQaizFvb3u9dj9Y1KxFNeGXIsAZYDQpvDKhvQN8Ff4Y0j3IUKbwuCB+IB4TOg9AWMSxzQIRJtCcklbY0Jce099fYG//3b9zJoFTJsGPPUUEClgt51uvt0QoAzw2PsD4Jrg2ZK1BXH+cRgcOZi6XmJQIuID4pu9T5eZyuAl9eI1rdhzPwEGg+GCFT5iMBidBLFIjBDvEOitepjt5ibPqxvsWBwW6jZF+kTCYrd4/Gpkn9A+iNB4fiphW1BIFTDau35l3mjfaET7Rgtthlsw2oxQypRt/juRCPjsM6CoCPjqK9eQpqwMeO89ICYGWLuWgrGtJNo32uNT/vOq82B32t3SL7fuvtxcUGqwGmCymRCmDmuxtkBbYIEpg+Hp1LWKufpqYe1gMBiMVhCsCoZELEGZsazZ8w4VHMKWzC3U2zPE+MZALpUjR+f5PU21Zi10Zp3QZvCGxkvTbFp3V6F3cG+PD2z4gOM4mB3mDhW68fZ2rZKeOgXs3QtMmgR4eQG33nrxnFOnAKOb5jM6y3cupyoHSpmS+uSVg3Pgj/N/ILk4udnzSo2lkElkvGd5sMCUwfB0Tp92VRDwaTwtjsFgMDwJiViCbppuCPYObva8cHU4TDYTCvQFVO0Ri8WI8Y1BgcHze5ruyt2FM+VnhDaDN3zkPrA77W5ZGRcSB+e4IvbSGm1GEI7AR97x8YhIBAwZAqxZAxQXA2H/tMB0OoFx44CoKLilJ+qp0lPYn7+frkgHMdqMKDOWIda/+eq4fJCty4bNYUOEuvkAOEwdhm6abrzuLwVYYMpgeD6s8BGDwehkBKoCoZarmz0n2jca3nJvnKug3zomPiAehCMe39M0zDsMpaZSoc3gDY3CtbLm6cWnOsrOnJ3YmbNTaDOoU22tBoAm94+3F1/fi/9fXu4KSmtqUN8TdcQI1+oq33Ach3JTOcLUYfxfnEdyqlzZHj386fcuTdemw0/h1+LKrI+XD/yVzfetbg8eG5gSQpjOFa7TlV5Lu3WMRiA9Hejbl65OO+hKOl3ptTAdhqdgc9qQX5MPu9Pe6HGxWIyegT1Raa6k3iYlSBWEO2PvREJAAlWdjhLuEw6bw9YpUgtbQ4AyAFeFXAWFVCG0KQweUMvU6BXci2oPzfBw4MABV1uZxx939UTdtg24/XbgrruAkhL+tEqNpXByToT7eHb/0j7BfXBn7J31Ez20KNQXwmA1IDEosclzrA4rCmoKqGUIeGxg+s0331DXcDgc+O6776jr6HQ6JCUlUdc5d+4cDhw4QF1n48aNKC6mX0TCHT7gLp12+9qBA4DD4bojt4KqqiqsdUMFgfT0dOzbt4+6zpYtW1BQQDfND+havuZ0OvHtt99S16mpqcHq1aup62RkZGDPnj3UdRj8wxEOFaYKlJuaDjoTAhIgk8iQocugbk+EJsKjq24CqC9sUmgoFNgSflDL1RgQPoD6gJrhHgJUARgUMcgtEw39+wPLl7uKJb3zjmtVNScHCOKxo0uxsRgiscjj+5eKxWK3FEbLqMyAQqZAvH98k+eUmcpQYa6gNmHskXfo33//HT///DN1nY8//hjHjx+nrjNjxgyUlTVfBKKj2O12PProo7DbG5+Z5ovKyko8+eSTkFxaA5wCZ86cwdtvv01VAwA2bNiAFStWUNeZN28ejh492vY/3L0bkMmAm25q1ekzZ85ECZ/TiY3gcDgwdepU2Cg3INPpdHj88cep+9q5c+fw5ptvUtUAXBM6P/zwA3Wdzz77DIcPH6au8/zzz1OfoKrzNavVSlWHQQeFVAF/pT8qzBVwcs5Gz5FL5bij+x24IeoGt9iUUpKC1LJUt2i1B5VcBY1C02LhqM6EzWHr8qm8Vwp6i97t+7QDAoA33wRyc4GkJNeQCAAqKoD77wdSUtp/7VJDKYKUQW5rXdUeTpScwJky9+w7v6XbLRgSPaTJCTy70w6tWYtAZSBkEhkVGzwuMC0vL8dTTz0FqZSuk6SkpOCdd96hrpOUlIRVq1ZR15k7dy6OHz9OXefZZ59FaWkpVZ26INvhoFtIQKvVYtq0adTfs9OnT+PNN99sn86uXcCNNwIqVYunrlu3DitXrqT+ej7++GMcPXqUus6MGTNQUlJC3demTp1K3dfqJnRov2dnzpzBG2+8QV1nw4YN+PHHH6nrzJs3D4cPH6auw6BHqHconJwTWrO2yXNC1CFuGxjqLDpkVGZQrwTcEYbEDMEdsXcIbQZv7M3bi3159DNsGPTZmbsThwvpT3w2hr8/MGDAxX/Pm+dqMdO/P3DffRcbGLSFu+Pvxo1RN/JnJM84OAfOa8/X7+2ljVwqR4g6pMnj5aZyEEKo7sn1uMB0+vTpqKiooLpKYrVaMXXqVNjtdqo6ZWVlmD59OgBQ1Tlx4gTee+896jqrV6+uT92jqfPBBx/g5MmTVDUIIZg+fTrKy8up6thstvqV7DbrVFe7NlnceWeLp5aXl+Ppp58GQPezqZvQoa1TN6FDW+ejjz5CcnIy9VXZ5557DqWlpVR16iZ0bDYbVZ26CR2A7mdTN6FDW4dBF2+5N3y8fFBmKms29atQX4jNmZupr8bE+8fDYrd4dKqsn8LPo1dw2oparobJbhLaDKrE+cchzj9OaDOownEcTDYT1F7NFzVzF7Nmuar2KhTAunWuUhwPPOAqy9Fa5FK5R6eZ51blwsk50SOAbtEjs82Mjec3otTYdOE1J+dEhbkC/kp/eEm9qNniUYGpTqfDunXrAIDqDPk777yD1NRUqjqEEDz11FPQarVUdaxWa4PVRVo6paWleOaZZ+r/TUvn+PHjeP/996lqAMCvv/5av++Xps57772HlH/yTNqss28fwHHAHc3PnNcF2RUVFe3TaSWXTujQ1Ll0QoemzokTJ/Duu+9S1QCANWvW4Ndff6WuUzehQ1Pn0gkdmjqXTujQ1GG4h3B1OHy9fOEkjafzAoBcLIfOrEOmjm5viG6abq6eplWe3dM0tSwVaRVpQpvBCxovTZdvGZMQmICEQM8urNVR9DZXOjYfrWL4IDQUmD8fyM4GZsxwpfiuXu1q+f7JJ43/TbYuG89segaauRqI3hHB+wNvPLPpGWTrst1rfCvJqcqBt9ybetXg9Mp0VFuqm907zBEOfgo/6rZ4VGCan59f//+0BiKHDx/Gxx9/TF1nxYoV2LBhA3WdN998E2fPnqWqQwjBk08+CZ3uYpVAGjoWiwWPPvoonE4nNQ0AKC4uxrPPPlv/b1o6R48exdy5c9uvs2sXoFQC11/f7Gk///xz/YROu3RayaUTOrR0/j2hQ0vHnRM67giyk5OT6yd0aOpcOqFDU+fSCR2aOgz34OPlgxi/mGZXAUPUIQhQBVBPsxWLxYj1i0WRocijA6UyYxn1IN1d1LUWqbZUC2sIRSwOi0f7Ex/ora7A1NfLt4Uz3UtEBPD550BWFvD004BE0rAsR12ixpbMLei7rC+Wn1gOg80AADA7zFh+Yjn6LuuLLZlbBLC+afQWPSpMFYj1o9u71ME5kKXLQrhPeLPVlmUSGbr7dYdK1vLWso7gUYFpVFQUACAwMJBa6pbBYKhPD6OlQwiBWq3G448/TlXHZrOhX79+GDZsGBQKBVQqFRUdrVaLqVOnomfPnvD394dIJKKik5+fj/fffx9KpZKqDxQVFWHevHkA6PqaXq/HW2+91X6dXbuAm28GvJpOmSCEwNvbG08++WT7dVqBzWZD3759MXz4cHh5ecHb25uKTmVlJR5++GH06tULfn5+VH3tvffeg0qlouoDhYWFmD9/PgC6vlZTU1OfYk1TR6lU4qmnnqKqY7fbcfXVV2PkyJGQy+XUfI3hfkw2E4w2Y5PHewf1hslmQoGebiXueP94RPpEur2IS1sIV4dDb9E3+351FjRerlRJg9UgsCX02HthL/ZeoNBo04OoK2Dlqamv3boBX34J5OcDt9xy8feTJwMPPVaDe795Hma7GXauYZFQO2eH2W7GxLUTPWrllAOHCE0EegTSTePN1mXD5rChd1DvJs8xWA0w281U7ajDowLTulnSv/76C5MmTaKiMWzYMJSWlkKhUODkyZO47rrreNcQiUS49957kZmZicTERBw+fBjR0dG868jlctx///04deoURo4cia1bt0Kj4f+GERwcjFtuuQWZmZl45pln8OOPP1IZKNYFvrW1tfj888/xxhtv8K4BAIMHD4bF4prZ3LJlCyZPnkxF56677kJZWRm8vLxw8uRJ3HBDG6pOVlQAp0+3uL9UJBJhwoQJyMrKQo8ePXDkyBF07969Y4Y3wqW+Nnz4cGzbtg2+vvzPmgYFBeG2227D+fPn8fTTT2PFihVUVssSEhIQFBQEs9mMBQsW1E8g8M2gQYPqfW3z5s148MEHqegMHToU5eXlkMlkOHHiBG5qZRXntjJ+/HhkZWUhNjYWx44dQ2ws/zO5Mpms3teGDRuG7du3w8/Pj3cdhnshhCC3OheF+qb3dsb4xkApU+JcxTmqtgSoAnB799s9doANoL59RYmBbpV1d6CRazAwYiBCvUOFNoXRAaJ8ozA4crDH96QNuyTTNC/Ptf/0lx98YZl/Gtj8OaBvvGep3WnHgsML3GRly/gp/HBn7J1Qy+nu6U3XpkOj0DTZjoYQgvyafORV51G1o4Ggp/z4+PiQ+Ph4wnEcoYXT6STh4eFk7Nix1DQIIaS8vJyIxWLy6quvUtXZv38/AUB++uknqjrLli0jAEhycjJVnZkzZxKZTEaqq6up6tx1112ke/fu1H0tMjKSjBo1qu1/vGYNIQAhhw+3eKpWqyUSiYTMmTOnHVa2noMHDxIA5Pvvv6eq88033xAA5MiRI1R1XnzxRSKVSolOp6OqM3z4cBITE0PV1ziOI9HR0WTEiBHUNAghpLKykkgkEjJr1iyqOocPHyYAyPLlyzt0HQDJxAOebZ39Z+DAgW1+7xuj3FhOkouSid6ib/KcHF0OydHl8KLXElW1VcRgNbhFqz2sPbuW7M3dK7QZjFawNXMr2Zq5VWgzGI2QlkaItO9aAjgJQAikZoIbPiN4KYTgbTT40czVCG0uIYSQmtoaUlNbQ13H6XSSrMoskled1+Q5OrOOJBclE52Zv7FSc89mj1oxNRgMmDBhAkQiETWNI0eOoKSkBBMmTKCmAQB//PEHOI6jrvP7779DKpVi9OjRVHXWr1+P6OhoDLi0VjfPEEKwfv163HnnnVRW4+qoqqrCnj17qPtacnIyioqK2ucDu3YBPj7AwIEtnvrnn3/C6XRS97X169dDIpFgzJgx1HUiIyMxaNAgahqEEPz++++4/fbb4e/vT02npqYGu3btwvjx46n62okTJ5Cfn0/dBzZt2uQ2XxOLxRg7dixVHYZ7CVQFQiqWNlv5MdY/FrH+dPdUAa7empsyN+Fs+dmWTxaISJ9IoU3gDb1Fj2I93b7HDLoU6gs7ZWp5r16A8977gel9gd5JgEMJHJ4FLEkDrN4NzvWU15danootWVuot7USi8WID4hHtG/TWZ1lpjJ4Sb2a3X/Kq01uUWkD7gjkxGIx9UDu999/R0RERJcZXO/cubPLDK43btwIh8PhNl9rVyC3axcwZAjQijTW33//HeHh4bi+hSJJHaHO14YMGYLAwEBqOgaDAdu3b8f48eObbPDMB6dOncKFCxfcEsjZ7XaMHz+eqs7vv/8OkUiEcePGUdcJCQnBjTfS7fv2+++/45ZbbkFwcDBVHYZ7EYvECFWHQm/VN7tfyeKwIKUkheogUS6VI9InEnk1eR7b0/TGbjdiSPchQpvBC2naNOzN69p7MLsyDs6BPbl7kFGZIbQp7UItVwOhZ4HJk4Cn+gOJG4BrVgFe/7Qx4kRArR/1tNnWYHPYUFBTgGjfaKrjoGpLNVLLUpvda2+wGmCymRDqHUp1/H8pHhWYSqXStu3DayOXDq6DgoKo6bhrcJ2amorc3Fzqg+vNmzfDbre7JZBz1+A6ODiY2j68S3VuvvlmhIQ03ay4UYqKgIyMVvUvNZlM+OuvvzBu3Diqvnb27FlkZWVR94EtW7bAZrO5xdcAuMXXAgMDccullRgo6dx0000IDaW3h8tsNmPr1q0YN24c1WJEaWlpOH/+PHUfYAhDsCoYcokcVoe1yXMcnANnys8gXduGhoTtIM4/zjUIpFxsqaN4auDcFtRyNZycE2abewqouJuegT3RM7Cn0GZQo67wkadV5G0tU/pOgUwsc/0jPAV4cDww8vmLJ5ybCCy8gMQzq1BTI4SFF8mtdvUujfePp6pztvwszpafBYem7y82pw0KqQKBKnoLEv/GowJTPz8/qoPrc+fOuWVwvXXrVrcMrtevXw+A/uB6/fr1bhlcr1+/HjfeeCPCwuj1SKqtrXXL4Do9Pb39g+vdu13/baF/KQBs27YNFovFbb5Ge+Vv/fr18Pf3x5AhdFcJ1q9fj+uvvx6RkfRS5SwWC7Zs2YKxY8dSbXeSmZmJc+fOUfeB7du3o7a2tsv4GkMYJGIJ+oT0gb+y6SwftVyNKN8oZOuy4eAc1GyJ8omCQqZAli6LmkZH2XdhH7bnbBfajA7jq3AFNHW9MLsa7kpBF4q69iqe0sO0rcy+cTZkElnDX4ovCcgu3AFYfXHs51GIjQW++MLVRl4Icqpy4OPlgxB1Gxc12oDFYcGFmgvo7te92WJWgapAXBV8FcQi94WLHtUcjuZsPwD06tULBw4cQEIC3SbIY8eOxebNm3HbbbdR1XnxxRdxww03UB1cA8DixYuRlpZGvZfgn3/+icrKSqoaCoUCR44cgVwup6qTkJCAAwcOoEePdpT53rQJCA4Grr22xVNHjRqFLVu24Pbbb2+7Tht4/vnnMWjQIHTr1o2qzqJFi3Du3DnIZLKWT+4AGzZsQEVFBVUNLy8vHD58mPpriY+Px8GDBxEXF0dVp67yN21fe+6559C/f38q1aUZnkFdSlitvRZKmbLRc64KugqFNYU4rz2Pq0OupmKHWCxGd7/uyKzMhINzNNtnVShUchUKDAWwOWyQS+k+t2iikbsqIOuteoSp6U0+C0Vd2rknpILSoK7Vj7v2GfJNfEA8kiYl4d7V98LutMMJZ/0xmVgG2YSX8NYLA7Dxq+uxfz/w3HPAb78B330HuPNRZLaZobPocE3INVR10ivSQTiC3sFNt4gx281QyVRuS+GtQ+QqjuQZDBo0iCQnJwttBoMhHLW1QEgI8NBDwFdfCW0Ng9GpEYlExwkh9Db6XyHQeDYX6YtQbirHNaHXNBkQbs7cDKvDinGJ9LYqWBwWiCH22KCvWF+MXbm7MKT7kGYLlHg6HMfhl7O/IDEwEYMiut5XclvWNgDA8B7DBbaEDgfzD6LIUIT7r75faFM6xI7sHfj44Mc4XHgYZocZarkaj/R9BC/e8CLiA+JBiCsgnT4d0GoBtRrYutXVUt5d0L4nOTgH1qWtQ6AyEEPjhjZ6jtVhxZnyM4jSRCFUzf+iYXPPZs+bHmQwrmT++gswGoGJE4W2hMFgMKgRqApEqbEU5aby+p6d/6Z3UG/kVOXAxtmgENPpnejxPRnVYZCIJSgxlHTqwFQsFuOOmDs67Yrblc61YdciPoDunkd3IJfI8eTAJ7H90cbT40Ui1/BryBDgmWeA1FSgf3/32kj7nmRxWOCv8EfvoKZXS8tMZRCJRAhQBlC1pTE8ao8pg3HFk5QEBAQAlNMlGQwGQ0gUUgX8lf4oN5XDyTkbPSfWPxZD44ZSH6hVW6qxOXMztGYtVZ32IBaLEeId0myLnc5ChCYCKrlKaDMY7UAtV3eJFOxSUynCvFt+HSEhwNq1wKFDgOofl9XrgZUrAVqJpoX6QmzJ3EK9ZY1arsaw+GGI0DQ+IWh32qE1axGoDLx8X64bYIEpg+EpWK3AH38A48cDlPclMhgMhtCEeofCyTlbDAj1Fn19VVAaqKQq1FhqkFmZSU2jIyQEJnSJiq/VlmqP7hvLaBwH58DZ8rNUv4PugOM4XB18NXoEtK72h0gEXNod76WXgEceAUaNcjVP4JscXQ4MNgNUUnqTN9WW6hYD33JTOQghVFJ4WwMLTBkMT2H7dteUHEvjZTAYVwDecm/4ePmg2lLd5DkOzoEtWVuQUppCzY66nqb5NflUqwC3l2jf6GaLlHQWSgwlOFlyssu2jOmq6C16nCw5iQoz3YKBtBGLxbg65OomVwpb4rbbAH9/YMsW4OqrgZ9+4m/11OawocBQgBjfGKrdSY4XH8e2rG3NtqCqsdbAX+kv2DYHFpgyGJ5CUhLg6wsMbXwzOoPBYHQ1Yv1im10NlIql6O7XHQWGAqoBTVxAHOxOOwpqPLOnqdlmRrG+WGgzOoSPl6vVSHMTEZ2V3sG9u8TkQWPUtYqpa/nTWSnUF3boHvLww8CZM8Do0UBNDTB1KjBuHFBS0nHbsquyQThCdR9vtaUaJYYSxPvHNxv89g7qLeh+dhaYMhiegM0GbNjgustRbmXDYDAYnoJMIoNIJAJHmp7B7x3UG4QjOKc9R82OCHUElDIlcqpyqGl0hJOlJ7E/f3+zKx2eTl3LmLpApysR7RvdqYtTNUeNtQbAxc+vM+LgHNibtxdnKzqWSh4R4dpx9cMPrnWEP/8E+vQBSju4BTy3OhcahQZBqqCOXagZzpafhUQsQa/gXo0eJ4SAEAKRSCRo6ywWmDIYnsCuXUB1NTBpktCWMBgMhluxOCw4XXa6yZU0jUKDKN8oZOuyqaXaisVi9Anp47HBRYRPRH1Rks6KWq6GSCzqkoFptaW6S64EA64epnKp3GNbKrWGYkMxCEcQ7hPe4WuJRK7V0jNngOHDgTFjgLAO1oWK9YvF1cF0+jUDrntsfk0+on2jm0zRraytxOny07A5bdTsaA2sXQyD4QkkJQE+PsCwYUJbwmAwGG7FS+IFiViCUmNpk+1EegX1QpGhCOXG8nbvEWuJxKBEKtflg7oBdbGhGCHqEIGtaR9isRhqmRp6a+cuotMYRwqPAOiafUyNNiN85D5Cm9EhSgwlkIglvFYWjopy7Te1Wi/+LjkZyMkB7m9ju1faaeBlxjJw4HB1SOPBLyEEZcYyyMQyyCXCTkCwwJTBEBq7Hfj9d2DsWMDLS2hrGAwGw62IRCKEeocivyYfBquhfi/ipYSpw3Bf7/vc0uOvoKYACYEJVHXaikKqgJ/CDyXGEvRDP6HNaTfuaP/D4JehcUNhcViENqNDlBpLEaQK4j1FVSQCFP+4s9UKPPookJYG/PYb8MUXQFALmbkcxyG7KhsxvjFUV6Rj/GIQqg5t8rtXY62BxWFBnH8cNRtaC0vlZTCEZu9eQKdj1XgZDMYVS6AqEFKxtNl+nXWDKpqVc/Oq83Ck8AjKjeXUNNpLhCYCOosONoewqXYdQS1XC7p/jdF2pGIp1HK10Ga0G7PNDIPVgHB1x9N4m0MuB2bOBLy9gTVrXJV7f/+9+b8pNBTiSOERlBh5qKDUBHX3y+YmhEqNpfCSejWZseJOWGDKYAhNUpLrTja866UAMRgMRmsQi8QIVYdCb9U3uzqz78I+7MzZSc2OWL9YSMQSZOo8r6dpr8BemJA4oVPv9au2VONY0THWMqaToLfokVyc3Kl7mKrkKozvPR49AlvXv7S9iETA008Dp08Dt98OlJcD997rquZbWdn43+RU5UAulaObphs1uzZnbsahgkNNHjfajDDZTAj1DoVIJKJmR2thgSmDISQOB7Bunav+uFIptDUMBoMhGMGqYPQM7NnszH6AMgAVpgpqRYDkUjm6+XZDob7Q43qaquQqqOQqoc3oEGabGee157tsoaCuRmVtJdIr0mHjOu8qPeBaqXdXCnlsLLBzJ7B4MaBSAatWAQMGACYTkK3LxjObnoFmrgaid0QYuXIkVp9ZjdzqXCq2FOuLobfom632q5arkRCYgEBVIBUb2orHB6ZVVVXUNQghqK6upq5TW1uL2tpa6jrueM+YTvu4zNe2bgUqKoDJk3nVsVgszNeucB133desVivMZvqrH+76bBjCIRFLGt1feik9A3tCIpbgXDm91jFxfq6epnnVedQ02kuhvhAH8w8KbUa70ShcLUfqWpB0Fa4OubrJwjKdmboKyp21VQzHcTiQf8DtPYDFYuC554DUVOCOO4CFC4F9xVvQd1lfLD+xvP59tTgt2JC+AX2X9cWWzC2825GmTYNcKkesf2yz52m8NBCLPCMk9AwrmmD16tXYsWMHdZ133nkHhYWFVDU4jsPjjz8OiURCVcdsNuP555+nqgEARUVFeOutt6jrJCcnY9myZdR11q5di23btlHXef/995GXd8lg59tvgZAQ14opTxBC8MQTTzTbQJkPzGYzZs6cSVUDAIqLi/Hmm29S1zlx4gSWLl1KXWfdunXYsoX/B9C/mTt3LnJy6PZkJITgySefpJ7+U1tbixkzZlDVYHgOhfpCFOobfybLpXLE+cehwFBALR00QhMBb7k3dLU6KtfvCAarAblVuZ02tVItV0MilsBoMwptCq9EaaIQpYkS2gze0Vv1UMgUnTZ9XGvW4kLVBdQ66E/UN0Z8vGv1tO9t2Zi4diLMdjPsDmeDc5xwwmw3Y+LaicjWZfOmXW2pRomhBD0Deja5rzuvOg8lBnr7W9uDxwamhw4dwtSpUxETE0NVZ+XKlXjnnXeo67zxxhs4cOAA5HJ6X26O4/DII4+gvJxu0Qaj0YgxY8ZAJpNR1SkoKMCYMWMQEkK3NP7hw4fx6KOPUveBX375BW+++eZFndJSYONGVxk3Ht/Lt956C7t374YXxQq/HMdh6tSpKCsro6YBACaTCWPHjqU+oVNYWIgxY8YgODiYqs6xY8cwZcoUREfT7ZW4evVq/Pe//0X37t2p6rz77rv466+/oKSYhs5xHB577DGUlHjWw5NBDyfnRIWposlU2t5BvUE4gvTKdGo2jEkcg8GRg6ldv71E+kQCAIoMRQJb0n685d5drpep1qzt1D1mm8JgNcBb5i20Ge2m2OBaKY3URApmg0gEfHboM9iddiDvZuCLs0Bl/GXn2Z12LDi8gDfdtIo0iMQi9Aru1ehxq8MKrVkLjnC8afKBRwamOTk5GDduHKxWK9WB1f79+/H4448jMDAQPj70ejR9//33+PDDD6kPEl999VWsW7eOqo7T6cRDDz2EkydPUtUxGAwYPXo0SktLqepcuHAB48aNg8Vioapz8OBB/N///R/8/Pzg5+fn+uVPP7n2mD7+OG86P/30E9577z3qvvbf//4XSUlJ1H1typQpOH78uFt8rbi4mKpOXl4exowZg9raWqo6dZN6Pj4+8Pf3p6bz888/4+2336bua2+++SZWr15NXYfhOYSqQ8ERDuWmxidZNQoNhnQfgr6hfanZULfCwHGeNWjTKDTwlntTreJJG7VcDavD2vKJnYjjxcdxvPi40Gbwjs1pg8arc6bxAkCJsQR+Cj/BWxStTF0JO2cHDr4CVPYCftwN6Bqm19o5O1akruBNc2D4QNwWc1uTr73MVAaRSIQQb8/qi+xxgWl1dTVGjRqFiooKKJVKaisYmZmZGD9+PGw2G9UBz+7duzFt2jQAoKrzzTff4NNPP6Wu89JLL+HPP/+kquNwODB58mSkpqZS1anztfLycnh5eSE0NJSKTnZ29uW+Rogrjffmm4Fejc9mtZW9e/fiiSeeAEDXB7777jt89NFH1HVeeeUVrF+/nqqOw+HAgw8+iFOnTlHVqampwejRo1FWVgaZTIbwcDpl6/89qUcrxXb//v34z3/+A4CuD/zwww/44IMPqOswPIu6np3lpnI4OWej50T7RlNvO5JSkoI/M/6kqtEewtRhqDBVeFzQ3Fpuj7kdIxNGCm0GoxWM6zUON0bdKLQZ7cLmsEFn0SHMJ0xoUy6mrt/3IBC9H9B3cwWnVTGNn8cDcqm8yfRyu9MOrVmLQGUgZBK62Y9txaMCU0IIJk6ciPR0V3oOrYFVZWUlRo0aBZ1OV69Dg/T0dNx7771wOBxUdbZv347p06fX/5uWztKlS7Fw4UKqOoQQvPDCC/V78EQiEbp147+Mtt1ux6RJk3DunKuARkxMDJU9mVVVVRg1ahS0WleKT/17dvAgkJHB22ppRkYGJkyYALvd3lCHZ3bu3Imnnnqq/t+0dL766it89tln1HVmzZqFTZs21f+bRopt3UTLmTNn6jVopCZfOqkH0HvPsrKyMGHCBNhsNqo6e/bsqZ/Uo6nD8EzC1GFwcs5m0yPza/KxK3cXNRu85d4wWA3N9lYVggifCHjLvGF2dM6WK7TrHzD4pbN+XmaHGT5yH0SoI4Q25WIfWC8T8PA9QNTfQE0M8OMuoLrb5ed1AI7jsD17e7MFn8pN5SCEIFRNZ0GmI3iUtxkMhgYDQ1oDkc2bN+Oqq66iqkMIwZ9//om+fS+mGtHQsdls2LVrF3pdsupGQ0er1eL8+fMNVnpo7MlMT0+HSCSq34sbGRlJZV/uvn37hPW1b78F1Gpg0qQOa7jT13bu3InevXtT1amsrERaWhoiIi4+TGjopKengxBSvxc3PDwcCgX/6T779+9vMLlCy9e2bNnitvvaNddcQ1XHbrdjx44d1H2N4bl4y70RqYmEr8K3yXPsTjuK9cXIr8mnYkOsfyxkEhmydFlUrt9eYvxiMDpxNC+DWCEw2ozYc2EPyo1062EwOkaxvhj7Luxrtq+wJ+On8MPYxLGI0AgfmE7pOwUy8T8rk15GYMoIIPIIUB3nCk71EZCJZXik7yMd1squykaZsQwcms6o8Ff6o5tvN8FTnBvDowJTjUZTP7ieNWsWYmObL2/cXh555BEEBwdDLpfjueeeozLgEYlEmDNnDhwOB6KiojBp0iQqOnK5HG+//Ta0Wi2GDBmCQYMGUdEJCgrC7NmzUV5ejsmTJ+Oaa66BRsP/voPevXvXp71Onz69wUCbT4YOHYprr70WAF1fe/jhhxESEgKZTIYZM2a4Phu9HlizBnjwQVdw2kFEIhFmz54NjuMQGRmJyZMnU/e1W265Bddddx0VncDAQMyZMwfl5eW4//770adPn4v7cnmkV69euO+++2C1WvH000/j6qvplPq/44470K9fPwDAiy++iLi4OCo6Dz74IMLCwiCVSjFz5kxq97UXX3wRgCuQf/DBB6noyGQyvPXWW6isrMSNN96IG264gQWmVyBh6rBmB06xfrFQypRIq0ijoi8VSxGliUJBTYHH9TQFPG//a1sorClEZW2l0GYwmqHcVI78mnzqKfO08KTvx+wbZzdMmVUYgCnDgfBkoCYaKOsLmUSGF294scNaado0aBSaZqtEq2Qqj9tbWg8hxGN+Bg4cSGJjY8ngwYMJx3GksLCQ0KC8vJx4eXmRqVOnEqfTSYqKiqjoHDlyhAAgH3/8MTGZTESn01HR+f777wkAsnHjRlJUVEQ4jqOiM2fOHCISiUhWVha1z4YQQkaNGkUCAgKIyWSipuNwOEhcXBwZMGAAVV/TarVEqVSSKVOmEI7jXL721VeEAIQcPsybTnJyMgFA5s6dS8xmM6msrOTt2pfy008/EQBkw4YNpLi4mDidTio6r776KgFAzp8/T9XXxo4dS/z8/IjBYKCm43Q6SUJCArn22mup+lplZSVRqVTkwQcfvOhrFDh58iQBQN5//31SW1tLtFotFZ2ff/6ZACDr1q0jJSUlxOFwtPkaAJKJBzzbOvvPwIED2/ze84XZZib51flNHj9VeoqsSFlBKkwVVPRLDCVkRcoKkqHNoHL99pKhzSCrUleRWnut0Ka0i1Wpq8jRwqNCm8EbJYYSUmIoEdoMXtmft5+sPbtWaDPaRU1tDVmVuopcqLogtCn1bM7YTBTvKYjkbQnB23D9vOxPJFPvJqoPVGRzxuYOaxTVFJEVKStIekV6o8c5jiN51XmC3zeaezYL/sC79Cc+Pp4AIL/88gu1N4MQQt59910CgKSkpFDVeeCBB4i3tze1gJQQl5P17duXJCYmUgsSCCHEYDAQX19fMm7cOGoahBCSnp5OAJDXX3+dqs7vv/9OAJCVK1dS1fnggw8IAHL8+PGLv7zuOkKuvpoQHicQHn74YaJSqagFpIS4fK1///6kR48eVH3NaDQSf39/MmbMGGoahBCSmZlJRCIReeWVV6jq/PHHHwQA+fHHH6nqfPTRRwQAOXbsGFWdRx99lCgUClJRQScQIMTla4MGDSJxcXHtCkjrYIFp5w9MdWYdSS5KJlW1VY0et9qtZFXqKrI/bz81G06XniYGq4Ha9dtDmaGMrEhZQXJ0OUKb0i42pG8gO7J3CG0Goxk2Z2wmWzO3Cm1GuzhXfo6sSFnR5H1DKE6WnCQPrH2AaOZqiPgdMdHM1ZBnNz1LsiqzCCGu9Yry8vZff0f2DrL6zGpid9obPV5hqiDJRcmkxlLTfhEe6DSBqVqtJlFRUcRms1F7MywWCwkNDSV33nknNQ1CCMnPzycSiYQ899xzVHV27txJAJClS5dS1Vm8eDEBQPbs2UNVZ/r06UQmk1Fb7aljyJAhJCIiglitVmoaVquVhIeHk9tuu+3iL1NTXV+7+fN50yksLCRSqZRMnz6dt2s2xp49ewgAsnjxYqo6S5cuJQDIrl27qOo899xzRCqVkoKCAqo6d9xxBwkLC6PqazabjURGRpJbbrmFmgYhhBQXFxOZTEamTZtGVWf//v0EAFm4cGGHrsMC084fmHIcR06XnSZpFWlNnnOm7EynDdDai9PpJL+e/pUcyDsgtCntYmfOTrI+bb3QZvBGV1wxXX1mdaf2r6SzSUKb0SYOHiTE25uQvn0JaW8iUoY2o9nV0jNlZ8i58nMdsJIfmns2e9QeU6PRiBkzZkAmo1e6+Ndff0VZWVn9PilaLFmyBBzH4fnnn6eqs2DBAvj7++PRRx+lpsFxHBYtWoT+/ftjyJAh1HR0Oh1+/PFHTJ48uUHhG745ceIE9u3bh+eee45KYaU61qxZg5KSkoa+9u23gEwGPNLxDe51fPHFF3A4HG7xNT8/P/zf//0fNQ2O47Bw4UJce+21uP3226npVFdX4/vvv8ekSZMQFdX0PoyOkpKSgt27d+PZZ5+l6mtJSUkoKiqifl9bunQp7HY7XnjhBao6CxYsgEajqW9Jw7hyEYlECPUOhclmgsFqaPScq0OuRqw/nToBdeRV5yFbl01Voy2IxWIEewd7XMXg1hKgCPC4NhUd4VTpKZwqPSW0Gbzh4Bz1bZs6GxzHocJUgTC18G1iLiWzMhOF+sImj8fHA926AampwF13Af80DmkTCYEJSAxKbPRYjbUGFofF496Xy2gqYhXiRywWU097vfbaa0nPnj2pp736+fmRsWPHUtMghJDz588TAOTVV1+lqrNhwwYCgPz0009UdebOnXt52isFpkyZQpRKJfW01wEDBpD4+PiLqYgWCyEBAYRMmsSbjtFoJAEBAWTUqFG8XbMx6tJe58yZQ1Vn48aNBAD54YcfqOp88sknBAA5epTuHqepU6e6Je118ODBJDY2tkNpry1hNptJYGAgGTFiBDUNQgjJzs4mYrGYzJo1q8PXAlsx7fQrpoQQ4uScJKUkpdl9nrX2WnK69HSTKWwd5a+svzxuBcZT0xWvRLZmbu20aa9djbp94Z6URWF32smvp38le3P3NntecTEhCQmEAIQMHEhIVVXrrl93/7Pam87MSqtII6fLTlOrQ9MWmns2e9SKaWBgIPz9/aldv7CwEKWlpXj++eep9mVKSUmBw+Ggvnpx6NAhqFQqPPfcc1R1jh49ioiICEyePJmqzrFjxzBkyBAMGDCAmobdbkdKSgqmTp2KgIAAajrFxcUoLi7G888/f7Fn5fr1rikwnnqXAsCpU6dgt9up+9rhw4ehVCoxY8YMqjpHjhxBeHg4HnjgAao6x44dw80334zBgwdT03A4HDh58iQeeeQRBAUFUdMpKytDYWEhZs6cSaU/ah3u9DUvLy/qvsboPIhFYoT7hEMlUzV5TrWlGimlKciszKRiQ5x/HGrttc2ueLibbr7d0CekD+RietkYDEZnQyVV4aqQqxDuE97yyW6ioKYAdqcdcQHNV+UPDwd273atnh4/7mre0BoyKjOQUpoCo83Y6HFCCLxl3ghXh0MkErXVfLcicgWunsGAAQPIiRMnqGpYrVYAqO9dSAu9Xg8fHx/qDqDX66m0benKOhzHwWQywcfHh6qO1WoFIeRib8xbbwWKioDMTIDHAIL5mufquMvXbDYbOI6j0of1UgwGA9RqdafxNZFIdJwQMogHk65oBg0aRJKTk4U2o0U2nt8IJ3FiXK9xvF/bwTnw27nfEK4Ox5Du9La0XCnYHDbszN2JHgE9kBCYILQ5HWZb1jYAwPAewwW2hB/Olp9Fob4Qw+KGUV3IuVLYmbMT1ZZqTOg1oVXvZ34+cM01ru6Chw8D11/f9Lkcx2Fd+jr4evliWPwwHq2mR3PPZo/yNnc4v5eXF/WgFHD1ZHXHrIQ7BvBdTUcsFlMPFACXr9UHCidOAAcOADNm8BqUAszXPFnHXb4ml8upB6UA3DIBArjPBxidjxpLDWxOW6PHegf3hsFqQH5NPu+6UrEU0b7RKDIUweZoXF8IHJwD+TX5HtWzsTXIpXJUW6qhq23HRjoGdaosVTDajJ0uKLU5bCjUF3pU32GzzYwSQwli/WNb/X5GRwPTpwMBAUBeXvPnZldlw2K3oHdw70aPWxyWJvfneyKdy+MYjM7K558D3t7AY48JbQmDwWB0SuxOO7Krspss+BPrFwuFTIG0ijQq+vH+8VBIFdDb9FSu3x6K9EXYd2FfpyyC5C33bjL1sLMxMGIgBkYMFNoM3tBb9VDL1UKb0WaKDEXYk7sHWrNWaFPq0dv0UMqU6OHfo01/99prrpXT++9v/rzz2vPw8fJBlKbxQo7FhmJkV2XDyTnbpC8ULDBlMGhTVgb88gswdSrg5ye0NQwGg9EpkUlkCFQGotJc2eiKiFgsRs/AnhCLxFRWTELUIZjQewKCVPT2jLeVcHU4RGIRio3FQpvSZjReGuitnhPkd4QgVZBH+UVHMdqMnTIwLTYUQyaRIUQVIrQp9YSpw3DfVfdBo2hbJpCvr2s9ozlsDhtkEhl6BfVq9LjVYUVVbRWCVcGQiOnVoOATFpgyGLT5+mvAZnOl8TIYDAaj3YSqQ8ERDuWm8kaP9w3ti2HxwyAVS6nZwHGcx6TzyqVyBCgCUGrofCumarkaZoe506UhN0ahvtCjCmN1BJvDBpvDBl8vX6FNaTOlxlIEewd7TAqyzWHrsH8bjcCCBUBhI+4ll8oxvMfwJlvElJnKIBKJEOLtOYF6S3jGJ8dgdFVsNuDLL4Hhw4Fejc9oMRgMBqN11PVWLDeVN5uaZrQZYXFYeNd3cA4kpSUhtTyV92u3l3B1OKot1VReL02CVcEI8w6DjfOMIL8jnC0/i7PlZ4U2gxdsnA3hPuEIUNLrXECDaks1au21CFd7TjXeY8XHsOH8hg4FpzNmALNmuYLTSzHbzDDbzE3+nd1ph9asRaAysFP1DGaBKYNBk6QkoKQEeP55oS1hMBiMLkGYOgwSkQRWp7XR4xaHBRvOb8C5inO8a0vFUgQqA3Gh+oLHrPRF+EQAAEoMJQJb0jZi/GIwNG4oFFL6hdsYrUctV2No3FBEaCKENqVN1Pl/pE+kwJa4cHAOFOoLO7yCW5ds99VXro6DdZwqO4UN5zc0uW3B4rBAKpYiVB3abm0hYIEpg0GTzz8HevZ0rZgyGAwGo8N4y73RJ6RPk31NFVIFwtXhyNJlUdlrGucfB4vd4jH7OoNUQRiRMAKx/rFCm8JgCEZiYCJGJIxo815OWuRV57l6l/o137u0JQYMAO6+GzCZgBEz/4Rmrgaid0S488c7sfrsauRVN16218fLB9eEXNPpJn5YYMpg0OLIEdfPjBmAh+x3YDAYjK6ASCQCIQRWR+Orpr0Ce8HmsCFbl827doxvDORSObJ0Wbxfuz2IxeJOW3jnj/N/4EjhEaHNYFzCgfwD2JK5RWgz2oynfQ+ydFlQypS8rDzfMcX1HTn2+40wGF1bGCxOCzae34i+y/pe9nlZHBYQQtzS3o1v2GiZwaDF558DPj6uarwMBoPB4JXsquwmg8MITQT8FH5I16bzrisWixHjG+NRPU2NNiMO5h9EtaVaaFPahBjiLlOZt6ugt+qpFg+jQbmxHIcKDjW759KdGG1GVJgqEO8f3+FrZeuy8W7+nUDkEcAcBJz8T/0xJ5ww282YuHZi/SQcIQQZlRm4UH2hw9pCQDUwFYlEF0Qi0WmRSJQiEomSaWoxGB5FcTGwZg3wn/+4glMGg8HwELrKszlAGQCLw9JkMNY7uDeMdiN0Zl2jxztC76DeGBo7FHKpnPdrt5fcqlwU1nSuyrBqL3WX6GV6fdT1uD7qeqHN4AWD1dDpWsUUGgqRU53jMQG1Wq7GnbF3omdgzw5f67NDn8HB2YFbPnL94u/ZgLPh67Q77Vhw2FUdqbK2EnanHYGqwA5rC4E7VkzvIIT0I4QMcoMWg+EZLFsGOJ3Ac88JbQmDwWA0Rqd/Nvsr/OEl9UKpsfFWKbF+sZiQOAEBKv6ri2oUGoSpw3i/bntRy9Xw8fJBibFzFUDSeGm6RMsYP4Uf/BR+QpvRYSwOC+xOO3zknWtCvVhfjABFgEdNFEVoIqCSN74Pvi2sTF0JO2cHEjcAV/8KDJ8NiBp+X+ycHStSVwAAyoxlUMlU0Hh5xl7btsJSeRkMvrFaXYHpqFFAjx5CW8NgMBhdEpFIhFDvUJhsJhishsuOi8Xi+oEhjcDHbDPjUMEhVNVW8X7t9hCmDoPWrKVS8IkWPnIfEI5Ab+vc6bz5NfnIr8kX2owOo7e4PgdPKSDUGuqyJjylTUy5sRxHCo/w1r6pPqNATIBJDwJXrQPEl9/PjDZjfdsoT5o0ayu0A1MC4C+RSHRcJBJNo6zFYHgGv/wCVFSwFjEMBsNT6TLP5kBVIKRiKaosTQeHO3N24u/Cv3nXFovFyKnO8ZgiSOE+4XByziZXkD2RQGUg4gPiIe7k6yRpFWlIq0gT2owOI5fKEesf26l6mNa1ialrmyQ0GTrX/k6+0opbm1atlqtRVVsFL6lXp169p30nuJkQMgDASADPikSiIf8+QSQSTROJRMkikSi5oqLisgvk5uaisd/zzbFjx0AIcYuOO3CHjsPhwPHjx6nr6PV6pKfzX8Di3+Tl5aGsrKxjFyEE+Owz4JprgKFDGz0lOTnZLWlLXcnXnE6nW3zNYDAgLY3+4CI/Px+lpfQHj8ePH4fT6aSu05V87Qqhw89mT0EsEqN3cG9E+0Y3eY5KpkJeTR7vhVHq2tJ4Sk/TCJ8IeMu9YXfahTal1QSoAnBjtxs71QpdV8ZP4Yebo2/uVHtMbU4bfLx8PKIir4NzoKCmAFGaKN4C0yl9p0Amll38xd8vApuWANqL+1dlYhke6fsIYv1j0TOwZ6esxlsH1cCUEFL8z3/LAfwO4LpGzvmaEDKIEDIoODi4wbGSkhKMGjUKfn5+NM1ESkoKZs2aRf2D/OOPP7Bw4UKqGgAwb948bN68maoGx3GYNm0acnNzqerU1tZi7Nix1B/6paWlGDlyJPz9/Tt2oa1bgTNngJdeAhrxp9TUVDz//PMdarbcGjZu3Ij58+dT1QCA+fPnY+PGjVQ1CCF4+umnkZVFd1XCYrFg3LhxcDjopsGVlZVh5MiR1O9rZ86cwXPPPQeJREJVZ/Pmzfj000+pagDAokWLsGHDBuo6VwIdfTZ7GnKJa18ZRxp/TvQO7g3CEaRX8j/BGe8fD6vDikKD8EWHpGIpJvSe0On6mXIcx1vaI6NjWBwWj5hkaQuJQYkY12sc9XFVa8ityoWTcyI+oOPVeOuYfeNsyCSXBKbnxwHHngUMF1OXZRIZnr/elaVXdz/srFD7FEUikbdIJPKp+38AdwM409q/r6ysxLBhwyCTySCTyVr+g3aSkZGBu+++G1FRUdQ0AGDXrl24//770atXL6o633zzDebMmYM+ffpQ0yCEYPbs2fj++++p6tjtdkyaNAl///03EhISqOlUVVXh7rvvhlgshlzewS/0J58AkZHAAw9cdigzMxN33303IiMjO6bRAnv27MGkSZOQmJhIVefbb7/F7NmzqfvanDlzsHz5cuq+NnnyZOzfv5/q+1ZdXY3hw4eD4zgoFPSaXmdnZ2PYsGGIiKCb2rRv3z7cd9991H3thx9+wAsvvEDVB64UOvps9lRqLDVILUtttK+pn8IP4T7hyNJl8b7/spumm0f1NK2jMwUXW7O3Yn/efqHNYADYkb0Duy/sFtqMVuNpfp5TlQNvuTevezzjA+KxasIqyCVySCABHP+MHaQWyMQyqGQqrJywEia7qUtUuKY5vRAK4IBIJDoF4CiATYSQra35Q4PBgHvuuQdnz56lOhDJz8/HXXfdhYqKCqo6R44cwdixY2G1WqnqrF69Gk899RQAUNV57733sHDhQsjlcvSgVNzH6XTi0UcfxaZNm9CrVy9qkxNGoxH33HMPTp8+3fH3LDkZ2LMHePFF4F8BbkFBAe666y6UlZVR/WyOHTuGMWPGwGKxUNVZu3Ytpk1zbU2jqfPhhx/is88+g0wmozY5wXEcHnvsMfzxxx/o2bNnxycnmsBkMmHUqFE4deoU1fesqKgId911F0pLS6nqHD9+HKNHj6bua+vWrcPjjz8OgK6vXUG0+9nsyahkKnCEQ5mp8e0YvYN6w+aw1ff64wuxWIyeAT3hLfPm9brtxWgzIulcErKr+H2dNFHL1KyXqYdgspugknW8kqy7SNOm4bdzv3lEP2GO4+At9+alRcy/iQ2IxYd3foj/6/9/EDtdn4+3SoppA6ch9elU9AvrBwBQSpW8a7sbag1/CCE5AK5t69/VpdMdPXoUAL2BSFlZGYYNG4aCggKqOmfOnMHIkSNhMpmo6mzevBlTpkwBIQReXl6Ij+cvjeBSFi1ahLfeegsA0Lt3b0il/LsQIQTPPvssfv31VwD03jOLxYLx48fj8OHD/Oh8+img0QBPPtng1xUVFRg2bBjy8/P50WmCs2fPYsSIETAajVR1tm7diocffhgcx1GdnFiyZAn+97//AQASExOpBIyEEMyYMQM///wzAHrvmdVqxb333ou///6bqo5Wq8WwYcNw4cIFqjppaWkYMWIEDAYDVZ2//voLDzzwADiOg1QqRc+e/D/wrzTa+2z2dGQSGQKVgag0VyLCJ+Ky/V0RmghcH3U9YnxjeNfuF96P92u2F7VcDY5wKDGUICGQXqYRn6i91MivyQfHcR6Rjtkebo6+WWgTOkxdq5jO1Gak1FgKqVjqEW1ixGIxbom+hcq1ewb2hFKqxOybZuPAy8D5UiD5mQPo1QuwOqw4U34GoepQSMR0t+64A4+6AxBCMHnyZOzefTGNgMaApy6dLiMjg6pOXTpdVZWrWqBSqURcXBzvOnXpdHV746666ioqAWNdOl0dtAajr732Gr766iuqOg6HAw8++CB27tzJj05ODpCUBDz9tCs4/YeamhoMHz4c58+fr//dNddc036dJuVzMGzYMOh0rkbyXl5eVALGAwcO4N5774Xd7iquQWs1+6effsKMGTPq/03L1/73v/9h6dKlVHUcDgcefvhh/PXXX1R19Ho9RowY0aB4Ew1fu3DhAoYNGwatVgsAkMlkVALGv//+GxMmTKj3NVqTE4yuQ6g6FBzhUG4qb/R4QmAC1QGs1qyldu22EOYdhlJT56nM6+vlCwCdumWMWq7uVAWDGqPaUg0A8PHqHD1MOc71XfeU1ig0v/8KqaJ+osnyz3ZsLy/Xf8tMZfWts7oCHhWYAsCPP/6I66+/HkqlazmaxgBOpVLhr7/+QkhICJRKJZRKJWJj+S8WEBERge3bt0MikUCpVOKqq66iUohk4MCBWL16NQBX8EtrEH/vvffi448/pqpDCMFrr72Gxx57DBKJBHK5nIqOSCTCDz/8gJtuuokfX1uwAJBILmsRo1QqsXXrVoSFhUGpVEKhUFCZnAgPD8eOHTsglUqhVCqprWb3798fa9asAUDX18aPH4958+ZR1SGE4OWXX8YTTzxRv7+Ylq99++23uPXWW6ne1xQKBbZs2YKIiAgolUpqq9lhYWHYsWMHZDIZlEoltcmJa6+9FklJSQDo+hqj66CQKuCn8EO5qbzJQkh51Xk4UniEd+3MykxszdzqEcFpuE84bA6bR9jSGnzkrkCoM6fz5lblIreKbjFI2tT1Avbz8hPWkFZSaiyFk3Mi3Ef4/qXF+mJszdxKpZftwfyDKNRfLK5WF5gqFK4qwFqzFoHKwIYFkjox1FJ524NIJMLJkydx5MgRfPrppygpKUFMDP9pN3K5HElJSSgvL8cff/yBffv2UUkfUSqV+PLLLwEA+/fvx6ZNm3jXAABvb28sWLAAwcHB+Ouvv3Do0CEqOl5eXli8eDEGDRqEDz/8sH4lg09EIhGMRiN+/vlnPPzwwxg8eDCVAalEIsGpU6fw999/4+OPP0Z5eXn7JycqK4HvvgMefhj4V7EZuVyOdevWobS0FOvXr8eBAweoTE4olUosW7YMHMdh3759VH1t4cKFCAwMxI4dO3Dw4EEqOgqFAp9//jkGDBiATz/9FGYzv20eAJevmc1mrFy5Eg899BBuuukmar525swZ7N+/Hx9++CF0Oh2VVHu5XI7169ejuLgY69atw99//01lckKhUOCrr76Cw+HAwYMHqfuav78/du/ejf37WXEURstEaiLBEQ5iUePP9BprDTIrM5EQkIAAFX+9Grv5dsPR4qPI1mUL3rYi0sdVYK/YUCy4La3BT+GHvmF9O1UK6b/JqHRl4HW2isiXEqgMRJ+QPp1m5bfYWAyRWOQR/UuzdFmQSWS821JqLEVuVW6DvrJXXQUEBwNKpasSd2JgYpcJSgG4Vg085WfgwIHktttuI8HBwcRoNBKn00loYLFYSFRUFBk8eDDhOI6aTkFBAZHL5WTq1KmEEEJNZ8+ePQQA+eSTT6jqLF26lAAgGzdupKrz3HPPEbFYTDIyMgjHcYTjOCo6d955JwkKCiIGg6Fjr+XddwkBCDlz5rJDVquVdOvWjQwcOJCqrxUVFREvLy/yyCOPEELofTb79+8nAMjcuXOp6nz11VcEANmwYQNVneeff56IxWKSnp5O1deGDRtGAgICiF6vp/ZarFYr6d69O+nXrx9VXyspKSEKhYI89NBDhBB6n83ff/9NAJD333+/3ToAkokHPNs6+8/AgQPb/N57KrX2WrIqdRU5kHeA92vvzt1NVp9ZTe070RZOFp8kJYYSoc24YtiauZVszdwqtBlXFEU1ReR06WmhzSBWu5WsSl1F/s7/m/dr78zZSVafWU3sTjvv1xaS5p7Ngj/wLv3p2bNngwCLFnUB1qZNm6jqPPvss0QikZDMzEyqOnfccQcJCgoiRqORmobFYiHdunUjgwYNojZ4J4SQwsLCBgEWLfbt20cAkI8++qhjFzKbCQkOJmTUqEYPL1u2jAAgf/zxR8d0WmDmzJlELBaT8+fPU9W566676gMsWlitVhITE0P69+9P1deKi4uJQqEgDz/8MDUNQgg5ePAgAUA++OADqjrffPMNAUB+//13qjovvvgiEYlE5Ny5c1R1hg8fTvz9/UlNTU27r8EC0yszMHVyTpKjyyFak7bR43/n/01Wpq4ktfZaXnXzqvPIipQVJEeXw+t1rwRMVhOpNFUKbUa76QqBaYWpgvfvxJVAekU6WZGygpQZyni9bk1tDVmRsoIcKzrW6PEyYxm5UHWB6jiJFp0mMFWr1W4JsC5dLaVFYWFhg9VSWuzdu5cAIB9//DFVnS+//JIAIH/++SdVnRkzZrglwBo6dCgJDAwkBoOhYxdatsz1Ndqz57JDVquVREdHkwEDBrglwJoyZQo1DUIIOXDgAAFAPvzwQ6o6X3/9NQFA1q9fT1XnhRdeIGKxmKSlpVHVufvuu0lAQECHAqyWsNlsDVZLaVFSUkKUSiV58MEHqWkQQsihQ4cIAPLee+916DosML0yA1NCCDlXfo6cKbs8i4UQQqpqq8iKlBXkZPFJXjWdTidZe3Yt2Z27m9frtpcyQxmpqaV33+GTvbl7SdLZJKHNaDddITBdlbqKHC44LLQZraLSVEkqTBVCm0EIIeSvrL/I+jT+xyuHCw6Tlakriclqqv8dxxHidBLCcRw5VXqKnNfSHSvTotMEpu4MsOrSUWlxaToqTS5NR6XFv9NRaVGXjko7wPp3Omq7cTgI6dGDkMGDXXeLf/HvdFRaXJqOSpNL01Fp8e90VFr8Ox2VFv9OR6XF8uXLCQCybt06qjqzZs1yy2rpiBEjiJ+fH6muru7QdVhgeuUGppXmSpJclEyqaqsaPX608CiVlc1KU6VHpN3ZnfZOFWicLD5JVqSs8Ij3rj109sDUZDWRFSkrmpzM8TT25+0nq8+sFtoMQojru9bUfaYjZGgzyPHi4w1+V13titz8A5wkuSiZ1Fg6x8TTv+k0galUKqUaYLkzHVUul5NHH32UmgYhPKajtoC701FpB1h33XUXCQwM7HiA9dtvrq/QmjWXHapbLWXpqG3D3emotFdL+UhHbYm61dJrr72W6t620tJSolQqyQMPPEBNgxBCDh8+TACQd999t8PXYoHplRuYchxHTpedJmkVdL/jngytlRwaZFVmkRUpKzptOm+tvbZTp8GWGErIipQVpKCmQGhTWsXas2vJ3ty9QpvhdsrKXMPOgEA7OVdOd4KYJs09mz2qKm94eDjUanrVwEwmE4YOHYpJkyZBJBJR06mtrcXw4cPxv//9j5oG4OofOGLECDz77LNUdUJCQjBp0iSMHj2aqk5CQgJmzpyJxMREahpOpxMDBw7E6NGj4ePTgV5dhACffgrExQH33nvZ4TpfmzBhAnVfGzZsGHVfk0gkGDFiBJ577jmqOsHBwZg4cSLGjRtHVadHjx6YOXMmevXqRU3D6XSif//+GD58ODQaetUm63xtzJgxVJvTm81m3H333XjjjTeoaQCuJuUjRozAzJkzqeowujZ1ff3ya/JhsBoa7c1oc9iQW52LxCB+nznZumxcqL6AoXFDeb1uWwlXhyOlNAVGm9HjK63WtYwx2Ay8Vkt2FwqpQmgTOkSNpQYAoJF7fmVknVkHi90ieJsYjuOwM3cnegb2RIwffx1EOI5Dpi4T8QHxkIobhmnZ2a7/KlROj+nfyjciV+DqGQwaNIgkJycLbQaD0TJ79wK33w4sXQpMny60NQwGoxFEItFxQsggoe3o7HTWZzNHOJQYShDiHdJoO4XMykwcKTyC22NvR5Qmijfd89rzOFZ0DHfH340QdQhv120rOrMOmzM3Y3DkYN6Db76xOWxYc3YN+oX1Q5/QztezOLMyEwCQEJggsCXtI7k4Gecrz+PBqx+kOsHJB2fKziClNAXje48XdMKlUF+IPbl7cHP0zby2CcrWZeNQwSEM6T4E0b7RDY6NHw9s2AA8NcOALxepqS580KS5Z7Nnex+D4al8/DEQEgL83/8JbQmDwWAwGkEsEiNSE9lkj794/3goZAqkVaTxqhvrFwuJWILsqmxer9tWAlQBUMgUKDOWCWpHa5BL5bix242XDcQ7CzlVOcipyhHajHbTI6AHboq6yeODUgAoMZZAo9AIngWQpcuCXCpHjC9/q6UAcL7yPLzl3vXfhWxdNp7Z9Ay8Z96EDRsASGthue79Tu1vzeH5HshgeBqpqcCWLcDMma4OxwwGg8HwWAxWQ6PBmVgsRg//HigzlqHaUs2bnlwqR6RPJPJr8uHgHLxdtz3c2f1O3BR9k6A2tJb4gHhoFJ6fStoV8VP48brqR5M7Yu/AkJghgtpgc9hQZChCjG8Mr8F8qbEUOrMOvYJc24y2ZG5B32V9sfzEcph3vug6adAyrMpdgL7L+mJL5hbetD0FFpgyGG3lk08AtRp45hmhLWEwGAxGC9RYa1BkKILVYb3sWK/gXpCIJThbfpZXzbiAONiddhTUFPB63bYSoAq4bJ+ap6K36JFblSu0GVck2bpsGG1Goc1oFVKxFH4KP0FtyK7KBuEI4gPieb3uuYpzkElkSAhMQLYuGxPXToTZbobdJgJqugESC3DTp7BzdpjtZkxcOxHZOmEzM/iGBaYMRlu4cAH49Vdg2jTA319oaxgMBoPRAqHeoQCAMtPlq6YKqQLd/brD4rDwqhmliUJ3/+5QyoTPqjlRcqJ+D6Qnk1OVg4P5BwVfZb7SMNvMOFRwSPBJlNaQVpGG1LJUoc2Aj5cP4gPiEaQK4u2aHMfB6rDWFz367NBnsDvtroNSG/DEjcDT/QFNSf3f2J12LDi8gDcbPIHOMY3GYHgKn30GiMXAiy8KbQmDwWAwWoFMIkOgMhCV5kpE+ERctoJ4feT1VPbW3RJ9C+/XbA/F+mJIxBKPL8zjq/AF4Fo57YyVeTsrdWnsjVWu9jQydZlQSpVAqLB2RGmieC2YBri2FoxMGAmO4wAAK1NXws7ZL54gAhCc3uBv7JwdK1JXYMk9S3i1RUjYiimD0VoqKoBvvwWmTAGi+L0hMRgMBoMeoepQcIRDuan8smN1QanZZuZ9tc5oM6LUWMrrNdtKmE8YdBYdbA6boHa0RF1gZLAZBLak7QyNGyp4e6D2Uvd+C50e2xJmmxl6ix7hamHbxBTri2G2mXm9ps1hq8/aqLsf1adWJz8JaJueVOosKdithQWmDEZrWbIEqK0F5swR2hIGg8FgtAGFVIFg72DIxI1X6NWZdfj9/O+873E8mH8QhwoO8XrNthKhjgDhCEqMJS2fLCB1PTRrrDUCW9J2pGJpp9nL+2/0Vj1EYhFUUpXQpjRLkaEIABDhEyGYDRzH4UDBARwuOszrdTMqM/Bb2m8Ngky1XA1U9gA2fQl8mQqYG88iELo6Md+wwJTBaA1GI7B4MTBuHNC7t9DWMBgMBqONRPtGI9g7uNFjAaoA+Mh9kKblt3VMnH8cTDaToKumYeowSMQSFBuKBbOhNcilcsilchisnW/FNK0ijfe2Q+7CYDNALVN7fKuYEkMJFDKFoGnehYZC2Bw2xPvzV/SI4zicrzyPIGVQgyBzSt8pEB34H0AkQN+fAZXusr+ViWV4pO8jvNniCXi2FzIYnsLy5UBVFfDKK0JbwmAwGIx2QgiBrlYHQshlx3oH9YbeokehvpA3vVj/f3qaClg5UywWI9xH2PTH1nJn7J3oH9ZfaDPaTH5NPvJr8oU2o13cEHkDbo2+VWgzWkWkT6Sg+nW9S7tpuvF2zbyaPNTaa+tbxNRxf8QrIKceBkQO4NYPG/1bmUSGF2/oWjVPOmfeAYPhTux2YP58YMgQ4MYbhbaGwWAwGO3EYDMgtyoXxI8gUBXY4Fi8fzxOlZ3Cee153gqbSMVSdPPthkJ9IRycQ7B0z9u73y6Iblvhs8opo3Wo5Cqo5J6dxgsAQ7oL27vU4rCgxFiCngE9eV1dTtOmwVvufVmwu+rLGIADxP1WQhyYD8clc2kysQwyiQxJk5J4b1kjNGzFlMFoiV9+AQoK2Gopg8FgdHI0XhqoZKpGU2vFYjF6+PdAqamU1+ImcX5xcBAHyo2XF15yN3UVPz2Vaks1UstSWcsYN2FxWJBalgq9RS+0Kc3iCX5bZixz9S7lMY232lINnVmHnoENg938fOCHHwjEYoLln8ThqUFPQeOlgVgkhsZLg2kDpyH16VSMTBjJmy2eAlsxZTCag+OAjz8GrrkGGNn1bgAMBoNxpRGqDkVuVS6qLdWXVSLtFdwLPQJ78LqCFKGJwH2974NCquDtmu1hZ85OSMQSj149raqtQmppKiJ8ItjqqRvQmXVILU1FkDIIGoVGaHOaZHvOdiilSkFXTWP8YhCsCub13uCn8MPYxLGXXfPLLwG7XYTh43W4b0gfPOa1pEu1hGkOj18xbWwfCNNhOm7T2LwZOHcOePllQCSip0MBpuO5Ol3ptXRFHUbXxl/hDy+pV6OrpgqpgkqVS6GD0jobyoxlHrH61BT1LWM6YQGkzkhdBWRPDkodnAPaWi2UMqXQplBJedYoNJel+L/0EjDgehOemVUFjZfnfjY08OjAlBCCL7/8krqO1WrFt99+S11Hq9Vi7dq11HXS0tKwZ88e6jp//fUXsrPpF3T45ptv4HDQTeshhGDZsmWXH5g3D+jWDZg8mRcdm83mFl+rrKzEmjVrqOucP38eu3btoq6zY8cOZGZmUtdZvnw57HZ7yyd2AHfd1+x2O5YvX05dR6fT4ddff6Wuk5GRgZ07d1LXYXR9RCIRQr1D4eScjaaMchyH7dnbkVqWypsmx3HYlrUNKSUpvF2zrUT4RMDutENr1gpmQ0vUtYzpbL1Mh/cYjuE9hgttRpsx2oyQiCUe3XKk2FAMwhFB28QcKTyCnTn8Pn+OFR3Dngt7Gj3m42fD9+tzcesg4SoQC4VHB6bvvvsudu/eTVWD4zhMnToVBQUFVHVMJhNGjRpFfca/sLAQw4cPR1AQ3RSYY8eO4f7770e3bvxVJmuMtWvXYsGCBZDJGu89xxcffPABtm/f3vCXx44Be/cCL7wA8KDPcRwee+wxXLhwocPXag6TyYTRo0fD6XRS1SkqKsLdd9+NwMDAlk/uAMePH8fEiRMRHR1NVWfdunWYN28e5HI5VZ2PPvoI27Zto6rBcRz+85//ICcnh6qO2WzG2LFjqU8clZSUYPjw4QgIuPIe0gw6BKmCcHXI1Y0WI6rb65VRmcHb6mLdNXOr+e2T2hbqKvN6ctsYuVQOhUwBvdWz9zx2FQw2A7zl3kKb0SwlhhJIxBKEqkMF0ec4Dnk1eZCIJbxd0+awIacqB+JLwrCUFGD2bMDpBOQSOa4JvfqyrQZXAh4bmH711Vd4++23kZiYSE2DEIIXXngBq1evpqpjt9sxceJEHD16lKqOTqfD8OHDUVhYiISEBGo6GRkZuOeeexAcHAwvLy9qOrt378aUKVOovhbAtUr2xhtvXP7ZfPop4OsLPPlkhzUIIZg9ezZWrVpF3dcmT56Mw4cPU9Wprq7GiBEjkJ+fj549e1LTycrKwj333IOAgAAoFPRS4fbu3YuHHnoIPXr0oKYBAN9++y1ef/11qp8NALzyyitYuXIlVR2Hw4EHHngABw8eRK9evVr+g3ZSU1ODESNG4MKFC1R9jXFlIfpna4aTc8LuvDxLondwb1jsFmRX8ZcV1COgB0w2E4r1wgSGCqmrB2SJsUQQ/dbiLfPudKm8Z8rO4EzZGaHNaDNGm9GjV0sBoNRYiiBVkGAVrQv0BbA5bIjzj+PtmhmVGbA77bgq5CoAQG6uq4zJ/PnAgkUOcISDSCSqv09dSXhkYLpu3To888wzAEB1wPPRRx9h8eLFVHU4jsPjjz+OrVu3AgC1gVVtbS3Gjh2Lc+fOoXv37tQG8XUrF1qtluqg9+TJkxg3bhxsNhtVH9iwYQOeeuopAP/ygZwc4LffgKeeAnx8Oqzz6aefYuHChZfr8AghBE8++SQ2bdoEANQ+nzpfO3PmDKKjo6FS0SkzX1paiuHDh6O8vJyqD5w6dQpjx46F1WqlqvPnn39i2rRpAOje1z777DPMmzePqg4hBE899RT+/PNPAPR8zWKxYNy4cUhNTUVUVBTUas8eQDE6F4QQnKs412jf0ihNFDQKDdK0abzpxfjFQCaRIaeabiZDc/QO6o0eAXQn4DrKHbF3YHh850qLLTIUochQJLQZbWZ0wmjc1O0moc1olp6BPZEYRHcytzmydFlQyBSI8uGnhRTHcThfeR6BqkAEqYKg1QIjRgClpcAddwAjH7iAdG06L1qdEY8LTOtWLurSZ2gNeL7//nu8/vrr9f+mFTC++uqrWLFiBQBQG8RfunIB0BuM1tTUYOTIkfWpqLR0cnJyMHLkSBgMrhlTWj5w4MABPPDAA4372oIFgEQCzJzZYZ0ff/wRr1zSaobW63n99dfx448/AgAiIyOpDOKdTiceeugh7N+/HwA9H9Dr9Rg5cmR9Kiqt9+zChQsYMWIE9Ho9VZ2///4b999/P/X72sqVK/HSSy/V/5uWzhtvvIHvvvsOABAeHg6Nhv/iDE6nEw8//DD27t0LgN5rYVy5iEQi+Cv9oavVweqwXnY8MTAReouetxVOqViKKE0UCmpcKzBCEOsfi4RAullIHUUhVfDaJ5LRNGKx2CMKczVH7+DeiPalu5WnKcw2M0pNpeju1503n8yryUOtvRZXBV8FkwkYPRrIyAD69gV+XmOGBTUIUF6521Y86ptvt9vxv//9DxLJxTxuGoORkydPYvHixfVORmsQv379+voVBYDewOrzzz/H6dOnqeoQQvDf//4XFRUVVHVqa2vx0ksvNShAQ0OntLQUr7/+eoMbTb1OZSXw3XfAQw8BkZEd0jl16hQ+//zzep2wsDAqg/g///wTGzZsqP83LV9bvHgxTp06RVWHEII33ngD5eUXe/7R0LFYLJg9ezZ1XysrK8Nrr71G/b52+vRpLFiwoF4nODgY/v7+vOts2rQJ69atq/83LV9bunQpUlJSqOswrmxCvUMhEolQZiq77Fh8QDz6hfVDgIq/QWJiUCL6hvYVNPAy2oyNViT2FPQWPQ4VHPL43pqdHa1ZiyOFR3jt2cs3xfpiQe2TiqW4NuRa9Azgb/Eq3Ccc/cL6IVzVDQ88ABw5AsTEAFu2ABZJGSRiCYJVwbzpdTY8KjCVyWRYu3YtnE4n+vTpQ20mvn///vjiiy/AcRyuueYaaqs+48ePx5w5cwCAqs6sWbNw7733QiQS4aqrrqKiIxKJsGTJEvTt2xf+/v6IiIigoqNUKrFmzRr4+voiPj4eCoWCik5YWBiSkpJACEGfPn0QGhp6cRD/5ZeA2eyq191Brr32Wnz55ZfUfW3MmDH1q7I0dV544QVMnDgRIpEIV199NTVfW7RoEfr37w8/Pz9ERUVR0VEoFFi9ejX8/PwQFxcHpVJJRSc0NBS//fYbCCG4+uqrERQURKU42TXXXIOvv/4aTqeTqg+MGjUKr732Wr0mLZ0ZM2bg/vvvBwBqvsZgyCQyBCoDUWmuvKxCr1QsRZ/QPryuKDVXdMldHC06ikMFhwTTbwkH50C2LhuVtZVCm9KlqTBVILOSfrX79sJxHPbn78eJ0hOC2SCXytEntA+v7XQUUgX6hPbBxx+LsXEjEBAAbN0KBIZYoavVIUgVxGuhpc6GcHfGJli4cCGsVitWr16NrKwsajpz586Fr68v9u3bhwMHDlDRcDqd+Oijj9CnTx/8/fffOHLkCBWdyspKLFu2DBMnTsS8efOg0+mo6Jw8eRJbt27F22+/jbvvvptaoZjVq1cjNzcXa9asgZeXF7Wqr4sWLUJtbS1WrVqF3Nx/KiVaLMDixa6E/z59eNGZO3cufHx8sHfv3vp0a77hOA4fffQRrrrqKvz99984fPgwFZ2qqip8+eWXuPfee7Fw4cIGq5p8curUKWzatAlvvPEGRo0ahe7du1PRSUpKQnZ2Nn755ReoVCoEB9OZpfz8889hNpvx888/Iy8vj4oG4PI1tVqNPXv2UPe1Xr16UfW16upqfPHFFxg/fjyWLFmC0lLPXeFhdG5C1aHQmrWotlQjSHX5pFFuVS5MNhP6hPLzTKgLvMLV4YL0jwxXh6NYXwy9Re+R/SvrbKqx1AhsSesRizxqnadV1LWKodGbkw+0Zi3sTjvC1eGC6OvMOlRZqhDjF8PbRFJKSQoCVAGI9o3GzJmu1dLXXwd69QJKjVX1rayuaAghHvPTr18/4uPjQ8aPH09okpqaSgCQ119/narOmjVrCACycuVKqjpvv/02AUBOnDhBVWfSpEnE29ubVFZWUtNwOp2kT58+pGfPnsThcFDTqa6uJr6+vmTMmDEND3z9NSEAITt38qJz9uxZAoC88sorvFyvKX777TcCgPz0009Udd59910CgCQnJ1PVeeCBB4hKpSIVFRXUNDiOI3379iXx8fHEbrdT09Hr9cTPz4/cc8891DQIISQtLY2IRCIyZ84cqjq///47AUC+//57qjoffPABAUCOHDnS7msASCYe8Gzr7D8DBw5s83vf2bDYLU0eO5B3gKxKXUVq7bW8aJmsJrIiZQU5Xnycl+u1lZraGrIiZQU5V35OEP3WsPbsWrI/b7/QZnRpdmTvIBvSNwhtRpOcLD5JVqSs4O1711b+zv+brEpdRax2a7uvkVWZRaZvnE58PvQheBtE8b6C3PvrvSSrMqvR85u7D3Ulmns2C/7Au/QnIiKiwwOR1vDQQw8RpVJJysrKqGlwHEf69etHYmNjqQ96/f39yciRI6lpEEJIeno6EYlEZPbs2VR1NmzYQACQb7/9lqrO3LlzCQBy6NChi790OglJTCRkwABCOI4XnUceeYQoFApSWlrKy/Uag+M4MnDgQNK9e3dis9mo6RgMBhIQEEDuvvtuahqEEJKRkUHEYjF54YUXqOps3LiRACBff/01VZ1PPvmEACAHDhygqvN///d/xMvLixQXF1PT4DiODB48mERHR1P1NZPJRIKCgsjQoUM7dB0WmLLAtK1wjdz7K02VZEXKCnKq9BRvOn9l/UWSziYRp9PJ2zXbwrpz68jOHH4mYGmwNXMr2ZyxWWgzujTr09Z7tA9szthM/kz/UxBtu9NOfj39K9mbu7fd19icsZmoPlAR2bsygrfh+nlgDBEN+JYo39U08O/G7jtdmeaezR6Ve1BeXo677roL1113HTWN7Oxs/Prrr3jyyScREhJCTWfr1q1ISUnBK6+8AqmUXsb0119/jaqqqvo9X7T4+OOPIZPJMGvWLGoahBB88MEHiIqKwpQpU6jpmM1mzJ8/H3fccQduuOGGiwc2bgTOn3ftLeWhd1Rubi5WrVqFxx9/HKGh9FIztm/fjuPHj2POnDmQyWTUdL755hvodLoG1axp8Mknn0AikWD27NnUNOp8LSIiAo8++ig1HYvFgs8++wxDhgzBzTffTE0nLy8PK1euxGOPPYbwcHppTzt37sSxY8eo+9ry5cuh1Wqp+xqDcSllxjKcrTjrmrW/hABVAELVociozKivrN1RegT0QK29FsVGYXqahqnDUGGq4O318I1aroaTcwptRqtJKUlBSkmK0Ga0CY5w0Hh5Xio34Ep311l0CPMJE0S/oKYAdqcdcQHt612arcvGxLUTYbabYef+KbCYfyOQtBrkxH9Qe3IMJq6diGxdNpycE6fLT0Nr1vL4CjoxTUWsQvwAILt27aITnv/DtGnTiFQqJfn5+VR1brnlFhIeHk5qa+mlINTW1pLw8HByyy23UNMghJC8vDwilUrJU089RVVn586dBABZtGgRVZ3FixcTAGT79u0ND9xyCyHR0YTwtMI9ffp0IpVKyYULF3i5XlPcdtttJDQ0lJjNZmoaFouFREZGkptuuonqzF5BQQGRyWTkiSeeoKZBCCF79uwhAMj8+fOp6ixdupQAIFu3bqWq89xzzxGJREKys7Op6tx5550kJCSEqq9ZrVYSFRVFrr/++g77GtiKKVsxbQM1lhqSXJRMtCbtZccKagrIipQVJEObwYsWHysyHcFgNRCT1SSIdldka+ZWsjWT7n3+SkNIH63LaGgv0zdOb7hS+mwvAkUlAQjBgK8I3gKRvSsjz256lpQaSklyUTIxWo08vgLPprlns0etmHp7e+P222+ndv2SkhL88MMPePTRR9GtWzdqOgcOHMCBAwcwe/ZsKBT0+kP99NNPKCkpob6qMH/+fHAch5dffpmqzty5cxEUFIQnnniCmobD4cCnn36KwYMHY+jQoRcPHD4MHDgAvPgiwMMKd1lZGb777js8/PDDiImJ6fD1muLQoUPYu3cvZs2aBaVSSU1n5cqVKCoqwuuvvw4RD6vJTTF//nw4nU63+FpgYCCefPJJahpOpxOffPIJBgwYgLvvvpuaTkVFBZYvX44HH3wQcXHtm91tDUePHsWuXbvw4osvUvW1n3/+GYWFhdR9jcH4NxovDZQyZaOtVKI0UYjQREAukfOiJRVLEe0bDZPdxMv12oparvbYojcMBiCcj3Ich1pHLWL9Y9t9jZWpKy+ulFbGAyu2AZYAIHEDMOoZQATYOTtWpK5AmakMPl4+8JZ78/QKOjceVZW3W7duVAcioaGhWLt2La666ipqGgBw3XXX4bvvvsPEiROp6jzwwAMQiUQYMWIEVZ1XXnkF1113HdVBLwAsWbIEmZmZUKno3YikUil+/fVXEEIa+trChYCvL/D447zohISEICkpiXrvxYEDB+L777/HvffeS1Xn/vvvB8dxuOeee6jqvPzyyxg4cCASEug2gP/8889x/vx5Kv2L65BIJPjll1/gcDio3teCgoKQlJRErUp2Hf3798cPP/yA8ePHU9WZOHEiHA4HRo8eTVWHwWiMMHUYcqtyUW2php/Cr8GxO2Pv5FXr+sjrBe1nmluVC61Zi8GRgwWzoSksDgsO5h9EQmACon2jhTany5FblYvc6lwMiRkiaOuipjhUcAiRmkhBPnuxWIyxiWM7lOZutBld/5N9F7B2tSsojfobuO9BQHIxRd1gNcDutKO7X/cOWt11EJF/7aUQkkGDBpHk5GShzWBcaRQVAd27AzNnAp99JrQ1DAaDJ0Qi0XFCyCCh7ejsXEnPZkIIzlachUwsQ2LQ5ROLNocNJcYSxPjxlwnj4ByCBAcpJSk4U34GE6+eyGuvVj5wcA78evpX9Anpg37h/YQ2p0W2ZW0DAAzvMVxgS1rHkcIjyKnKwYPXPCi0KZeht+jxx/k/0D+8P64Oudrt+nx8HzVzNTDYDMDqJCDtPtdK6YRHAIWhwXlqmRpHnzyK3sG9O6TX2Wju2exRqbwMhiAsWwY4ncCzzwptCYPBYDAERCQSobtf9yZXMM5VnMP+vP2otlTzopdfk4+1Z9fydr22EOETAQAoMZS4XbslpGIplDIl9Fa90Ka0CplEBpmEXkE4vjHajB6bOlpkKAIARGoi3a5daizF2rNrG03nbwtT+k6BTCwDxj0GjHgemDzhsqBUJpbh4b4Ps4yAf8ECU8aVjdUKfP01MGoUQDlVmcFgMBiej1quhpfUq9FjPQN7QiQWIa0ijRetIGUQOHDI0mXxcr02aauCIJPIUGwQpjJwS6jlahjtRqHNaBV3xt7Je6o3TfRWvcdW5C0xlkApU16WSu8OsnXZAFzfjfZQXAxMnw481/8l10SFwgDc8Dkgvjw7VSaRYc5Nczx2gkAoWGDKuLJZswYoLwdmzBDaEgaDwWB4CFaHFVm6LNTaaxv8XiVXobtvd1yovgCLw9JhHZVchTDvMFyovuD21i1isRih6tAOrw7RQuOlubhXj8EbHMfB7DBDLadXY6G9cByHClMFwtTubxPj4Bwo1Beim2+3dqXyHjkCDBrkSsL7YWEcfhr/E+QSOSQiSYPzZGIZVDIVFo9YzFZLG4EFpowrF0KAzz8HEhOBu+4S2hoGg8FgeAhSsRQGq6HRoK13UG84OScyKjN40eoR0AMWuwWFhkJertcWwtXhUMqUsDlsbtduiQBlAHzkPnBwDqFNaZHk4mQkF3eOfdg2zgZ/hT8ClYFCm3IZZocZ3jJvRGmi3K6dW5Xr6l3q1/bsuR9/BIYMAUpKgNtuA+bMAaJ9ozF36Fz8p99/oPHSQCwSQ+OlwbSB0/DHA39gYMRASMSSli9+heF5pbgYDHdx5AiQnAwsWQIIWBmRwWAwGJ6FRCxBsHcwyk3liHBENEjtDVAFIFQdCl2tjhetbppukEvlyKnKcfsKSmJQYqNFnjwBT7bt31SaK4U2odUopArck0C3wn57UcvVGJ0oTEX2nKoceMu9EaGJaPXfOBzAyy8DCxa4/v3MM64mDzIZkJJdjQHhAzDrxln4euzX9X9jtpuRVpGGUHUoxCI29vw3LDBlXLksXgz4+ACPPiq0JQwGg8HwMEK9Q1FuKkeZqeyygPGO2Dt4q6QrFotxfeT18FX48nK99sBxnKCtaxgMQFg/HBgxsE3p+SYTMGECsH07IJUCX3wBTJt28fiw+GGNrvaXGctcE1+qYD7M7nKwuxDjyqS0FFi7FnjsMVdwymAwGAzGJcgkMgQoA1BprrxsgFkXlPKxzxQAYvxiBCn2AgBny88iKS3J7XtcW4LjOGw8vxGpZalCm9KlSC5Orm9v40nYHDasPrsamZWZgugHqYLalEKsUgF+fkBwMLBr18WglOO4+vvCvyevrA4rdLU6BKmCWBpvE7DAlHFl8tVXgN3OWsQwGAwGo0nC1GEIU4dBBNFlx4r1xfgt7TcU6/mpaltuLBdkn6KPlw9sDpvHFUESi8WwOq2orq0W2pQuRVVtFexOu9BmXEaRoQhOzgkfL/cvFhwrOgatWduqc23/bMcWiYDvvweOHwduvfXi8QJ9AX5P+73R60nEEoSpwxDqHcqH2V0SFpgyrjxsNlfZtJEjgZ49hbaGwWAwGB6KQqpAuE94o6sbIeoQyMQypFem86JVYa5AekU6dGZ+9q62ljDvMIjEIhQbPa9tjMZL0ylaxiilSiilSqHNaBVGmxFqL8+ryFtsKIZMIkOIKsS9uvpinNeeR42lptnzCAHeew+46SbAbHb9ztsb6Nat4XnnKs5BLpEjQBFw2TWkYikiNZGdquetu2GBKePKIynJlcrLWsQwGAwGoxVU1VZdVuxIKpaiR0APFOuLobfoO6wRHxAPkViE7KrsDl+rLcilrkF0qcGzVkwBVzEcg9UgtBktMqT7EAzpPkRoM1qE4ziYbCaP7GFaaixFsHew2/eY5lTnQCaRIcYvpslzTCbg/vuBN98ETpwAduxo/LxyYzkqzZXoFdTrstehNWtbDH4ZLDBlXIksXgwkJADDhwttCYPBYDA6ARXmChTqC0EIafD7XoG9IBKLcLbibIc1FFIFwtXhyK3Odft+z3B1OKot1bztmeULH7kP7E67x9nVWdHbXBMoPnLPqq1RbalGrb0W4epwt+raHDYU1BQgShPVZDGzCxdcq6RJSYBGA/z5JzB2bOPXS9emQyaRISEgocHvnZwThfrCVqcLX8mwwJRxZZGcDBw+7NpbyioQMhgMBqMVhKnDYHfaL1s1VclViPGNQX5NPi/9NnsE9HANlvUFHb5WW+ju3x19w/q6VbM1BHkHIco3yuN7mR4pPIIjhUeENqNVRPlGwV/pL7QZDZCL5egT0gfdfLu1fDKP5NXkwck5ER8Q3+jxDRuAwYOB1FTXzq8jR4BRoxq/lsVhQYGhAHH+cZBL5Q2Oac1aODknwtRhfL+ELodHj8yNRvfsK+hKOna7HRYL/ZnFTvueff01oFQC//d/dHWaoCvpOBwO1NbWUtfpSu8Z02kf7vI1BqMpNF4aKGXKRgsE9Qvrh5E9RvLSPibKJwp+Cj+3B2J+Cj/0De0LhVThVt2WCFOH4fbut0Mt97w9kZdSbalGtaVaaDNaxE/hh9u7344gVZDQpjRAJVehX3g/t3/ODs6BQFVgowHjoUPA+PGAVguMGOEKSnv1avpaCqkCoxJG4ergqxv8nhCCMlMZfLx84C335vkVdD08NjC9cOECPv/8c+o6+/fvx7p166jrfPfddzhz5gx1nddeew22upJhlOA4DrNnz6aqAbgGvG+88QZ/FzSbgV9/BSZNAnwv9ovLy8vDwoUL+dNpgoMHDyIpKYm6zg8//IBTp05R1/nvf/9LfRKE4zjMmjWLqgYAmEwm/O9//6OuU1BQgPnz51PXOXToEFavXk1dZ8WKFThx4gR1nTfffBMmk4m6DoPRHGHqMFgclssCELVcDY2Cnz17YrEYoxNHN7mCQxObw4b8mny367YGT2tl01nxxPeR4zjeMg7aSu/g3hiZMLLRYzfc4Gpzv3AhsGmTqzVMS/gp/KCSqxr8Tlerg91pZ6ulrcQjA1Or1YpJkyZR1ykrK8PkyZOh0dDdBJ6SkoJnn30WAQGXV+jik3Xr1mHRokXwodyX86OPPsKhQ4eoahBC8PTTT6O0lMdiDL/9BhgMwH/+U/8rq9WK+++//7J9Q3xTXl6OyZMnU/9sUlNT8cwzz1D3tQ0bNmDevHnw9aXbEP7TTz/FwYMHqWrU+VpxMd2KlDabDffffz/1gYFWq8X9999P3dfOnDmDp59+mrqvbdy4ER999BH8WjMqYDAo4q/wh8ZL02jrGIvDgp05O5Gt46dwEcdxMNrcW402tzoX+y7sc3tV4JbYnLkZ+/L3CW1Gl2Bn7k5sz94utBkNKDWWYt+FfSjSF7lV99/fL4MBmD4dqFtDEomAH38Enn++5Z1faRVp2HNhT6PBtUgkgp/CzyMLTnkiHhmYzpo1C8nJyVQHPE6nEw899BBKSkqo6tTU1GDixImwWCxUdbKysvDYY4/B398fItHlD02+2L17N9544w3qg9GvvvoKP//8M786338PxMUBQy5WznvppZdw9OhR6r728MMPo6ioiKqOXq/HxIkTUVtbS1UnJycHU6dOhZ+fH9XqeXv37sXrr79O3de++eYbrFy5krrOyy+/jMOHD1PV4TgOU6ZMQWFhIVUdg8GAiRMnwmw2U9W5cOECHn30UWg0GkilHU+TZDA6gkgkQkJgAnwVl0/IKaQKGG1GpFWk8aK1+8Ju7Mrdxcu1WkukJhKAq22HJyETy2C0en7LmM6A3qqHl8RLaDMaUGwshkgsol74KFuXjWc2PQPNXA1E74gQ8mkIJvw6Adm6bOzeDfTt6+ok+NRTrtYwrYXjOKRr02G2mxtN5w9QBgiSAdFZ8bjAdNWqVVi6dCkAUB3wvP3229i1axdVHUII/vOf/yA72zWDSmvGv7a2FpMmTYJer6f6nhUXF+OBBx4Ax3FUdZKTk/H8888D4PGzyckBdu8GHnvMNQ0GYPXq1ViyZAm/Oo3w3nvvYcc/tcVp+toTTzyBzMxMAIC/P53CBhaLBZMmTUJNTQ3V96y0tNQtvnbixAnMnDkTAF0fSEpKwqJFi6jrfPDBB9i2bRtVHUIIpk2bhvPnzwOg52t1mTNVVVXUJw0YjLbAEa7R/YQ9A3ui2lLd6D7UthLhEwG9Re/WKp5quRo+Xj4oMZa4TbM1aLw0MNk9O5VfLVd7/D5YjuNQa6/1uB6mpYZSBCgCLisYxCdbMreg77K+WH5iOQw2V/uhWkct/jyzC71Gb8Odd7qq7w4YAHz1Vf0wsVUU6AtgspnQO6j3ZceqaquoZ+R1NTwqMLVYLJg2bVr9v2kNRrZs2YL333+fus7ChQvr96/6+vpSm/GfOXMmUlJSANB7LQ6HAw888ADKy8up6lRVVWHSpEn1+2R50/nxR9edZupUAEB6ejqeeOKJ+sO0Xs+2bdvw7rvvUtdZvHgx1q5dCwBQq9WQy+nc4F944YX6PYU0fe3BBx+sT+Om6WsTJ06E1WqlqpORkYH/XJI+Tktnx44deOutt6jrLF26FL/++isAQKlUQqmk01S+LnMGoBvMMxhtpdxUjmxdNmrtDQtyJQQmQC6V41zFuQ5rxPv/09OUp9Tg1hKmDoPWrPWoKrhquRp2px1mm1loU5rk5uibcXP0zUKb0Sx1rWJ8vehuwWkLdXu2aa6WZuuyMXHtRJjtZtg5+8UD+TfC+WUyHIeeAcR2PP+qDocPA336tO365yrOQSlTIsa3YR9Ug9WAnKocVNZW8vAqrhw8KjAtKCiASnVx0zCNwUhZWRneeeedBvuvaMz4nzp1Cj/88EN9MEprYLVhw4YGe/Bo6SxatKjBHjwaOoQQ/Pe//4XT6eRXh+OAH34Ahg0DunWD1WrFnDlzGgyoabye8vJyvP3221CrL85O0tA5ffo0li9fDplMRk0DcO3127fv4j4fWjpLlixBQcHFVgm0fO1///sfHI6Lgy8aOjabzS2+ptVq8eabbza4r9HQOXv2LL7++mvqvrZ582bs3r27/t8sMGV4EsGqYIhF4stWRqViKXoE9ECxvhh6i75DGnKpHN18uiGvJs+tBWvCfcLh5JwoN5a7TbMlfLxc97W6wIrRPmosNQA8q4dpicG1Oh/hE0FN47NDn8HutDf8pUUD/LwF0CUAIachnXYzHLe+iX8eba1Ga9ai0lyJxMDEy7Y2lRpLIRVLEaBkz6+24FGbdhISEkAIqQ8UaQSMoaGh2LNnD8LDw3HzzTfjwoULVGb8r732Wqxbtw49evTAiBEjUF1dzbsGAIwbNw4SiQRjxozBmDFjqKULz549G06nE6+88grGjBlDZaAoEomwdOlSmM1mrF27Ftdffz0/PrBrF5CfD3zyCQDAy8sLf/75J6677rr6lWwaryckJAS7d+9GREQEbrzxRuTl5TWYeOGLa665Bhs2bEBcXByGDx+Oqqoq3jUAYPTo0ZBIJLjnnnswZswYasV1XnjhBTidTrz00ktUfe2LL76AxWLBL7/8gptuuomKjlwux4YNG3DDDTdArVbDy8uLik5QUBD27NmDiIgI3HDDDbhw4QKVz+fqq6/Gn3/+ie7du+Puu+9GZSWdmeB77rkHUqkUw4cPx5gxY6h8bxiM9iIRSxDsHYxyUzkinZGQSy5mqPQK7AUxxLykJcYFxCG/Jh8F+gLE+MW0/Ac8EOETgXsS7kGAynMG0wHKACQGJXpcK5tLOZjvWiDw5FVTb7k3EgIT4KfwE9qUemL9Y+Hj5YMABT1/W5m6suFKKQAo9MCwOUB1d+D2d+CQ2rAi9TyW3LOkTddWSVW4KuQq9Azs2eD3tfZa6K16RGoiIRZ51Bqgx+NRgWltbS3OnTuHefPmYdKkSQgMDKSis379/7N33vFRVen//9w7JZNp6cmkk4QWmkgRUde1UywoYBeV1cW2umt39avruj/ryqq7rIuKgoKuSnEpgiDSFGmhkwTSe89kMj1T7vn9Mc6QSEim3DMpnPfrlZcyufd8Tmae5N7nPu1/MBgMeOGFFzBkyBAqGoBnbAfgSX2jOVZj6dKliImJwddff43y8nIqGoQQLF26FJMnT8Y333yDkpISKjomkwkrV67EzTffjEWLFonjZH3yiafP96xZvpfy8/Nx4MABvPnmm7j99tup1cmtW7cObW1teP7555GTk0OtMdWnn34KAPj3v/9NdVzQ0qVLER0dHRZbmzBhAv73v//56mbFxmKx4Ouvv8acOXOwePFiak5WYWEh9u3bh9deew3z5s2j1sl4/fr1aG1txccff4zhw4dTtTVCCBYtWtQl4iw2S5cuhVarxZdffonKykpqOgxGMCSpktBkaUKjuRHpUem+173zGMUgRZ2CK7KuCOuYCSkv7VdOKeBJ5Z2cOrmvt9Ej4e6gHAzxyvh+N78UAPU9mR1mwCUDdr0IRFUBE5d4vjHpozOPCxClXIkJyRPOeL3B3OB5gKVMCGrP5zL9yjFtaWmBRCLBXXfdhaSkJGo6S5cuRUpKCq655hpIJBIqGm63G59++ikuv/xyZGVlUdEAPO/Z+vXrsWDBAigUCuTmnll8LQb79u3DyZMn8f7770MikWDEiBFUdFauXAmr1Yr58+dDrVZ3SYMNirY2YM0a4P77AcXpp61Lly6FRCLBvHnzkJxMr7Zh6dKl0Ol0mD59OrUaY0EQsGzZMlx66aXIyaHX+U2v12Pt2rW47777qNpaXl4e8vPz8a9//Qs8z1OztVWrVsFsNmP+/PlQqVRQqegMvl66dCl4nsfdd9+N1NRUKhpencTERMycOdOXais2Xlu75JJLMGzYMCoagKf+95tvvsE999wDpVJJzdYYjGCRSWSIjYyF3dX9Q+fytnIIRAipGyfP80jR0ktxPBsGuwEnmk5ggm7CGTMZ+wqX4ILdZe/3DYb6M2aHGQqpotvOsX2BwW5AflM+xiaOFW0OcHdEtl4I69fvA43jAbkRGLUSiGw/47hAbetUyylEyiKREZXR5XVCCDrcHYhXxkPC0/ExBjPU48scx0k4jjvMcdyG3o7V6/W49tprqTql1dXV+P7773H33XdTc0oBYNu2baiursb8+fOpaQDA559/DqfTSV1n6dKliIiIwG233UZdJzs7G5d2GukSEl9+CXR0dJld6nQ6sXz5ckyfPp2qU1pbW4stW7Zg3rx5VEdd7NixA5WVldRt4IsvvoDD4QiLrcnlctxxxx3UdYYMGYLLLruMmobL5cLy5ctxzTXXUHVK6+vrsWnTJtx1113UnFIA+PHHH1FWVkbdBr788kt0dHRQ1zmXCeTazOiejKgMDIvr/gFNUWsRjjQcCbk+VBAEHKg9gFMtp0JaJxBcggsVbRWoNYV3rmRP7KzYiR3lO/p6GwOazSWb8XPVz329DR817TUobyunNnbO5QJefRWw/2eXxymNKQXuvLZbp1TGyzBv3Dz/1xZcONJwBGVtZWd8j+M4jIwfiVQNvWv+YCYcic9/BODXYC+Xy0X9RuSzzz4DIYS6zrJly6DRaDBnzhyqOkuXLsXYsWMxYcKZqQRiYbVa8eWXX+LGG2+klvIKAMXFxfjpp59w7733ipeGuHSpZzjV+ef7Xtq0aROampqo28Dy5cshCEJYHDmVSoW5c+dS1xk1ahQmTZpETcNb8zlr1izqs1h37tyJe+65h+os1s2bN6OhoYG6DaxYsSJstqZUKnHzzTdT1xkxYgSmTJlCVeccx+9rM6N7vLVjTrcTAunqgOYm5MLmtKHcEFrJA8/zaLG24GTLyZDWCYR4ZTzkUrmvMU1/QC1X+8Z8MALHJbhgc9qgjaAXmQyUenM9NBEaKlHwwkLgoouA//s/QHBJIZ3yAfDgeUDmT90eL5PI8PiFj/u9fnFrMZxuJ0bFj+ryultw+zpa0yqnGexQdUw5jksDcC2AJf4cL5VKce2111LbDyEEy5Ytw0UXXYThw4f3fkKQGAwGrFmzBrfeeivVph2HDx/G0aNHMX/+fKq/AN988w2MRmNYnHmO43DPLyNdQubECeDAAU+0tNP7s3TpUsTFxeH6668XR6cbvHWSU6ZMoZqG2N7ejtWrV+OWW24JPe25B44dO4ZDhw5RtzVv/Xc4bA2AeLZ2Frz13zfccAM1Da+tTZo0CWMC7XMfAN7677lz51JrfAWcrv+mbWvnMoFemxlnx+F24ETTCTRbmru8nhGVAU2EBqdaQ490Zsdkw9RhCmunXJ1KhwZL6PNYxUItV8MtuPvtyJhoRXS/air0a7xdor0djvsal+BCi7WFSv00IcB993lu/9LTge+/B9Ytz0CkUoAEXTMlZbwMSpkSq25eFVDa/cmWk4hVxiJRndjl9UZLI040nYBbcJ/lTEZv0I6YvgvgGQB+5bLExsZSTUMrKytDY2Mj9ZveAwcOhCV68fPPPyMiIgJ33XUXVZ29e/ciLS0NV111FXWdK6+8EhkZGb0f7A/LlgEyGXDnnb6XOjo6cOjQIdx5553UZn0CQEVFRVgiZQcOHIDb7aaus3v3bsjl8rDYmrf+m7YO7fpvh8OBgwcP4o477oBCQa+bZHV1Nerq6qjbQF5eXthsTSaTYd48/9OqGAHzLgK4NjPOjlwih0quQqOlEYSQLt8bHjcceqv+jLEygZIVnQUJL0FpW/hmmiZrkuFwOdBibQmbZk9EKTxN4/rryJgpaVMwJa3/Znh4o839ZVRMg7kBbsGNZI145VTerHmOAz74APj974Hjx4GrrgJmDJuBj274CFfmXAmNXAOe46GN0GLBxAU49uAxzBg2w2+dSkMlLA4LcuO7Bh3cghtNliZo5BpWWxoC3K//kIq2MMddB2AmIeRhjuMuA/AUIeS6bo5bAGABAKSnp0+sqqqish8vVqsVHMdRGwrvRa/XIyYmhvoTf71eH5YZf+HQIYSgra1NHB1CgMxMTwrv2rVdvuVyuWCxWKh1R/XCbK3/6ohqaz0QLluz2WwghFAfq9LW1oaoqCiq6c+AeDbAcdxBQgi93PMBSDDX5oyMjImsM/LZMXYYUdxajCHRQxCnPD1NwCW4sKV0C8YljUOaNi0kjV0Vu1BvrsecUXPC0rzG6rBic+lmTE6dHPLexcBoN2LdqXWYnDoZI+LpNMQbzJxoPIEjDUdwy+hbRBllFCrlbeU40nAE14+4PmR7NhqBl14CamuBlSu7P8busmN14WoMjRka8gOE8rZynGw5iWk507pcCxvNjagx1mBk/Eio5HSaKQ4Wero203RMXwcwD4ALgAKAFsAaQshZQy6TJk0ieXl5VPbDOMfIywMmTwY+/RS4++6+3g2DwegDmGN6JuzaTIeC5gIQQjA6cTSV9RvMDSjRl/SrTrnhRBAEFLYUIlWb2i9TZndV7AIAXDpEpMaNIqO36tFoaURuwuDpcE4I8PXXwOOPA/X1AM97IqSjRp15rNlhRl5dHsYljqMyDokQguNNx6GQKs6Yaco4k56uzdQeexNC/kwISSOEDAFwG4BtPV34GAxRWbMGkEqB684IBDAYDMY5C7s200Gn1sHussPisJzxPZfgCjmdV6fW4ZKMS/rEKQ21s7AY8DyP0Ymj+6VTCgA2lw02l62vt3FWYpWx/cYpFcOeioqAa64BbrvN45ReeCFw8GD3TingqVG+bMhlITulDeaGbvdvcpjgdDvDOnN4sBKOrrwMRnghBFi9Grj8ciAMqacMBoPBOLeJUcRgdOLoblP49tXsw/by7XC4HCHr6K36sDUA0lv1+Dr/a9SYasKi1xtmhzlkB/9cpc5Y128aR5UbyrGqYBXMDnNQ5//tb8DYscDWrZ5bvI8+AnbvBsaP7/54s8MMg90Q9H69WB1W/FD+Aw41HDrje9oILUYnju5XXY8HKmFxTAkhO7qrYWEwqFBY6HmcNnt2X++EwWAw+i3s2iweHMdBIfU0Oft1idSI+BFwC24UtRaFpGF2mLGxeGPI6/iLVqGFW3D3m7Exhc2F2F6+va+3MeBwCS5sK98WNrvpjXpzPQQiBD0mxmgEHA7PwIVTp4D77/ek8Z6NwuZCfFv8bcgPhgpaCkAEguGxXVN1vb/v3t9/RmiwiClj8LFmjact26xZfb0TBoPBYJxDVBoqz+ieG6+MR4IqAadaT4WUxqiWq5GgSgh5Nqq/SHkp4pXx/SZK2d9HxvRXvKNivJ2N+5oGcwN0Kv9TXqurgZ9/Pv3vv/zFEyH9+GMgPr7ncwVBQLmhHMnq5JCaPrkEF0r1pUjRpkCr6BoVLWotQq2xNui1GV1hjilj8LFmjWeycrJ4bcgZDAaDwegNuUSOdns7bM6u9YYj40fC5rShsj207sbZMdmwOCxhcxaT1ckwdZiCTrsUE+8MTjHSMsUmThnXpSNzf6K9ox1A/5hhqrfqYXfa/RoT43QCf/87MHKkp5bU/IsJqtWeWzx/qDZWw+FyYGjs0BB2DRS3FsPpdmJUQtciVu/vhlzS952OBwvMMWUMLsrLgcOHWRovg8FgMMJOoioRPMef4ThmRmdCJVehzlQX0vpZMb/MNNWHZ6ZpiiYFAPpFRMjb+Mg7k7M/MSllEial9M8G4N73Syvv+/pHr/2nalJ7PG7XLs+0v2eeAaxWT3Mjuz1wvdK2UihkCqRpQht51GhpRKwy9ozmRo2WRkh5ab99KDEQoT8Mi8EIJ9984/nvTTf17T4YDAaDcc4h4SVIUCWgydKEVHdql0jKjGEzQq5Dk/JSpEele+r0BIH6TOFYZSxGJozsFzfeSqkSHM/B2GHs660MKEwdJihkin4xvzReFY8xiWPO2l26qQl4+mngs888/87JARYtAqZPD1zLJbjQbGlGdkx2yL8nlw25DHZXV8/Y5rSh3d6OVG0qeI7F+cSCOaaMwcWaNZ7HbFlZfb0TBoPBYJyDJKoS0WRpQqO5EelR6b7XvU6pS3BBygd/+zVBNwFyqZy6U+qlv0QCeZ7HbzN/2y8if79mW/k2AMAVWVf08U7OZHTiaGRF9497Ip1ad9aRKoR4HNDDh4GICODPfwaefRZQBPksR8pLcdPImyAgtPE03t/XXz9UajA3gOd4JCgTQlqf0RXm4jMGD/X1ngp5lsbLYDAYjD5CLpEjOya72zq6SkMlVuav9DWkCQalXBmSYxsogiCgwdzQL+pM07RpZzSf6Q843U443c6+3ka3RCuikaJN6ettwGg3osncdMbr3ibWHAf89a/AtGnAiROeJkfBOqVe5FJ5SFkKLdYWrMxfiTrjmSn4qdpUZMdkQ8JLQtki41cwx5QxeFi71vMXjjmmDAaDwehDohXR3TqPCcoECBBQ2FIY0vpN5iZsOLUhJAfXXxyCA1tLt6KktYS6Vm8Y7UacajnV19sYMLgEF061nOqzhwql+lI8/O3D0L6uRdSbUch8LxMPrn8QpfpSGAzAo48CTz11+vjrrwc2bQKGhtarCC3WFmws3gi9VR/SOidbTgLwdNb+NXKJvN90Oh5MMMeUMXhYswYYMQLIze3rnTAYDAbjHMfisKC4tRhuwe17TSlXIl2TjrK2spDmKirlShjsBpS00XcWFVIFohXRqDf3/TzTWlMtDtQe6BfR24GAwW7AgdoDaLY0h117U/EmjFs8DksOLfE1YLK77Pj48CcY9eCryB7WgUWLPDWkDZ16hXFc6Nql+lK02duCnpUKAFaHFZXtlciOye5Sn+sSXChuLT6j8zZDHJhjyhgcGAzA9u2epkdi/FVjMBgMBiNEjB1GtFhburw2KnEU3IIbRa1FQa+rlquRpE5CeVt4ZprqNDro7fqQnGkxiIrwRKjCESkeDJg6PA5huEfFlOpLMXflXFidVjiFTinODePg+ngrHCs/QVtLBCZcYMOBA4DO/7GmvSIIAirbK5GqSQ2p4VNBSwGIQJAb3zXY0WRpgrHDCI7da1KhXzqmxcXF1DUIIWHRsdlsqK6upq5TXV0NezC9tAMkHO9ZUDq7dgEuFzBjBl2dIAiXrdntdlRVVVHXqa2thdVKf8B5v7U1poOOjg5UVoY2j9Ef6urqYDazyAhjYKKSq6CJ0KDJ0gTiLaSDJy0wThmHU62hpaRmx2TD5rR1W/8mNinqFBCB9HnU1Ftf6p3N2V9IUiUhSZXU19s4A2+k0jtqJ1ws3LOwa82twAPfLgI+OARUXQoomyG58fe48MVnMG6cuNqV7ZUhzy4VBAFlbWVI0aZ0qWl2C240WZoQrYgOucM2o3v6nWNaWFiId955h7rO+vXrsWHDBuo67733HgoKCqjrPP/882hpaen9wBAQBAEPPvggVQ0AMBqNeKpz0YE/7NzpaeN2wQV+n1JUVIS33347wN0FzsaNG7F27VrqOv/6179w4sQJ6jovvPACmpvppgUJgoAHHniAqgYAmEwmPPnkk9R1SkpK8NZbb1HX+e6777BmzRrqOosWLcLx48ep67z44otoajqzWQaDMVBIUiXB4XZAb+ta6zY5dTKuzL4ypLUzozMhk8hQZigLaR1/0Kl1kPCSM+azhhu1XA0JL+l3qbzjk8djfPL4vt7GGRg7jFDIFGFtlgUAK46t6Bop5QXAkgCAABe+Azw6DO7xS7DixGeia5e1lUEhUyBFHXzDJ57ncVXWVZiQPKHL6y3WFrgF91k7CzNCp985ps888wwaGuj+4XM6nXj66afR2tpKVaepqQmvvfYadZ28vDysWLGCus4XX3yBbdu2weGgm8rzxhtvBO7M79zpmcAcQAu3cNiay+UKi621tLTg1Vdfpa5z+PBhfPbZZ9R1vvrqK2zfvp16FsBbb70VFmf+2WefRX093UiDy+XCU089Rf2zaW1txf/7f/+Pus7Ro0exdOlS6joMBk2iFFGIlEWe4dDFK+NDjmJJeSnGJI5BqiY1pHX8ged5TMuZhskpk6lr9YZKrvJFAhk9Y+owQSVThV3X7DADFb8B6jo5dtOeAB4aB0x/AohsP32cyGREZWBs4tiQxynFKmO7/I4SQtBoaYQmQgOVPPzv6blCv3JMTSYTNmzYQP1G5IMPPkBRURF1nZdffhkmk4mqDiHEF/GhqWOz2fD8888DAPT60Lqc9URVVRXeeeedwH6W9nbP4KvLLvP7lJ07d2Lt2rXUbeCjjz5CYWEhdZ2//vWvaG9vD4utEUKo6tjtdvz5z38GQNema2pqsHDhQuqfzY8//og1a9ZQ1/nkk0+Qn59PXeeVV16BwWCgbmtPPfUUdVtjMMJBqiYViarELum8gKe5yo6KHd2O0PCX0YmjkRUTnhmVscrYsM1O7YnLMi/DJemX9PU2uvB96ff4vvT7vt7GGVyedTkuTr84rJrV1YBk9Upg2S5g/QeA8EstZlQtkNi1G3UozYnOxrC4YRgRPyLo86vaq7CrYhfsrq4PxgkIklRJSFafOQaKIR59/xemE95aTJo3IgaDAS+//DJ1ncLCQnz44YcA6Dpya9euxa5duwDQ/XneeeedsHw+zz//POx2OwwGA9xud+8nAMDu3YAgAL/9rV+HC4KAJ554AgDdn8VoNOIvf/kLALo2cOrUKSxevJi6zoYNG7B9+3YAdN+39957z1e/SFPnhRdegM1mg9FohNNJZ/6cIAhheXBkMpnw4osvAqBrA0VFRXj//fcB0P15Nm3ahK1bt1LXYTDCQZQiCgmqhDOapcilcjSaG1HQElq5j9VhRam+NKQ1/EEQBOTV5aHSQL++vCe0Cm1ITW1oIBABAhH6ehtnoJAqwjb31W4H/t//8wxHcB2fA8iswMi1gNB9GrGMl2HeuHmi7qG4tfgMhzJQCpsL0WxthpzvamM8xyNJnRT2RlLnGv3KMbXZPK2Xad6IdE6tpanz9NNP+xwrWjoOhwPPPPOM79+0dBobG/H6669T1zlw4AA+//xzAJ6ISVtbm38n7tgByOWeVF4/+Pzzz3Ho0CEAdG3g9ddf99Vi0tR55pln4HK5qOp409+90NJpbm7Ga6+9Rl3n0KFD+Oyz07UttJy5L7/8EgcOHABA1wbefPNNXy0mTZ1nn32Wuq15U5K9MMeUMRgghKDZ0gyLw+J7TcpLkRObg5r2mpBSGkvaSrCneg/1TrU8z6PSUInSNvpOcE8Y7UYcqj8Eq4N+E76BjPd9ol2PSwjwzTfAqFHAiy8CNhsw80YzFH86H/jt/wOk3T/4lUlkePzCx0XbR5O5Cftq9oX04ERv1aPZ0oxhccO6ZAeYOkxotbaekfXAEJ9+5Zh6nya2ttL58MvLy/HBBx9AIpH4dGiwdetWX2SJps7ixYtRW1tLXecvf/kLBOH0k0AaOt7UPaVSGbjOzp2epkeRkb0earVa8eKLLyIiIgKAxyGhYWsVFRV4//33qdva9u3bfZElmjoffvhhl+7StHRefvlln+NDSyckWwsAm82GF154wWdrbW1t/mcBBEB1dTUWLVpE3dZ27tyJ778/napGS2fJkiVdOv4yx5QxGCAgqDPVndHVdmT8SHA8h8LmwrOc2TtDYzzdR4v0wY+f8RedWodmS3OXe4JwY3aYUdBUAL2dXnbIYKDZ2oyCpgLqI34MBmD+fKC8HBg71jO579tv1Fjz+3cRKY2EBJIux8t4GZQyJVbdvAo5sTmi7aO0rRQSXoKs6OBT2wtaCiDhJRgZN7LL67Wm2j7vSH2u0K8cU7lcjosvvhiXXHIJlREBarUa5eXl4DgOc+fORVISndbeo0aNwo8//ggAWLBgAaRSOt3QZs+ejSVLlgAAnnrqKV/EWUwIIXjhhRd8qa9//vOf/Y9kBoDT6cTXX3+N6dOnIyUlBb/73e/8uyE1mYCDB/1O43U6nTh69CiysrIwdepUXHbZZWhvF7/tvEqlQmVlJXiex+zZs6ETc0hXJ0aOHImff/4ZAPD73/8eMpmMis6sWbPwySefAACefPJJKrYGAM8995wvMvv8889Ts7UvvvgC1157LXQ6He6//34qzo/T6cThw4cxdOhQTJkyBVdddRUMBoPoOgqFApWVlZBKpbjxxhuRkhJ8J8KeGD58OPbs2QMAuP/++yGX00mlu+666/Dpp58CAJ544omwjMFiMGjDczwSVYlot7fD5jz991MtVyNdk46ytrKgHQilXIlkTTIqDBXUHcYUTQqcbiearH3XLdvbkMY7o5PRPd73h0Yqr8EAePtgxsQAb78NLFoEHDp0ut3HjGEzsPmuzbg863KoZWrwHA9thBYLJi7AsQePYcawwMb79YRLcKGqvSqk2aVWhxWV7ZXIjsnusoapwwSLw4IkVRKbXRoOCCH95gsAeeWVV4jD4SAOh4PQYNeuXQQAWbVqFbFarVQ0CCFk8eLFBAApKCigqvPYY48RuVxO7HY7VZ0rr7ySjBo1ihBCqOkIgkCSk5PJ3LlziSAI/ul89x0hACFbtvit09raSgCQv/zlL8TpdJKOjo4Qdn12du/eTQCQr776iupn89FHHxEA5Pjx41R1/vSnPxGZTEZsNhtVnWuuuYaMGDGCEELP1gghJC0tjcyePdt/WwsCg8FAOI4j//d//0fV1vbu3UsAkC+++ILqe/bxxx8TAOTIkSNUdZ588kkilUqJxWIJSQdAHukH17aB/jVx4sSA33vGmbjcLnKo7hAp05d1eb3Z0kwO1h0kHc7g/z6U6cvI8iPLSXV7dajb7BGb00aWH1lODtYdpKrTG18c+4Lsrd7bp3vozPGG4+R4w/G+3kYXfqz8kazKXyXqmm43IUuWEJKQQMjChb0fv7d6L/ni2BfE7XaLuo9fU9JaQpYfWU5q22uDXsPmtJH9NftJu629y+vFrcXkSP0R4hbo/gznEj1dm/tVxBQApk6dCplMRi3ys3fvXp9OpB+pn6HoREdHY8SIEVR19uzZg4kTJyIiIoKajtvtxv79+zF16lQAoKZTXV2N+vp6TJ06FRzH+aezcycglQIXXeS3zv79+wF4bEAqlVKL/ITL1vbs2QOtVotRo0ZRt+nzzz8fCoWCmo4gCNi3bx91W6upqUFNTU1gthYE+/fvByFk0Nja3r17oVKpMGbMGOo65513HpRKJVUdBiOcSHgJElQJaLO3weE+HR2NV8ZjQvKEkBr6ZEZlQi6Vo8VCd565QqpAkppOtlkgqOSqfjXLdEzSGIxJGtPX2+iCscMoatfbPXuAKVOA++8HmpuBbds89aW9kaxJpt7NWW/TI1IWiRRt8BlDCqkCk1Mnd4kw25w2tNvbkahKBM/1O5dpUNLv3uULLriA6vp79uxBeno6tXS3zjpTpkyh+stos9lw+PBhXOhn059gKSgogMlkoq7jTRP0OiV+sWMHMHkyoPJ/ppRXJxy2lpKSgrS0NKo6e/fuxQUXXEDV1jo6OnDo0CHqNnDy5Em0t7cHZgNB4HXkwmXTU6ZMoa6TlJSEzMxM6joXXHCBr56VBg6HA3l5edQ/GwajL0hUJUIlU8EluM74XqWhEnXGuqDW5XkeN464EeOTx4e4w965OudqTEie0PuBFFHL1V1SohlnYnPaRHFM6+uBu+/2PP/PywNSU4EvvgDWrwd6y2ydkjYFlw25LOQ99Mbk1Mm4fvj1QZ9f1V6FGmPNGa+7iRsquQqJqsRQtscIADrFj0GiUCig1dJra00IwZ49e3DppZdS0wA8DXVOnTqF22+/narOoUOH4HK5wnYTHw4duVyOCRP8vOBZLMCBA0CnDp7+6uTm5iImJiaIXQam443I0cJgMKCgoABz5syhpgEAhw8fhsPhGFS2JpVKMXHiROo6w4cPR1xcHHUd2rZmNBqRn5/vmzFLi6NHj6Kjo4O6DTAYfYFcIu92xqIgCDhUfwgR0oigoz7eiKsgCGGZNxoune64NPNSSPn+cwu7uWQzAGDa0Gl9vJPTzBk1p9sHIIGQn+8ZeGA2e4YfPP008NxzgNoPfzfcdhhKxsHh+sOQcBKkabsGEtRyNUbGjzzLWQwa9KuIqdofSw+BqqoqNDQ0UL/h2bdvHwD6N9dBRRiD1NFqtcjNzaWuc/755/u6mPpxAuBy+d34CDgzVZQWnVNFaTIYbU2j0WDUqFHUdc4//3yqaaKCIPgcRprU19ejsrKSuk7ntGSahMvWGIy+xCW4ujTv4Xkew+OGQ2/Vo8kcfGOhfTX7sLl0sxhb7JGNxRuxp2YPdZ2z0Z+c0v5MqO9Tbq5nDMysWUBBgWdOqb+36ruqduGHsh9C0veHDcUbcKj+UNDnV7VXwdRhQm5C13tcY4cRbkH8TvqMnulXv9lRUVFU13c4HLjtttvw2wAcmWBQq9W44YYbqKeKZmRk4LbbbqOeKjp27FjExMRQf/J18cUXIz093f8TfvoJ4Hng4ov9PsVsNmPOnDm49tprg9ih/9jtdtx+++24zNuejhIqlQqzZs2iniqanp6OW265BRkZGVR1xowZA41GQzVVFAAuuugiJCcnU9WwWq2YPXs2pk+fTlXHZrPh9ttvx+WXX05VR6lU4sYbb6Rua6mpqZg7dy6ysoJv+c9g9Heq2qtg7DBiXNI4X+3asNhhONF0AgUtBUhUB5c6qJKpUNxaDIPd4OteSwOFVIEGcwO19XvD7DDjSMMRDI8dHvR7NZipM9ah3FCOiSkToZAq/D6vtBR49llPl90hQzy3WFu3AhpNYPqCIKDR3IhUbWpgJwZIg7kBRrsRmvgAN9iJUy2noJApuoyZcQkulOpLEaeMQ0YU3fseRlc44k/lcpiYNGkSycvL6+ttMAYKc+cCx48Dp0719U4YDEY/hOO4g4SQSX29j4EOuzaLj8VhwcmWk0iPSu9Sv3ag9gCK9EWYNWJWUPWBdpcdqwtXY3jscExOnSzmlrtQ2FyIg3UHccOIG6iMI+kNq8OKNYVrcH7y+RidODrs+r+mv6XyHqk/ghNNJ3Db2Nv8ippaLMDrrwN//7tnDMwddwCffx68fpO5CVtKt+DijIuRFUPvIePuqt2oaq/CzaNvDio6rLfqsbF4I8bpxmFc0jjf63WmOtSb6jE6cXRAjj3DP3q6NverVF4GIyAKCjw5JgwGg8FgDCBUchU0ERo0mhvROUCQm5ALpVQZdMdZhVSBZHUyKtsrqc40TdV4ImG1plpqGj2hlCsh4SX9qjNvf8LYYUSkLLJXZ40QYOVKT8ruq696nNK77wYWLgxNv87kaeKVrKGXmeSdXZoelR50yrLZaYYmQoPhccN9r7kFN5osTYhWRDOntA9gjiljYOJwAMXFzDFlMBgMxoAkSZUEh9sBvU3ve00tV+Om3JugU+uCXjcnJgd2px01pjO7jIqFVqGFSq5CvbmemkZvaOSafuOYZkRl9KuUT7PT3GvEvbgYuOoq4JZbgOpq4Pzzgd27gU8/BXTBmx8AoN5cj1hlLFXHrrytHG7BjaGxQ4NeIyMqA7NGzuqyzxZrC9yCO6TfQUbw9KsaUwbDb0pKPI2PmGPKYDAYjAFIlCIKkbJIWJ1WxKFr526X4ILRbkSsMjbgddO16RivG4/4yHixttotYxLH9GkTInWEGm22tj7T78yvG+f0NWaHGenannt2OByeUfCxscBrr3nmk4rV3mFo7FDqtpGsScZ43figHUi9VY9oRfQZ/VNsLhs0ERqo5P6PIWSIB3NMGQOTggLPf5ljymAwGIwBysj4kb7mR53ZWbETxg4jZo2YFXDjQZ7nMSZpjFhbPCvD4oZR1+iJ6IhoGDuMfboHL96xLP2hW7BLcEHGy6CN6Fr7KwjA5s3A9Ome+aOjRwNffglcfjkg9kSzcNiGWq4O2s5dggtby7ciRZOCSzIu6fK9IdFDIBB6afCMnmGpvIyBSUGB5y/riDPnwTEYDAaDMRDwOqUOt6PL69kx2bA4LKg2Vge9dnlbOSoNlSHtrzeMdmNI421CYXzyeNww4oY+0f41P5T9EJbRKD1Rqi/Fw98+jNg3YzHn6zmY+vFUPPztwyjVl+LgQc8Ag5kzgW++OX3O3LniO6UN5gbqKdah2napvhQOlwPZ0dldXvf+Hnb3sIgRHtg7zxiYFBZ6epkrlX29EwaDwWAwgsbYYcTxxuNdbuYzozKhkqtQ0FwQ9Lr5Tfk43nhcjC2eld3Vu7G/dj9VDUbvbCrehHGLx2HJoSUwOUwgIDA5TPjox28wcvoOTJ5MsHcvkJTkeaZPkz3Ve7CvZh9VjUP1h1DUWhT0+SdbTiJaEY0UbYrvNYPdgBNNJ2BxWMTYIiNImGPKGJiwjrwMBoPBGASo5WpIeWmXuaA8z2N43HC0WluDjkhmxWTBYDdAb9X3fnCQJKuTYbAbYHfZqWmcDZfgwuaSzShuLQ67dn+iVF+KuSvnwuq0wik4PS8KPLD/Ibjey4frwH0gnAv3PWJAURFw00309mK0G2FxWJCiSen94CCpM9bB5rQhOya794O7ocZYA1OHCSPiu2bcNZgbIJfIoZSxgEdfwhxTxsDD5fLMLmWOKYPBYDAGODzHI1GViHZ7O2xOm+/1YbHDIJPIUGWsCmrdnNgccDyHYj09x83rgNSbwt+dV8pLPY63jZ7jPRBYuGchnG5n1xcPPAxsfB+wxwLZ30P6yEQoZv4ftJRHznrHB3nHCdGgzFAGmUSGzOjMoM6vNFRCIVMgJybH95rZYYbFYUGSKgkc7ZAyo0eYY8oYeJSXAx0dzDFlMBgMxqAgUZUInuO7RE3lUjmuHX4tJqV0O4e+VxRSBVI1qVRnmsYr4yGTyHxzK8ONSqbqNw2Q+ooVx1Z4IqVCp1v68z8GMncCt8wB5l0DV9xxLD+2nPpe6s31iJRFQqug4wE7XA5Ut1cjTZsWdKOpizMuxvSh07s0FWswN0DKSxGnFLnglhEwzDFlDDy8HXlz+1d7dgaDwWAwgkHCS5CgSoDBboBbcPte986iDNaxzI7JRoQkglozGp7nkaRO6uJQhxN1hLpfzDLNjskOOrU0VEzWDmD3k8CiQsD+i0MotwHzLwNGrQF+CQDSfp8EQUCzpZnq/E+jwwiFVIFhscF1/fX+HnWe8epwO2DsMPoeDjH6lr7va81gBApzTBkMBoMxyNCpdUhSJUHCdx0mWdxajKONR3HjyBsDjhJlRGUgIypDzG2ewQTdBMilcqoaZ0MboUVNew0EQQh4rI6Y9NXonO+/B/gPjkFo/qVeMv9mYOLH3R7b2RmjAc/zuH749RBAb9RKvDIeN+UGVyRrd9mxoWgDJqdM7pIGLJfIMSZxDCScSENcGSHBHg0wBh4FBUBaGqgXSzAYDAaDESakvBQyiQwAQAjxvR4VEQW7045TLaeCXtsluHyzNsVGq9BCIVVQWbs34iLjkKROgkNw9H4wRewue1gbQFVVAXPmANdcA49TGlcM3DnjrE6pjJdh3rh51PellCupOcAOlyOklPSTzSdhd9oRpYjyveb9PZNL5Gc8EGL0DcwxZQw8iovZ/FIGg8FgDDoIIShqLUK9+XQzoUR1IuKUcShqLQrqxtzusmN1wWqcbD4p5la7UNxajEP1h6itfzYyozNxdc7VfeYYe9lZsRM7K3aGReuzzzwtNtasAVQq4OmXWhH52AXAsO/Oeo5MIsPjFz5OdV8Hag+gvK2c2vrHmo5hVeGqoB6wuAQXivRFSNYkI1oR7Xu9xliDUn2piLtkhEq/ckydTmfvB4XIt99+S60JQGc2bNhAXSNcOoSQsOi0t7dj165dvR/Y3OwZxhUkhw8fRk1NTdDn+8vGjRvhdrt7PzBEmK0Fjslkwo4dO6jrHD16FFVVwXXUDIRNmzbB5aITDenMYLI1BqM/wnEcJJwETZYmCOT0vcrI+JGwOCyoNlYHvKZCqoAmQoMyQ5mYW+2C3qbHqZZTYbm/OtfR6QCLxRMxPXkSeOuvcVh9+xdQypSQ8bIux8p4GZQyJVbdvAo5sTlnWTF07C5PRL/N3kZlfUEQUGmoRFxkXFBNj0r1pXC4HMiNP10C5hJcaLG2BN1EiUGHfuWYGo30O6v95z//weHDh6lqEELw5JNPUv952tvb8fTTT1PVADyO3OLFi6nrrF+/3r8b0tZWIC74zmlff/01tm7dGvT5/vLBBx/g4MGDVDUIIXj66afR3t5OVcdoNOLJJ5/skl5Gg2PHjuHf//43VQ3A4/isX7+eus7KlSvx/fffU9f56KOPkJeXR1WDEIJnn30WbW10bjy8mM1mPPHEE9RtjcHor+jUOrgFN1qsLb7XMqMyESmLREFzQVBrZkVnwWg3dllTTJI1yXAL7j5pgrSxeCP21ewLu264MJs90VEv11wD5OUBq1Z5qpoAYMawGTj24DFcN/w6KGVK8BwPbYQWCyYuwLEHj2HGsBlU9+gdF0RrfmmdObTZpadaT0Gr0CJFe3p/3oc/SergAx0M8TmnHFODwYAtW7ZQd0oOHTqEoqIi7NxJN61j3bp1OHnyJEpL6aYhrFy5Ejt27IDDQbeGw6+beJcLaG8HYmOD0iCEYOXKldRtwGg0YvPmzdR1jh49ipMnT2L79u1UdTZs2ICioiIUF9MdZL5y5Urs3LkTHR0d1HVoO4zhsjWz2YxNmzZR/3lOnDiBgoICbNu2jarOt99+i+LiYpw8SS/tkMHoz6jkKqjlajSaG30PaHiex5S0KZiSOiWoNXNiciDhJShupfM3PEWTAo7nUGfum7Exg3VkzIYNwOjRwNy5wN69p1+fOPHMY3Nic/C78b/D/279H9wvudH+XDsWzVxENVLqpc5UB5lEhkRlIpX1y/S/zC6NCm526UXpF+GC1At8/3YLbjRZmhCtiO7zNHBGV/qVY2oymag+JV+3bh2cTif1G7iVK1cCwKDQ8d5cWywW7O38V1FkvI7ckSNH0NTUdPYD9b8M0g4yYnr06FGUlpZi69atVG1t/fr16OjoGBQ2EC4dr63ZbDb8/PPP1HS8jtzx48fR0EDv6f7x48dRVFSErVu3Uk1v27BhA+x2+6CwgXDqMBj9GZ1aB4fbAb1N73stTZuGWGVwD2XlUjlSNamoaq+i8vdIyksRHxmPBlP4I6ZqmXrQOaZ1dcDNNwPXX+9pdDRhAqBU9n6exWmBNiL8jSEbzA1IUCVQ6YzscDlQa6pFRlRG0OvHK+O7jLFpsbbALbipjrZhBEe/ckydTicKCoJLU/EH7w3PTz/9BJvNRkXDe3MN0L2xam9vx+bNmwGAakTmyJEjvogsTR2vIweg54hMiI6p97NpbGzE8ePHg1ojEJ3du3fDYrFQ0ehsazQ/G5PJhE2bNlHX8TpytHW8jhwA/PDDD9R0vJ9NS0sLjh49Sl1nz549MJvpzKkLl61ZLBZs3LiRug6D0d+JUkQhMzqzS6MWADDajdhVsSuomZRjEsfgyuwrqY1VSdWkQsJLwl5nqo5Qw+a0Ues67A/D44ZjeNzwkNcRBOA///FMw1u1ytPc6J13PNHSceN6PtfqsMLpdlIfC/NrHC4HImWRSNWkUllfLpXj8qzLMTphdMDn6q16/FT1E6wOa5fX45XxGBI9BCq5SqxtMkSiXzmmAD1nrr29HVu2bAEAdHR04Mcff6Sic/jwYZSVeRoMnDx5klqTnfXr1/tSa7dt20atyY73ZhSg62j7rdPa6vlvEI5p55vrXnVCwGg04rvvPN3xnE6nfw2dguDYsWO+1NqioiJqTXY2bNjQ5aEBrSY7/c7WQiBctmY2m32OnMvlolY+kJ+f70utLS0tRXk5nc6L3377re+h4Y4dO8LSEI/B6K/EK+PPGGHB8zyq2qtwsiXwVPdYZSzilfFibe8MxiSNwYxhM8I+TzQqwjP+IxhnXSyyYrKQFZMV8jqvvAI8/DBgNHqipQUFwJ/+BEj96M9jdHiixpoITcj7CAS5VI6Zw2ZiRDy9aQk6tQ5aReCR4MKWQlS3V59hkxJegjhl8L1KGPQ4ZxzTdevW+f6f53lqOitXroRcLg+rTnt7O5UmO96ba7lcDp7nceDAARgMBtF1jEYjtmzZAqlU6nvPzppmG4JjeuzYMVRWVgKg+9ls2LChS13QYLI1s9mMAwcOiK7xa1s7ePAg9Hp97ycGiNlsxnfffeefrYXAiRMnfA+oaH42nbuMDzZbs1gs2Ldv8DY0YTD8wWA3oMJQ4fu3Wq5GWlQaSvWlQUUIjXYjdlftPiOCJCbhjpjGKeMwJGYI+D68pTU7zKI4xg895KkpXbUKWLsWyMjw/1w5L8eQmCGIjQwu3TtYaH7eBrsBe6r3BGWvdpcdFe0VGBI9pEsdaVlb2aBL/R5M9CvHVKfT4c4776Ryozh06FBf2t6HH36ICy+8UHQNALjmmmvwwQcfAAA2b96M5ORk0TUIIXj00Ufx1FNPAfDcBNOImJrNZnz22We49tprMWzYMPz4449obGwUXaetrQ2HDh1CTk4ObrjhBixatOjsXWa9jmkQzY94nvc5C08//TTmzZtHxdays7N96ciLFy/GRRddJLoGAFx11VVYsmQJAM+4kJQU8bvhEULw0EMP4dlnnwXgSbel8Z5ZLBZ8/PHHuOGGG5CdnY2ff/6551rjINHr9cjLy8Pw4cNx7bXXYvHixdS6zHqjik888QTmz59P5X3LzMz0RUn//e9/45JLLhFdAwAuv/xyLF26FIDHGU7ztoIUEUIIHnjgAfz5z38G4KkH5zhOdB0GYyDhdDvRam3t4vSMih8Fp9sZdCOj8rZylLSViLXFLhypP4JvTn5DZe2zEa2IxiUZlwQVUROL3VW7sbtqd8Dnff89MHs24E0OSUoCjh/3jIIJ9M9frDIWl2RcEtZUXkEQsKpwFfKb8qmsX6IvQZmhLKgo/MnmkyACQW7C6RExBrsBbba2Pk37ZvRMv3JMeZ7HHXfcQeVmZOrUqb4n8XFxcZgzZ47oGoDnBs57A5qRkYHp06eLrsFxHK666io4HA5IpVLk5uZi6tSpoutoNBpMnToVHR0diIiIwNSpUzFihPipGpmZmRg5ciQ6OjqgUChwww03IDo6uvuDQ6gxHTt2LGJ/cWhVKhXuvPNOKrZ24YUXIiIiAgAQGxuLuXPniq4BAJdddlkXW5sxQ/x28BzH4eqrr4bD4QDHccjNzaXiaKvValx88cU+W5syZQpGjhwpuk5GRgZyc3N9tnb99df7bEJMxo4di/h4T8qcSqWi9nets63FxcWFxdbS09Mxc+ZM0TW8f9e86bujRo3CxRdfLLoOgzGQiFN65jZ2HsOSqE5ErDI2qHRerUKLOGUcytvopOOr5CrYnDboreJnvPSGw0V3coCYNDUBd93lGf3yzTfAL8/9AATukHrpi5+/wdwAh8tBxRkWBAEVhgokq5MD7pzrElwo0hchWZPcpU67wdyACGkEYhQxIu+WIRb9zjGlibfhiUJBtzV0OHW8N6W0dWj/LH7rtLZ6ii20wT0ZHYw2AIC6HXg/G9oRrH5layJoAIPLBsKl403pZjDOdXiOR6IqEe32dticp5s2jk4YjfSo9KAiP9kx2TB1mNBkFj8rxdsAp84U3rExm0s2Y3sF3bFpYkAI8MknwMiRwOefAwoF8MYbwPz5oa/9Xel32FZOd5zXr6kz14HjOSSrxc8OrDHVwO60Iycm8HE3giAgMyoTufGno6VmhxkWhwVJqiSWjdOP6VdX/nDc9AL0b6y8jWLCoROOm3hvFKtf6LS2etJ4g7SVwWgDAH3np1/ZgAiE46HOYLSBcOmEwwYYjIFCgioBPMd3iZpmRmdiUsokSHk/uuL8iqzoLM9MU734M02VciW0Ci3qzfWir90TkdLIPm1+5A+nTgGXXw7cdx/Q1gZcfTVw4gTw7LOATBb6+haHBSpZeLvMNpgaEKuIhVwqF33tsrYyyKVypGvTAz5XLpVjStoUpGhPlzg1mBsg5aWs6VE/p185prSfkLMbuOB1wuUA+xUxDXJUjFcDGFw2AAyuhyCDRWcw2kC4dMJhAwzGQEHKS5GqTUWUIuqM71W1V8FgNwS0nlwqR3ZMNiJlkSLtsCvJ6mQ0WZvCWsenjdD2+ciY3ti50/OVkOCJlm7eDOQEHgzsFqvDCrfgDusMU7vLDoPdQCVaCngeNgyNHRqwb9BibUGd8cyIfbQiGqnaVPBcv3J9GL8i8EdtFAlXKu9gSnkLV9pjv4lieSOmIWgAg8sGgMGVNk6j5rM7HWYD/VeHRUwZjK4kqhLPeM3hcmBP9R4kq5Nx6ZBLA1pvStoUsbZ2BplRmYiURnq6tYbJB/COSDHajYhVhq8rbam+FAv3LMTyo8thdpqhkWtw17i78OTUJ5ETmwODAfC2zLj/fk+bjAULQrqN6Rbvw4lwj4oZpxuHNI34zfCA4G30aMNRtNnbMHvk7C5+Bc1RSQzx6FeOqVpNt5PYRRddhNWrVyM7O5uqzq233ooxY8b4mi3R4qmnnqIyUuPXvPvuu4iMpPNk1QshBKtXr8bQoUN7PtBsBuKD/+OSkpKCNWvWYMKECUGv4Q8XXnihfz9PiNx8883Izc2l7iw88cQTuPvuu6lqAMA//vGPsDglK1euRI5Yj6rPgk6nw5o1a3D++edT1bnggguwevVqDB8e+nD3npgzZw6GDx8OpVJJVedPf/oT7rjjDqoaDMZAxC240WxtRrwyHlJeCrlUjiHRQ1DSVgKrwwqlPPDfTb1VL7ojl6hORKL6TEeaJt5osslhCptjuql4E+aunAun2wmn4PTpLzm0BMsOfY6bGvOw8fNhOHgQyM4GeB547jk6ezE5TAAArTx8EVOFVIFxSeOorN1ibQnKkTTYDag31WNM4hifU+pwO2CwGxCvjGfR0gEAR2OEQbBMmjSJ5OXl9fU2GP2ZqVMBjQbYsqWvd8JgMPo5HMcdJIRM6ut9DHTYtbl/YHfZkd+Uj2RNMlI0nto5o92IdafWYWTCSExKCczUTzSewJGGI7gx90bRu6o6XA40WBqQERXAIM4Q9U40n8CQqCFhcUxL9aUYt3gcrM5u5mu2DgXWrABqp4DjCBYv5rBgAd39tFhbUNVehfFJ48PWOK6qvQo6lU70+lK9VY+NxRsxJW0KhsUNC+jc3VW7UdVehZtyb/J18q1qr0KLtQVjE8dCJhGhmJcRMj1dm9mjA8bAQiY7PfCLwWAwGIxzBIVUgWhFNJotzRCIAMAz/iUtKg2l+tKA6yu9TmNJq/gzTU+2nsSuil2wOrpx3Cggl8oxIXlC2KKlC/cshNP9q3sRAiDv98DiI0DtFCCqCrNe+yd1pxTwpKlOSJ4QNqdUb9VjV8UulBvEHztUrC8Gx3NIjwqs6ZHdZUdVexUyojJ8TqlLcKHV2oq4yDjmlA4QerVgjuP+wHEcG/jD6B8wx5TBYDDYtfkcRafWwSW40GJt8b02Mn4kpLw04CZIWoUWCaoEKs6Ft+6w1lQr+tpnw+FyBPweBMuKYyt86bsAAHMC8N+1wIYPAacKGPs58OA4bMNLYdmP3qoP6xxT7zigVG2qqOsKgoDK9kqkalIDnl1qsBsgk8gwOnG077UmSxMEIiBJnSTqPhn08OfRig7AAY7jvuY4bjrHhv8w+hLmmDIYDAbArs3nJCq5Cmq5Go3mRnhLsXRqHW4aeVNQNXnZMdmwOCxdRtGIQawyFgqZAvWm8I2N2V+3H1vLtoZF64zRNOZkoGQ6EGEA5twOzLkLiGwP2wibzaWbcbTxaFi0AKDeXA9NhEb0FPBqYzUcLgeyYwLvBaNT6zB75GxEK6IBeGqymyxNiFZEB+zkMvqOXh1TQsj/ARgG4GMA9wIo5jjuNY7j6HYOYTC6QyoFXP23HTyDwWCEA3ZtPnfRqXVQSBVdUnd5nocgCAE7QlkxWZBJZChvEz9qmqhMRINFXIe3J9QyNexOe1hGxqjlasDVqbZSdwyYfRfw0Dhg7Jddj6OM2WGGW3CHRQuAL2KvU+tEX7vSUAmFTBFwp1+zwwxBELqkMrsEFyKlkVT2yaCHX8noxPNYruGXLxeAGACrOI57i+LeGIwzYRFTBoPBAMCuzecqUYooDIsbdkbN3Hel32F31e6A1pLyUlyZfSWmpIo/PiZZkwyHy9El7Zgm3s68RruRutY1kc8Di48BJ245/eKYlUB0te+fMl6GeePmUd+L9+cN16iYJnMT3IIbyRrx55delHERrhhyRcC1stvKt2F7xfYur0VIIzAifgRUcpWYW2RQxp8a08c4jjsI4C0AuwGMJYQ8BGAigDmU98dgdIU5pgwGg8GuzQw43A7YnDbfvzO0GWi2NAfsCMYr46k0zcmMysR1I64L2/xIr2PW3tFOTcPtBl57DVj79LNAywhg/x88TY+6QSaR4fELH6e2Fy/eUTHeFFbapGhTMHPYTF9naDGR8tKAG1jVGetgtBu7dIC2Oq1nNqdiDAj8+UsUD2A2IWQaIWQlIcQJAIQQAcB1VHfHYPwa5pgyGAwGwK7N5zxFrUWobK/0/Xt43HBIeAlOtpwMeK3C5kLsqtgl5vYgl8rD5iwBp2d4eh01sSkvB377W+CFFwCXi8OseyoQ+bsbz4hcy3gZlDIlVt28Cjmx9DPrjR1GcDwXtlRewFNDLOWloq65rXwbSvWlAZ9X2FIIuVSOrJgs32vlbeUobQt8LUbf40+N6UuEkMqzfK9Q/C0xGD3AHFMGg8Fg12YGElWJsDgsvrpSuVSO7JhsVLZXBjymxSk4UdVeJXoabIu1BT9V/RSWuk+5VI4paVNEn51KCPDpp8B55wG7dwMpKZ5R6v9bNgTHH92PBRMXQCP3RGu1EVosmLgAxx48hhnDZoi6j7ORE5ODC1MvDIuW1WHFT1U/id79uMXagjpjHRzuwDoLG+wG1JvqMTx2uM9RNtgNsLvsSFQlirpHRnigNvCI4zgFx3H7OY47ynFcPsdxf6WlxTiHYI4pg8FgBA27Ng8e4pXxkPLSLh11c+NzQQSCsraygNbydkEtaRN3pqnD5UBFW4VvvAhthsUNEz1K29EB/L//B5hMwJw5wLFjwNVXe76XE5uDRTMXYeXNK/Hdnd+h/bl2LJq5KCyRUi+xytiw6dWaalHRViH6g4biVs/s0pyYwH6OsrYycDyHkQkjfa81mBsgl8gRo2DTtAYiNCfxdgC4ghByHoDxAKZzHBeeRzqMwQtzTBkMBiMU2LV5kMBzPBJViWi3t/tqTbUKLWYOm4kxSWMCWkstVyNJnSR6d95EdSIkvCRsY2PMDjMqDd0mEgTML9N4oFAAK1YAy5YBK1cCcXGiLC8alYbAI+TBUm+qh1wqF7Vu2CW4UNVehXRNOuRSee8ndGJC8gTMyJnhGwdjdphhcVigU+vAJmgNTKg5psSDt2+57Jevs5SIMxh+whxTBoPBCBp2bR5cJKgSIOElsDgtvtcCbR7jJTsmGzanDXVG8aKbUl6KeGW86HNSz0ZZWxl+rPwRDldgKaGdsdmAP/0JeOih069NmQLccw/Q33wds8OMHyt/RLWxuveDRaDJ2gSdStzxK9Xt1XC6nciODXx2KdDV3s0OM2QSGeKU/ezpAcNvaEZMwXGchOO4IwCaAHxPCNlHU49xDsAcUwaDwQgJdm0ePEh5KcYmjj0jglXYXIiNxRsDWiszOhMZURkBR616I1mdDFOHKeAZq8HgrfU0OoKrlS0pAS64AHjvPeDjjz3/7s/4RsXI6Y+KabG2wO60iz4mJlIWiSExQ5Ci9r/LryAIWHdqHYpbi7u8rlPrMDphNHiOqnvDoAjVT44Q4iaEjAeQBuACjuPOyC3hOG4Bx3F5HMflNTc3U9uL3W6ntrYXQgg6Ojqo64TjZ+m3Omq153GmI/Cnof3y5wkSQkhYdOx2OwihH0wZTJ8N0wleIxy2xuhf12ZG6Eh4CQB0GY8hl8iht+pR1V7l9zpSXopLh1wq+niXFE0KNBEaWByW3g8OkagIzyxTU0fgnXm3bfM4pSdOAMOHA3v2AEOHir1DcfGOxtEqtNS17C47VHIVUjWpoq6rU+twScYlAY0sKm0rhdFuRKQs0vea1/69vw+MgUlYHikQQgwAdgCY3s33PiSETCKETEpISKC2hzfeeIPa2l6amprwySefUNfZs2cPdu7cSV1nxYoVqK6mnx7yzjvv+H/jm5bmKfyoD7xeJRw2EC6d1tZWLFmyhLrO/v37sX379t4PDJEvvvgClZXi1AX1xLvvvhsWJ+uNN94Ii5MVDltra2vDBx98QF3n4MGD2Lp1K3Udxmn6w7WZIQ6N5kacaDrha0qTFZ2FSFkkCpsDb9BstBvRZG4SbW+xyljMGjkLSeok0dY8G14HzdgRWMT0gw+AadOAtjbg+uuBvDxg0iT/zz9Pdx7O050XkKYYmB1mSHhJWEbFpGnTcFPuTVDKlaKt2WBuCCqSXthSCE2EBmnaNACemb7Hm44HPMOX0f+g2ZU3geO46F/+PxLAVQACH64lAkajEW+88Qbq6uh2hauoqMDrr78ORxDRvEB1XnnlFaoaAHDq1Cm89dZb1HV++uknLF261L+D09M9/w3CYV62bBl1h95iseD1119HTU0NVZ2Kigq88cYb1CP04bK1oqIivPnmm9R1du/ejY8//pi6zvLly7Fjxw6qGjabDa+//jqqqvyPiARDRUUF3nzzTeoOfUVFBf7617+yqCll+tO1mSEeUYooCERAk8XjUPI8jxFxI9BsaQ74Zn17xXYcrD8o+h4FQRB9zV8j5aVQyBQBzTL96CPgwQcBlwt45hngm28ATYCZsTq1Djq1uLWX/mBymKCSq6jr0Prs9tXsw4+VPwZ0Tp2xDka7ESPjT3fibTQ3AjgdMWcMXGhGTJMBbOc47hiAA/DUsWygqHdWKisr0dHRgb///e9UdSoqKlBdXY1PP/2Uus62bdvw008/Udf56KOP+pdDn+Z5OoYAHT+Xy4Wamhr87W9/C2KH/lNZWQmHw0Hdoa+oqEBtba3/Dn0IOjt37qTu0FdUVODjjz8eFA692+1GVVUVdYe+qqoKDoeDukNfUVGB+vp66g59RUUFdu/eTd2hZ/SfazNDPBRSBaIV0Wi2NEMgHidieNxwSHgJTrYE9twhJyYHrdZWUWdVNpgbsLJgpaiR2LNxacalGK8b7/fxt9wCjB8PLF0KvPkmIAkiE7TB3BC2Bk+dmZQ8CRelX0Rdp8ZUg6/zv4beqhdtzSZzE0wdJt+oIn8pbCmEXCr3jchxCS60WFsQGxkLmUQm2v4YfQPNrrzHCCHnE0LGEULGEELoh13OQkVFBQBg8eLFaGig94fDq/Paa6/BSbFBT3m5p507bServLycukNPCAnMoQ8yYlpTUwO3240ffvgBu3fvDmKn/uG1gQ8//BD1QaQb+4vXBmhH6MNpa7Qdeq+t1dTUUHXo6+rq4HK5sGPHDuzatYuajvezWbJkCWpra6nr0HbovTrhiNCfy/SnazNDXHRqne8mHQDkUjkuSL2gS2TJH7JjssHxHEr04nX+iVZEw+l2hmWeaaI6sdfU1oqK060qoqKAAweAe+8NXvNow1EcbTga/AJBolVoRa8J7o56Uz2cglPUWtZifTEkvARZ0VkBnTc2cSwmp0yGlJcCAJosTRCI0CcRa4b4nBNtq7w3PHa7HQsXLqSuU1FRgRUrVlDT8To/W7Zswd69e6nr0HTom5ubYbV65m/55dBrtZ4cmwAdU+9nA9C98fXq0HbovZ9NVVUVPvvsM+o6g8Ghb21thdnsqWWh6dB3tjWaDr33PaPt0Ht1ampqsGzZMuo6tB16BmOwopKroJaru6Tu5sTmBOy4KOVK6FQ6VBgqREvh9EZ0683055ka7UbkN+X76m1/zbZtwIQJwMMPn55VKpVS35bo2F125Dflh6XbcYO5AYnKRJ8zGCouwYUaYw3SowKfXZqoTkRWjMeZJYSgxdqCaEW0b5YpY2DTrxxTi4VOxzbvDQ8AvP/++6DVYbCzzquvvgqXq/s/iqESjhtfk8mE1tZWAHQd+s4/i98OfXp6wKm8nT8bmg59Z53FixejsbGRik7n941mhD4ctmaxWNDU5EnvounQd/5saDr0nXW2bt2Kn3/+mYpO58+GpkP/a1sb6A49gzGYGRI9BCPiRnR5zWA3YE/1nrM6at2RHZONDncH9HbxUjd1Gh30dn1IM0b9oc3ehsP1h7tNRe7c5KipKagG//2GFmsLDtcf9o2MoYXZYYapw4RktXhjYprMTXARF7Kj/U/jtbvs2FO9p4sjznEcRiWMQnpUumh7Y/Qt54xjmp3tMf5HHnmEWr1cdXU1MjMzIZfLcccdd+DAgQOiazgcDrS3tyMpKQlDhgzBiBEjqHTOraiogE6nQ2RkJKZOnQqn0wmbzUZFx/vZzJo1C6Wlpb03P0lLCzhi2lnnd7/7Hfbv3x/UfgPReeSRR6hFfry2JpPJcNddd1H5eVwuF9ra2pCUlITMzEyMHj2aSufcyspKJCUlQalUYsqUKRAEwRdFF5POn83111+PsrIyKo12OuvMnz+fyt8Br05OjqfGhqatVVVVYciQIZBIJLj33nuxb5/4Iy/dbjdaWlqg0+mQnp6OcePGdXFUGQyGf0RII84Yl2F32VGqLz1j5mNPZEZlYk7uHFHTRFPUKSACoRo1LdWX4q87/4rfr/89Ev6eAO3rWjz87cM41VSKxx47s8lRRAS1rVDHOxInWhFNVafW6CkVSdH4P2e0N1K0KZiTOwcpWv/XLGotQqm+9IwHG1JeCrlE3Nm7jD6EENJvviZOnEhosH//frJx40YCgPzwww9UNLw6b7/9NgFA6uvrqWgYDAZy8uRJMn/+fBITE0MEQaCiU15eThobG8mUKVPIxRdfTEWDEEKOHz9OLBYL0Wq1ZMGCBf6ddN99hOh0Aenk5eWRyspKAoC8++67QezUP/bv3082b95MAJAtW7ZQ1fnHP/5BAJCamhoqGkajkRQUFJD777+faLVaarZWUVFBGhoayEUXXUSmTp1KRYMQQk6cOEHMZjOJjo4m9913HzWdvLw8UlNTQwCQhQsXUtPZv38/2bp1KwFANm3aRFXnvffeIwBIZWUlFQ2TyUTy8/PJAw88QDQajWi2BiCP9INr20D/onVtZtChw9VB8pvyicFm8L22/uR68r/C//Xhrghxu93kQO0B0mZro7L+xqKNRPmqkkhelhC8DN+X9M/xhB/6PQEIkcsJWbZMfO3vir8j3xV/J/7CPbC3ei/54tgX1HWaLc3kQO0B6jo94Xa7ycr8lWRLyen7qhZLCylsLiROt7MPd8YIhp6uzf0qYkqLyZMnY/To0QCA/Pz8Aa0TFRWFESNGYPTo0Whra6NW+zlkyBAkJiZi9OjRyM/PpxJZAoAxY8ZAqVRi1KhR/r9naWlAY2NAOTgTJ05Eeno6tFrtgLeBcOloNBrk5uZi9OjRMBqN1BrsZGZmIikpibqtjR49GiqVyqdDi4kTJyIlJQUxMTED3gbCpaNWqzFq1CiMHj0aJpMpLPOTGYzBioyXwS24u3SJzU3IhanDhKp2/8dLOVwObCzeGNQs1O7geR6TUiZRifCV6ksxd+VcWJ1WuOHu8j3XthcglFwFqJqx/H+1uOce0eUxMWUiJqZMFH/hHjA7zGEZFROvjMeklACGuvbCkfoj2FyyOaD65dK2UtidduQm5PpeazA3QCCCaHWvjP7BOeGYAkB6ejrUajXVGzgAGDVqFAC6N4oAwnJDCnh+HoPBQLXDrFfHb6ckPd3TsSDAMTYcxwXmAAdJSkoKdQcYCK8NhEuHpgPcWaegoICaAwyEz9aSkpKoO8BAeG0gHDoMxmCG4zgkqZNgdph99XhZ0VlQyBQ41XLK73XkUjlcggvlBvHS6gVBQJ2xDlaHuOUaC/cshNN9ll4LV/wfMPZzSBdchF3kdVF1vcQr48PSHbczZocZ2gjxuuSeTaPB3CDqHFOvPfG8/y7IqZZT0ERokKb1jAw02A2wu+ysE+8g5JxxTMN1o5ieng6NRjNonJJw6vjtAAc5MsarQzMqB3hsjXZUDvA4wFFRUYPKBsKlYzQaqc9MHT16dFgc4HDYmk6nC4sDHC4bYDAGO/HKeEh5qS9qyvM8cuNzEa2IDsjJyInJgd6qF21+pdFhxLbybahsF7dfwYpjK+AUOjmmJ24GnL8UkEZYgDl3wRVVguXHlouq66XGWIMaI91ryq+5dvi1uCDlAqoaJa0l2Fq6FQ5BnC5RDeYGWByWgGaXugQX4pRxGJUwqss6cokcMYoYUfbF6D/0K8eU5uxPIHxOSTgc4LS0tEEVlQtIJ83zxCzQzrxenfb2dtQFGG0NRoc5wIHRL20tRJ1wpKUOJgc4KSkJsbGxzDFlMEKE53gkqhLRbm+HzelpXDg6cTQmp04OKFKVE5sDjudQ2lYqyr6iFdGIlEWK3gDJ16nVLQG+/Rew6mtg3RKAnOU4kclvykd+U3j/bkl5KZRyJVWNenO9qKNYSvQlkElkvnEv/iDlpZiaPhXD4oYB8HyGFocFOrUOHMeJsi9G/6FfOaY0h7cDnhs4i8XiG4NCU6fzyAgaeB1g2jpeB5hGN9bOeJ0Fvzpxhhgx5XkepaXiXGR70rHZbL4xKDR1Kisrw+KU0LaB5ORkREdHh83WaP/ueG2trKyMuk5HRwf1dPtw2hrtz4bBOBdIUCVgSPSQM5yKGmON36m0CqkCyepkVLZXipbOqVPr0GxpFjU9VC1XAy4Z8NU3wIE/AJIOIGcLwHVz3CCgxdqCA7UHRE+J7ozD5YDerodOI066rEtwobq9GmnaNL/rQr2pxJ1RypTIjM5EnDJOlH0x+hcczZuMQJk0aRLJy8ujtr7VaoVcLoeU8iRls9kMpVIZ0FPJYDCZTFCr1dSfGBmNRmi1dOsYCCEwm83QaDT+naDTAdOnA8uWBaTjcDggCAIUCrqDmG02G6RSKWQyGVUdZmuBQwiByWSiruN0OuFyuRAZGUlVh9na2eE47iAhRLyuHecotK/NjPBhtBux7tQ6jEochQnJE/w6p8HcgDZbG0bEjRDl97+8rRy7q3bjqpyrRKsRfHDdI/jwhd+CnLgFiGwBbr8ByNjT5RgZL8OCiQuwaOYiUTQ7s7lkMwBg2tBpoq/dHflN+Thcfxizc2dTi5pWtVdhV8UuXJF1RUBjXc6GS3DhVMspJKmT/K7H3VO9B2WGMszJnSNa1JbR9/R0bT6nWlkplXRTHryo1eF5Iue3ExcitG/gAU+kJKCfZ+JE4ODBgHXk8vDMuqLtjHhhthY4HMeFRUcmk1F3FgFmawwGo2eaLE1wC24ka5KhVWiRok1Bib4E45LG+RW50ql1ojaZSdWkAgAaTA2irEsIYFj9OsgJLRDRDsybBqQcOuM4mUSGxy98PGS9/oDZYYaEl1BN5a031UPCS0T77KW8FKMTR/t9vN1lR4WhAplRmT6ntNZYC4VUwaKlg5h+lcrLYPjNxIlAQQFgpZfGwmAwGAzGQMfqtKLB3ACX4AIAjIwbCYfLgVK9/yUtDpcDhc2FsLvsIe9HLpVj+rDpGJc0LuS1AODDD4GvPtNCHuFGxN1zIUs73uX7Ml4GpUyJVTevQk5sjiiafY3ZYYZGTvch3uSUyZiWM02UKLnZYcapllM+G/SHotYiuAU3RsV7mh453A40Whphc9lC3g+j/8IcU8bAZOJEQBCAo0f7eicMBoPBYPRbdGodBCKgyeLpeZCiTUG0IhonW076vYbZYcbBuoMBObM9Ea+MF60s4O67gdmzgf99I0H+G4uxYOIC3xiVSGkkFkxcgGMPHsOMYTNE0euOKWlTMCVtCrX1f42xwwh1BN0sFp7nEauMFWWtotYiHKg94PeDDUEQUNRahARVgm8PjeZGAECiKlGUPTH6J+dUKi9jEDHxl0HWBw8CU6f27V4YDAaDweinKKQKRCui0Wxphk6tA8/xyE3IxeGGwzDajdAqei9tiFXGIloRjdK20oDSMc+Gw+XA0cajSNYk+2ZTBgohAMcBkZHA6tXeV3OwaOYiLJq5CHuq96DJ0oRZI2eFvN/eiFZEU9fojJu4qTZyqjRUotnajPG68X43KuqJ8rZyJKmT/N6zwW6AQATkJuQC8NSntlhbEBsZC7kkPCVZjL6BRUwZA5PUVCAxMag6UwaDwWAwziV0ap3v5h4AsqKzMHvkbL+cUi85sTkw2o2+NUJByktR1laGSkNwXdg/+wy46SbA3kMAbkrqlLA4pYCnUVBVe1VYtABg7qi5mKDzr3lVMJQbylFpqBTFKa0z1sHmtAU0uzRWGYvZubOREZUBwFMnLRBB1FpnRv+EOaaMgQnHBd0AicFgMBiMcwmVXIVEVSIipZ5maTzPg+d5CIIAh8vh1xpZMVmemaYipPPyPI8EVcIZo0D84ZtvgPnzgbVrPV89aYSLwuZCFDYXhk0PoPfzCYKARnOjaE6gd3ZpZnSmX8fbXXYIgtDFKVbJVNCpdawz7zkAc0wZAxdvAyQbK4RnMBgMBqMn0qPSoYk43TBHEASsL1qPA3UH/DpfIVUgVZMKi9Miyn6S1cmwOW0w2A1+n7N1K3DbbZ4WEy++CNx669mPtbvs2FGxI6yRzHBQ3laOXRW7AmokFAgt1hY43U6kaEIfEQMAFqcFGVEZfkdff67+Gd+VftfltShFFFK1qaLsh9G/YY4pY+AycSLgdrMGSAwGg8Fg+IHT7fRFKXmeR6IqERXtFbA6/Otwf2nGpbgi6wpR9uIdG1NrrPXr+D17gBtvBBwO4NFHgb/+tefj5bwcNe01oqQe9ycazA2oN9eLkmbbHXWmOgBAsiZZlPVmDJuBKan+NYYy2o2oM9b5orWEkC4dpRmDH+aYMgYunRsgMRgMBoPB6BGTw4RaYy3a7e0AgNyEXBCB4GSrfx16vemjYjgKWoUWscpYEEJ6PfbYMWDmTMBiAe65B3j3XU9FT297jZRFwtxhDnmv/QmzwwyVTEVtfQECktRJoqTNeu3E37TjwpZCcDyHkXEjAQB6mx61xlpYnWw04LkCc0wZA5e0NCAhATh05iBtBoPBYDAYXYlRxEAukfuiptGKaCRrklGiL/Hb2SzVl2Jl/kq/o6w9MXPYTIxJGtPrcX//O2AweBoeLVkC+FteqY3QwthhDG2T/Qyzw+wbh0ODCckTcHXO1SGvY7AbsDJ/pd+p1A6XA2VtZciMyoRSrgTgiQ5HyiKp/ryM/gVzTBkDF9YAicFgMBgMv+E4DknqJJgdZpgdnkhibnwuHC6H3x1y45RxcAtulLWVibYvQRB6/P6SJcCrrwL//S8gDSCDVS1Xi1YT2xMXZ1yMizMupq4jCAIsDgu1Gaa9fQ6BUKIvgQAB8ZHxfh1frC+GW3BjVPwoAB7H1u6ys0685xjMMWUMbCZOBPLze+4Zz2AwGAwGAwAQr4yHlJf6oqYp2hRckXUFcmJz/Do/WhGNWGUsSttC784rCALWnlyLQw1nZj61tgIdHZ7/j4gAnn/e899AiI2MhUqmol6jqJarqc4V9WJ32aFVaBGjiKGy/r7afdhYvDHkdQRBQIWhAjqVzhf97I3c+FxckXUFYpWxADzRUrlETu1nZfRPmGPKGNhMnAi4XMCRI329EwaDwWAw+j08xyNJnQSe4331nSnawDqw5sTkwNRhQpO5KbS98LwntdjUdWyM2w1cfz0wa5anrjRYRsSPwHUjrqPWKMhLeVs5ytvKqWoAgFKuxA0jbkBWTBaV9RvMDaLUltaZ62B32gOaXcrzvM8OBSJAxsugU+vA9VZMzBhUDGrH1GKxoLGxkbpObW0tOryP9ShSVlbmV5MAMXTCgSg6F/+SOrNtG12dXrBaraivr6euU1tbC3sYosPM1vqvjt1uR11dHXWduro62MIwiilctsZgME6jU+uQHZPd5ab/ROMJ7KrY5df5WdFZkPASUaKmyepkX9qml/fe83ThPX48NMc0XBS1FqGotaivtxESRrsRFocFyerQu/GW6Esgl8qRGeXf7NIfyn7oMgeW53jkxOYgQZUQ8l4YA4tB7ZgKgoDf/e531G96ampq8H//939UNQBg586dWLZsGXWdjz76CLt376au89JLL6GqKsT5YomJwIQJwObNZz3k4YcfhiUMV7b58+eLWp/RHfX19Xj++eepagDATz/9hI8//pi6zscff4xdu/y7EQqFv/zlL6ioqKCu88gjj8BsptsBkuM43HvvvdRtrbGxEc899xxVDQDYs2cPPvzwQ+o6DAbjTGxOG5xuJwBPN9aq9irorfpez5NL5bgw7UKMThgd8h463B1YdmQZ4t+MB/9XHuqnxuOZPzsAAB984LnMh8Km4k041ngs5H32B/Lq8vBD2Q9U1q41ecb2eMf4hMJ43XhMSZ3iVzfeBnMD6k2nH+x3uDrQ4aIf7GH0Twa1YxoZGYmNGzfi/fffp67z9ttvY+vWrdR1Hn30UZSUlFDVkclkuOuuu9De3k5Vx263Y968eXC73aEtNG0a8PPPgLH7znuVlZV48sknQ9PoBYVCgc2bN2PRokVUdSIjI/HOO+9gy5Yt1HX++Mc/oqiI7hNguVyOefPmwWAwUNXp6OgQx9Z6obq6Go8//jhVDblcjq1bt+K9996jqhMZGYl//vOf2LRpE3Wdxx9/HCdP+jeugsFgiINLcKGwpdBXazo8bjgkvASFLYW9nOkhKyYLWkVo3VI3FW/CZcsuw46KHbC4LCACYFn1LtwOOSTj/wvJiND//thdduhtvTvbA4E2Wxs63HSctnpzPVRyVcifKeCpQ86M9i9aWtBcALlUjmFxwwB45qgWthRCIHQfvjL6J4PaMZVKpZBKpXjqqadQUFBATScyMhIAcM8996C1tZWqjsViwZ133gmn00lNR6FQoKKiAn/4wx+oaXh1du3ahbfeeiu0haZN89SZniWdNzIyEh988AHWrl0bmk4P8DyPiIgIPPPMMzh+/Dg1nc621tJCb2i4QqGA1WoNi61VVVXh4YcfpqYBeN63n376CW+88QZ1nSVLluCbb76hpsFxHCIjI/Hcc8/h6NGj1HQUCk+d0fz589HUFFodWW86NpsNd955JxwOBzUdBoPRFSkvRWxkLFqsLXAJLiikCgyJHoKK9oouabU9UWesw5H6I0Hpl+pLMXflXNjddrjxy0PDgw8AlZcBqka4r/kD5q6ci1J9aOnCarl60MwyNXYYoZbRabKUFZ2FUQmjQl4nry7P97CjN4x2I+qMdciOyYaUl8LhdqDN3oZ4ZTx4blC7KIyzMOg/dYVCAbvdjjvuuINaHaj3Bq6urg4PPPAAtdRhr87+/fvxt7/9jYoGcNr5WbFiBf773/9S13nppZeQl5cX/EJTpwIaDfDdd91+2/u+3X///VTrQBUKBTo6OnDnnXdSqwP1/iwNDQ24//77qdma97PJy8vDyy+/TEWjs85///tffP7559R0vO/byy+/jP3791PXuf/++6nWgSoUCjgcDtx5553U6kC9n01jY2NYbO3QoUN46aWXqGgwGIzu0al1EIiAJovn4VNuQi6IQHCy2b8MhgZLA040nQhqpunCPQt9acQAAEM68P0vD6pnPgIo9XC6nXhn7zsBr90ZbYQWJocppDX6Ay7BBZvTRm1UTFZMFkbEjwhpDb1Vj5PNJ9Fi8e/BeWFLITie842IaTR7+sIkqkLM32YMWAa9Y+q96Tl69CheeOEFqhoAsHr1aixdupS6zquvvoqffvqJus5DDz2Eykr/ZpsFq+NyuXDnnXcGXwcqlwNXXOGpM+3m5tmr09LSQrUO1Ktz/Phx/PnPf6aqAQBr167FkiVLqOu8/vrr1OpAO+s8/PDD1OpAf21rtOpAvTp6vR733HMPdVvLz8/Hs88+S1UDANavX48PPviAus5bb72FHTt2UNFhMBhnopAqEK2IRrOlGQIREK2IxnjdeKRFpfl1/tCYoQCAkrbAS4xWHFsBp9DJMVU3Ahe+C4z5LzB6NQDAKTix/NjygNfujFquhltwB+U8+8tvh/wWvx3yW2rrA/DNnY2KiBJ97SZzE4z27suhAqG0rRQcz2Fo3FC/js+MzsT4pPFQypVwCS60WFsQGxkLuUQe8l4YA5NzxjFVKBQoKChAfn4+NQ0ASEpKwtq1a6mkWXbWycnJwYcffkgl9c0b9QGA7OxsLFq0iEq0pLNOYmJiaA799OlARQVQXHzGtzq/bwCwcWPoM7q6w6sTERGBU6dOUUnp7fyzJCYmYv369WhubhZdp/Nn47U1GhkH4bK1X/+OfvLJJ6Jr/FqH53ls2LCBqo5cLkdJSQmVlN7On01CQgK+/fZbKl3Of20DtGyNwWB0T5I6CQIRYHF4Hg6PSRqDeGW8X+dqFVrEKeOCSrf1Olo+pA7gipeAOXf0fFyAxCnjkKJNgQB6NYsKqUKUMSs9IQgCkjXJVOZ65tXnYXd1aE0vBUFAZXslktXJfr8XOrUOoxM9DbS8n7NOrQtpH4yBzaB3THNzc/H73/8edrsd77//PkaPDr2D3K+JjIzElClTcP3118Nut2PlypWIj/fvj3qgOrfeeivGjh2L6OhofPbZZ5DLxX+q5K1fU6vVGDduHP7+979TmSOlVqvxyiuvAACuv/760Gpap03z/LebdN7ExERfd9E//OEPuO6664LX6YGRI0figQceQEdHB/71r39h7NixomtERETgwgsvxKxZs2C32/H1118jIUH8duqRkZG4+eabcd5550Gr1WLFihWICHSyuZ86zzzzDLRaLcaMGYO3336buq1de+21eOyxx0TXADwOnDda/vDDD+OGG26gojNixAg8+OCDcDgcePfdd3HeeeeJriGTyTBlyhTcdNNNsNls+Prrr5GUlCS6TmRkJGbPno0JEyZArVbjiy++oGJrDAaje9RyNcYljYMmQuN7zWA34FD9Ib/OHxo7FBaHxe+6ws66AABzAmDt5GxxZzkuSHRqHa7IuiLkdXqiuLUYxa1nPhgXk1hlLK7MvhKxylhR17W77NBb9SGPiakx1cDutCMnJqfXYwVBQF5dXpcobbQiGuOSxlF38Bn9HEJIv/maOHEiEZv29nZy6tQpAoC8+eaboq/fWeebb74hAMj69eupaFgsFuJ0Osmrr75KAJDS0lIqOu3t7UQQBHLnnXeSqKgoYrfbqekQQsj5559PJkyYEPqCw4YRMnNmtzo2m41otVpy1113ha5zFtrb20lJSQkBQF577TWqOuvWrSMAyP/+9z8qGhaLhTgcDvLGG28QAKS4uJiKjtfW7r77bqLRaIjNZqOmQwghkyZNIueddx4VDa+O3W4nUVFR5Pbbb6eqU1ZWRgCQv/3tb1R1vv32WwKArFmzhoqG1WolDoeD/P3vfycAyMmTJ0VbG0Ae6QfXtoH+RePazOifON1OQgghRS1FZPmR5aS6vdqvc9aeXEsq2ioC0npow0NE+lcZwYhvCFT1BPMvIXgZXb5kr8jII98+EtTPEk6+K/6OfFf8XV9vIyjK9GVk+ZHlpNHUGNI6Ja0lZP3J9cTtdvt17PIjy0mloZIQctruGOcGPV2bB33EVKvVYvjw4Rg/fjy+/vprqjrTp0+HRqOhpqNUKiGVSnHLLbcAAFauXElFR6vVguM43HLLLWhvb6c2mkSr9bQkv+WWW3Do0KHQx+BMnw5s3w78qvGQVquFQqHArFmzsHbtWmqNibRaLXJycjBx4kTqtnbNNdcgKiqKqq3JZDLcfPPNAEBNp7OtmUwmfHeWBlZi6AAeWzt69ChOnTpFTSciIgI33XQT1q1bR60xkVarRVZWFiZPnkzd1q666irExMRQ04mMjAyLrTEYjJ6pMFSgqNUzIiwnJgcKmQKFzb2PjpHyUtww4ga/x4N4eXLqk+ALbgNO3Qi4IoHo8jOOkUlkePzC0EdwbSrehB0VO0Jepy/ZXLIZ28q7nz4QCnWmOsgkMr/Tt89GTmwOrhtxnV+zS0+1noImQoOMqAwQQlDYXIjq9uqQ9BmDg0HvmHq55ZZbcPDgQaozQMPh/ADA0KFDMWHCBHz11VfUNABg2rRp0Gq11HW8jnbIN6TTpgE2G3CWplC0nZ/OOkeOHKE6AzQiIgI33ngjVecH8NT8TZ48mboNXH311YiOjh44tuaHjsVioT4D9NZbb8Xx48dRWOjf3MFgkMvluOmmm7B+/XpYrfSah2RmZuLCCy+kbgMMBqN7tBFa2Jw2tNvbwfM8hsYMRaO5EQa7wa/zBUEIqB5U686BYoungZ9k2rNAVK3vezJeBqVMiVU3r0JObO+pob0hl8hh7Ai9uU9fYnaYqTQFajA3IEmd5JdDeTbMDrPfzf4azA3QW/UYHjccAKC36eFwO6CNCH1+KmPgc045pgC9KGNnHaPRiM2bN1PXOXz4MIq7afYjFl7nZ+3atdSdn0mTJoXuLFx2madD71ne+6uvvppqlNFLuCI/t9xyC8xmM3Xn55ZbbsGxY8dw8qR/4wOCIZzOz5QpU6h/NldeeSViYmKoO1nhtDWLxUKtcVhnnfz8fCpN6hgMRs/EKGIgl8h9taIjE0ZCwkuQ3+Tf7+N3pd9hd5X/DXQeewwwtskx9TdWPLBA6nNM1DI1FkxcgGMPHsOMYTMC/0G6QS1X+5o7DUR8o2IozDC9dvi1mKCbENIa28q3YXvFdr+OLWgugEwiw7C4YQA8jmqkLBJRCvG7DTMGHv3KMSUUunF68aZY0r5RpJ1i6SVckZ9bb70VZrOZepTx1ltvDT3FUqUCfvObs84z7ZxiSdP5ycrKwgUXXED9s6GdYuklXM7PrbfeGhbn59Zbb8WJEydQUFBATUMul2P27NnYsGFD8GOQ/CAjIwNTp06l/tlcccUViIuLGzSONoPBOBOO45CkToLZYYbZYYZCqsDQ2KF+R+lS1ClotjT7FTVduxb48ktAqQRWLFPi39cuQvtz7SB/ITA9b8KimYtEiZR60UZoqY+MoYm3SVDnBlVioZAqoFUEH61ssbbAaDciRZPi1/ERkgiMiBsBKS+FwW6A3WVnnXgZPvqVY+p0Ons/KATuvfdejBw5kmqabUREBH73u99R6V7ZmaysLMyePRsajfh/pDpz1VVX4eKLL6b60ADw3JBedNFFMBgMoS00bRpw4gRQVdXtt2+//Xb85je/oTJipTP33HMPcnNzqUaa5XI57rvvPuh0dP+gZ2ZmYu7cub46TVpcccUVuOSSS6hqAMDcuXMxdepUtLe3U9UJp62NHj2a6sMWmUyG++67D8nJoXVt7I20tDTceuut1G2NwWB0T7wyHlJeimaL5+/W5NTJmJw62a9zvbMrS1p7LpkSBODxX8pGX38dyM7u+v3C5kIcazwW2MZ7wevQ+ZuWHChXZl+JK7OvpLI2AJgcJgAQPap4qP5QyN2ES/We2aVZMVl+HX9xxsUYnzwegMeplUvkVEbgMAYmHG2HIxAmTZpE8vLy+nobjIFMSQkwbBjw978DTz3V17thMBh9CMdxBwkhk/p6HwMddm0+t7A6rVBIFeC507GLBnODz2ntic0lm2F1WnFT7k1nPcbt9kRMN24EPvgAkEi6fn9XxS40WZswd9TckH6OzlgdVhxtPIoRcSNEH7cSDprMTShtK8XE5ImQS8WpMxUEAV/lf4Uh0UMwNX1q0GusKlyFRFUiLhtyWY/HOlwOGOwGJKoTT59PBHS4OhApi+zhTMZgo6drc7+KmDIYITN0KDBpEvDf//b1ThgMBoPBGHAoZcoznNKtpVtR3nZm19xf489MU4kEmD0bWLLkTKcUAJI1ybA7PbM1xUIpV2Jq+lRqTmlhc6FfHYyDJVGdiKnpU0VzSgHP5+oW3EjVpga9RrWxGg6XA9kx2b0eW9RahC2lW7pErXmOZ04powvMMWUMPm6/HTh0CKDYFZfBYDAYjMGK2WHGiaYTcLgd0Kl10Cq0KGzp3fHKjM7EVTlXhVQzmKrxOEp1prqg1+gOQRCo1ZhWtVehqr37EiIxsDqsfne99Zc6cx04noNOFfxnla5Nx2VZlyFNk9bjcYIg4FTrKSSoEhCtiIbNaUN+Uz6szoFZ88ugB3NMGYOPW28FOI5FTRkMBoPBCAK5RA6H24FGcyMAIDc+F0a7ETXGmh7Pk/LSHp3SVauAefOAffvOvoZSroRWoUWtqfbsBwXBjsod2Fq+VdQ1w8XGko34ueZnUddsMDUgPjI+pCgsz/NI06b1Omqmsr0SNqcNI+NHerTNDXC4HVTG3zAGNswxZQw+UlOBSy/1tPzrRzXUDAaDwWAMBOQSOWIjY9FibYFLcCEnJgcKmQKnWnrvnO8SXNhXs6/b1N+PPgJWrAAOH+55jRRNSpd0YjHQyDUDcmSMS3DB7rSLOipGEARIeAmSNcE3tDvVcgoHag/4FcktbCmESq5CujYdDrcDbfY2JKgSeq1ZZpx7MMeUMTi5/Xbg5Eng6NG+3gmDwWAwGAMOnVoHgQhotjSD53kMjRmKVlsrHC5Hj+dJeSkazA042dJ19nVtLbB1q2fc+C8T787KpJRJuDrn6lB/hC6o5Wq4Bbdf42z6E95RMWJ25OV5HjOGzcC4pHFBr3Gq9RSarc29RkutDitMHSYMjxsOnud9UfhEVWKP5zHOTZhjyhiczJ0LSKUsnZfBYDAYjCBQSBWIVkSjydIEgQgYkzQGs3Nn+5X6mRWThVZrq8+pAoAvvvCMirn+eiDWzx5EYtZVekfGdN7TQKC9wzPaTMwZpqG+r03mJhjtRuTE9D5rVilXYs6oORgRPwIuwYUWawtiI2NZGi+jW5hjyhicxMUB11zjSecVuWEAg8FgMBjnAsmaZGRGZ4LneEh5KaS8FIIgwCW4ejxvaMwvM03bPDNNCQE+/dTzvbvv9k97X80+bCjeEPTef020IhrAaUdPTKYNnYZpQ6eJvi5weoapVi7efOdvTn6DQ/WHgj6/tK0UEl6CrOieZ5d67cRrOxJOgszozJCaYzEGN8wxZQxebr8dqKoC9uzp650wGAwGgzHgUMqUPocO8MyiXHtqLU40nuj5PLkSSeokX53p4cNAfj4QHw9Mn+6ftkqmgtFuFK2TrlquxjjdOCSpkkRZL1zoVDqM140XbVSM3qqHzWmDSqYK6nyX4EJVexVSNam97ulw/WGsO7XOF6HlOA6xkbFQSBVBaTMGP8wxZQxeZs0CFAqWzstgMBgMRpAQQlBnqkObrQ1yqRxquRolbSW9poNGSCKw4tgKqF9VY+LD7wEAkqduR7W51C/dFE0KAIjanXdc0jgqs0xPNJ7o1VkPlkR1IsYkjRFtPe8YnmDnlzpck8YxXgAAh5pJREFUDqRqUzE0dmivx5W1lSE6Iho8z6PF2oIGcwMIa0rJ6AHmmDIGLxqNp5hl5UrA1XPaEYPBYDAYjDPhOA4GuwH15noAQG5CLuxOO0rbzu5gbirehBlfzMC3xd/C4rIAFywCLv0bCtOfxrjF47CpeFOvurHKWChkCtSb6kX7WewuO5rMTaKt56XWVCv6eBsvDeYG2F120darN9dDE6GBWh5cl1+lXIlLMi5Bijalx+OKWovgdDsxKnEUCCGoN9Wj3d4OjuOC0mWcGzDHlDG4uf12oKkJ2Latr3fCYDAYDMaARKfWwea0od3ejjRtGrQKLQpbCrs9tlRfirkr58LqtMIpOD0vxpUAV7wEV+JBWJ1WzF05F6X63iOnOrUODZYG0X6O443H8X3596KtRxuHy4GtpVtR1Fokynre5kPB1njaXXborfpejxMEAadaTyFOGYd4ZTz0Nj0cbgerLWX0CnNMGYObGTMArZal8zIYDAaDESQxihjIJXI0mD1O4oi4ETDajagz1p1x7MI9C+F0O3tcz+l24p297/Sqmx2djdEJo3tttuQv2ggtiEAGzMgYo8PTQVgjF6cjryAIGJs4ttemRWejqLUIG4s39vr+VRurYXPaMCphFABP1DdSFinqyBvG4IQ5pozBjUIBzJkDrFkDWAbeYG0Gg8FgMPoajuOQpE6C2WGG2WFGTmwOfpP5m24jYCuOrTgdKSUAPtoD/PyE5/9/wSk4sfzY8l51U7QpGJ04GlJeKsrP4XXwDHaDKOvRxtTh6cgbFSGOQyeXyjEmaQwS1cHNEC1vK0ecMq7XNOB0bTp+k/kbpGvTYbAbYHfZWbSU4ReD1jFdt24dnM6en9iJwerVq8NSyL169WrqGgaDAVu3bqWuc+LECZw6dYq6zvbt26HX64Hf/Q4wGoGvvqKis27dOjgcPQ8cF4PBZGsmkwlbtmyhrlNQUIDCwu7TzcRkx44daGlpoa6zfv16ZmsMBqNPiFfGI04ZBwkngZSXesbI8GfeRnaJptligdoLgZ0vAlwPx/WA3WVHjbEmlK370Co8I1e8Dp9Y8BwPnhP/lrrd7hlt4913qFS1V8HhCu4a0mBugKnD1GvTIwDged5nH3KJHHHKOMQoYoLSZZxbDFrHtLi4GA899BD1m6uNGzfinXd6T0cJlXfffRcbNog3z6s7oqKiMH/+fBw/fpyqTnR0NGbMmIHGxkaqOk6nE7NmzYJ94kRg1Cjggw+o6JSVleGBBx6gbmubN2/G22+/TVUDAN577z2sW7eOqoZGo8Hvf/97HD16lKpOTEwMZs6ciYYG8WqUusPtdmPWrFmw2WxUdSoqKnD//fdTt7Xvv/8eb775JlUNAFi0aBH+97//UddhMBihw3M8hkQPQaQs0vfascZjyKvL63Jcl2ia+ZcomfrMv8H+Nt850XQCOyt3ipLOq5arIeEloqfyXp1zNa7OuVrUNQHA7DRDIVOIEjG2OqzYVbELJ1tPBnV+qf6X2aUxPacB76vZh/ymfN+/lTIlhkQPYU2PGH4xaB3TnJwcfPzxx3j11Vep6zz55JNYuXIlVZ3MzEzceuutyMvL6/3gIOE4DvHx8Zg5cyZqa+l0lwOAlJQU1NXV4frrr4eFYnptTk4OfvrpJ9w7fz6EBQuA/fuBI0eo6CxbtgyvvPKK6Gv/WueZZ57BV5Qiv16GDBmC2267DQcOHKCqk5CQgGuvvRY1NeI8Ce8OnU6HpqYmXHfdddRt7eeff8bdd9/d6wiFUHWWL1+Ov/zlL9Q0vDp//vOf8V/KtdlDhgzB7bffjr1791LVYTAY4mF32dFi9WSImDpMKG4t7tI19q5xd0HGyzz/MP8yM/RXjqmMl2HeuHl+6aWoU0AE4htzEioXZ1yMYXHDRFmLNqPiR+HCtAtFWcvbNdg7hicQBEFAvbke6VHpPTrJZocZxa3FsDo9s2ebLc1wuOln+TAGD4PaMQWAF198EZ999hl1nXnz5mH37t1UdaxWK6699lqUl5dT1ampqcG1114Lo9FIRYPneWRnZ+PAgQO444474Ha7qehkZGRAIpHgq6++witlZZ56UwpRU68NvPzyy1i2bJno6/9a5+6778aPP/5IVcdms+G6665DWVkZVZ3a2lrMnDkT7e3tVDQ4jkN2djYOHjyI2267DS5KY4PS09MhlUqxatUqPPPMM1Q0gNM28Le//Q0ff/wxdZ17770XO3fupKpjt9tx/fXXo7TUv9mGDAajb2m2NHtSQt0O5Mbnwi24u3SNfXLqk5BJvI5p9xFTmUSGxy983C89nVoHCS8RbWxMRlQGohXRoqzl5Uj9ERypPyLqmoBnZE6aNk2UtepN9ZBL5YhXxgd8Ls/zuGH4DZigm9DjcYXNheB4DrkJubA5bahqr0KrtTXYLTPOQQatY5qVdTrV4L777sM2SuNCsrOzAQAdHR244YYbUFQkTkvvs+k0NTVh5syZaGtro6LjvSE9evQobr75Zmp1ut6fZ926dfjTn/5EJTVRJpMhIyMDAPDXf/4Tp847D/j8c8AsbgpPZ1v7/e9/T61O1/ueORwOzJo1CydPBpeO0xteG/DaWmsrnYuK9+c5fvw45s6dS93WNmzYgMcee4yKrUkkEgwZMgQAsHDhQixatEh0DcATYfSmQz3wwAPYvHkzFR2vDTgcDtx4443U6nS9Oi0tLZgxY0ZY6nQZDEZoJKk9UdBGcyNilbFIUiehqLXIly2SE5uDVTevglKmBG9J9Zyk9pTuyHgZlDIlVt28CjmxOX7p8TyPRFWiryNwqHijemJmtzRaGtFoEbc8ySW4UKovhdVhFWW9BksDdKrgGxDJpXIo5cqzft/hcqCsrQzpmnSo5Wo0mBvAczwSVAlBazLOPQatY6pWq5GU5Pnj6XK5MHv2bJw4cUJ0He+NFQDo9XrMnDkTTU3iD2/urHPy5EnceOON6OjooKqzZcsWPPjgg1Ru5DvrLFq0iFqdbmed+w8cAEwm4MsvRdWIjIxESoonNcblcmHOnDk4duyYqBpA15+lra0NM2fOpFKn21nn1KlTuPHGG2G3izfcuzudrVu3YsGCBdRt7T//+Q+1Ot3OOn/84x+xdu1a0TUiIiKQluZ5eu52u3HzzTfjCIX0dK8zD3iaos2YMYNKnW7n96y4uDgsdboMBiM05BI5YiNj0WJtgUtwITchF3anHaVtp7MeZgybgWMPHsN56msAAJy6EWqZGldnX4399+/HjGEzAtLUqXUwdZhEqQ2tNdZiX82+fj8yxmA3YE/1HjRbm0NeS2/Vw+FyIFmTHPC5ZocZG05tQJO553vbYn0xnG4nRsaPhMPtQJu9DQmqBNE6KjPODQa1tXhvepqbm5GXl+eLnolJbGwsoqOjERERAZfLhcOHDyMyMrL3EwMkJycHPM8jJiYGWVlZ2Lp1a7fd8MTQ0Wg0cDqduPXWW/Gf//xHdA2vTlJSEhobG/HGG2/gkUceoaZz/PhxNDY24plvvoHw/PPgP/gAuP9+0XXcbjeampqwf//+LlFUsYiKikJcXBykUimcTieOHDkCpfLsTy+DJScnBxzHIS4uDhkZGdi2bRs1W1Or1XC73ZgzZw4+oNScqrOtvfrqq3jssceo66xevRozZgR24xWIjsPhQFNTE/bt29fFuRMLjUaDxMREcBwHh8OBo0ePQqVSia7T2dZSU1OxY8cOKrbGYDDERafWodXaiiZLE9K0aRgWNwwxkV27rubE5uDeS3MQWQ888dBruHzGU9hYvDGo7rU5sTlI16b73TCpJ7wjY4wOo2jdbmng7cgrxgzTWGUsrhtxHZTSwO8ZSlpLYLAbeoyWAkCcMg4jE0YiUZ2I6vZqAECiKrixNIxzl0F9B3Dvvfdi9+7d4DgO7733HuRyORWdV199FStWrEBraytWrFgBqVR8f1+n0+Ff//oXXnrpJeTl5eHnn3+GRCIRXWfYsGH4/PPPcc899+CLL75Ac3MzlU5q5513HrZu3Yrf/OY3+Oc//0mtW9sVV1yBgwcPIjk5GQv/8Q/wDz4I5OUBhw6JqnP33Xf7PhOatvbKK6/gv//9L/R6PT777DMqtpaQkIBFixbh5ZdfxqFDh/DTTz9RsbWhQ4dixYoVmD9/Pr788ks0NjZSsYNx48Zhy5YtuOyyy/Cvf/1L9PW9XH755cjLy0NqaioWLlxIzQbuuusu7NmzB1KpFO+++y41nb/85S/4+uuv0dbWhk8//ZSKrcXGxmLRokX429/+hqNHj2Lnzp1UbI3BYIiLQqpATGSML8tlStqUbmsXH3sM2L3bM048VhmLaEU0SvWB15MrpArRnEhvfanYI2PExrs/MX9uuTTw60W5oRwJqoReHwro1DpMSpkEACAgiIuMg1xC5/rEGMQQQvrN18SJEwkN7rjjDqJUKklLSwuV9QkhRBAEMn78eDJ06FDicrmo6ZhMJhITE0Ouu+46ahqEEHLq1CnCcRx55plnqOqsXbuWACDLli2jqvP6668TAOTgDz8QEhlJyIIFVHTmzZtHFAoFaWpqorI+IR5bmzhxIsnKyqJqaxaLhcTFxZEZM2ZQ0yCEkJKSEsJxHHnyySep6mzYsIEAIJ988glVnbfeeosAIHv27KGqc++995KIiAjS2NhITUMQBHLBBReQIUOGEKfTSU3HarWS+Ph4cs0114i6LoA80g+ubQP9i9a1mTG4aLO1kYKmgh6POdF4giw/spy0WloDXr/eVE9+rPyRuN3uYLfo44tjX5C91XtDXsfLD2U/kB/KfhBtPUII+bHyR7Iqf1XI6zjdTvJj5Y+k2dIc8Lm17bVk+ZHlpKS1pMfjTjSeIKYOU7BbZJxj9HRtHtQRUy9PPfUUrFYrtbRUwNP986mnnkJJSQmV2jIvarUaDz30EDZs2ICCggJqOsOHD8esWbOwePFiat15AeC6667DiBEj8Pbbb1Odzfjggw9CrVbjzQ8+AG67DfjiC0+9qcg89dRTsNvteP/990Vf24vX1srLy7FmzRpqOkqlEg8//DA2bdpEpT7bS05ODmbPno0PP/yQWndeAJgxYwZGjRqFt99+m+pIlwULFkCj0VCfOfvkk0+io6ODWqMl4LStVVRUYPXq1dR0IiMj8Yc//AFbtmyhUp/NYDDoYXaYQQhBWVsZDtYdhMFu8H2vrg5wdJoWkhObA47nutSj+ovNaUNFW4VvVE0oqOQqUWtMr8i6AldkXSHaegBg7DCKkrpcZ6pDRVtFl5E+/lJmKINMIkNmdOZZj2kyN+Fw/WFUGiohEME3KobBCIqzeayhfgFIB7AdQCGAfAB/7O0cmk9lr7zySpKYmEhsNhs1DYfDQdLT08nUqVOpaRBCSH19PZHL5eS+++6jqrN7924CgCxcuJCqzocffkgAkE2bNlHV+dOf/kR4nie1a9YQAhCyeDEVnWuuuYbEx8cTq9VKZX1CCHE6nSQzM5NMnjyZCIJATaexsZFERESQe++9l5oGIYTs3buXACBvvfUWVZ2PP/6YACDffvstVZ0nn3yScBxHSkp6fsocKjNmzCCxsbHEYrFQ03C5XCQrK4tMnDiRqq01NzcThUJB5s2bJ9qaYBHTfn9tZgxsTB0mklebR1osLcTSYSErjq0gP1f9TAghxOkkhOMI4XnP/3s52nCUVBoqA9ayOW1k+ZHl5HDd4ZD33WZrI5YOen83xcDSYSFttraQ19lbvZd8cewL4nQHnvVSpi8jJxpP9HjM9vLt5MvjX5IOZwdpNDeSvNo8YnXQu/9hDHx6ujbTvPglA5jwy/9rABQBGNXTOTQvfps2bSIAyEcffURNgxBCFi5cSACQ3bt3U9W57777iFwuJ/X19VR1pk6dStLT04nD4aCmYbPZSGJiIrnyyiupaRBCSEVFBZFIJOSxRx8lZNw4Qs4/nxAKN9pbtmwhAMhiSo6vl3fffZcAILt27aKqs2DBAiKTyUhtbS1VnUsuuYSkpqaSjo4Oahp2u53odDpy+eWXU9MghJCqqioilUrJI488QlXnhx9+IADIv//9b6o6//rXvwgAsn37dqo6Dz30EJFKpaS6ulqU9Zhj2v+vzYyBT35TPslvyieEEPJT5U/ki2NfEJvTRurqPHeZCQniaa0/uZ5sLNoo3oIicaD2ADlQe6Cvt9Et/yv8H9lSsoXK2qYOE1lxbAXZX7OfCIJAjjUcIyebT1LRYgweero2U0vlJYTUE0IO/fL/pl+ezqb2dI7b7aa1HUybNg1jxoyhnsZ3//33Q6vV4u9//zs1DcCTxudwOKg2cwE8qanV1dX4+uuvqWkoFAo8+uij+OGHH3BI5KZEncnMzMQtt9yCJR9/DMtddwGHD3saIYnMVVddhfPOOw8LFy6katP33XcfoqOjqdvaE088AZfLhX/+859UdZ566inU1tbiS5HH+XQmIiICjz32GLZv346DBw9S00lPT8dtt92GTz75hOpszssvvxznn38+/vGPf1C1tfnz5yM2Npa6rT3++ONwu9147733qOqcywRzbWYwekKn1sHmtKHd3o7c+Fy4BTeKWovgnWam62Z0ptlhRnlbeeBaGh30ds/ok1Aw2o04Un9EtBmhrdZWtFrFm/lttBtxrPFYyPszO8wwdZiQrA58TIw/M1QLmz0zrnMTcqG36eFwO6BTBz8rlcEIy7gYjuOGADgfwL5uvrcAwALAczNHcQ946623YDbTnVul1Wrxz3/+k8poms7k5uZi4cKFuOqqq6jqzJo1Cy+//DIuueQSqjoPPfQQAGDIkCFUdZ577jn85je/AX/TTcBf/wr8+9/AsmWianAchzfffJNqvSTgqTd+7733kJpK955yxIgRWLhwIS6//HKqOtdffz1efvllXHrppVR1HnzwQbjdbuq29uyzz+LCCy+kMmbFC8dxeOONN9DW1kZNAwBUKhXee+896Lq7wxSRYcOG4Z133qFuAwwP/l6baV/PGAObGEUMaiW1aDA3YET8CKRoU+ASXLD80sahu6lmhc2FKNIXIVmTDIVU4bdWmjYNdaY6mB1mxEpjg96z1WXFiaYTiFXGIkPe/+y72dqMYw3HkBGVASWCHwtndVihidAgRZMS0HlGuxF7qvdgnG4cxiWNO+txAhGQGZUJtVyNSkMlImWRiFJEBb1fBoPzRFQpCnCcGsBOAK8SQnrs1DJp0iSSRyGCxWB0yx/+AHz0EVBZ2f0jXQaDMaDhOO4gIWRSX++jP8KuzQwxabI0od5Uj1EJoyCTyAAAtbVAWhoQHw80N3c9Xm/VY2PxRpyffD5GJ44O+36tDivWFK4RTX9zyWYAwLSh00JeCwAO1R9CQVMBbht7G6R8WGJI3erPzp3d6/xSALC77DjZchIZURmIjQz+gQHj3KCnazPVrrwcx8kArAbweW8XPgYj7Pzxj4DTCVDsoMtgMBj9DXZtZohNvDIeY5PG+pxSAJBHt0CtBlpagNZfZbnGKmMRq4wNqjsvgJBLspRyJWQSmaidecXE3GFGpCwyZKc0mPdJEASUt5UjSZ10VqdUEATorXrfvxVSBcYmjkWMIibovTIYAEXHlOM4DsDHAAoJIf+gpcNgBM2wYcB11wH/+Q9gs/X1bhgMBoM67NrMoAHP8eA5HoQQuAU3ytvK8dnRTyFP9NSRxj9zMbSva/Hwtw+jVO9xRrOis2C0GwMe/1LVXoWVBSthtIc2yk4lU8HYIc44vEhpJCKlkaKsBQBmpznkUTFN5iasLFiJBnNDQOfVmetgc9owNHboWY+pNlZjY/FG1Bnr4BY8/Q0kvASePy8MRvDQjJheDGAegCs4jjvyy9dMinoMRuA8/rjnce4XX/T1ThgMBiMcsGszgxonW06i2liNE00n8Py252G4+EHg7iuApGMwOUxYcmgJxi0eh03Fm5ATkwMJL0Gzpbn3hTsRHRENp9uJWlNtSHtVR6hFm7l56ZBLcekQ8WrjzQ4ztBHakNaoM9XB6XYiWhEd0Hl6mx5yqRzpUWfv+1LQXIBIWSR0ah3KDeUoai0Kaa8MhhdqieuEkJ8AsEcnjP7NZZcB550HvPMO8LvfAexpH4PBGMSwazODJmq5GofqD+H21bfD4XYAOVu6fN8pOOEUnJi7ci6OPXgMc3LnQC6VB6ShVWgRKYtEvbkeuQm5Qe/1orSL+qR+0x/m5s6FS3CFtEa9uR7RiuiAmksBwLikcRgZN/Ks702TuQmt1lacn3w+OtwdaLe3B9xcicE4G1RrTBmMfg/HeaKm+fnA1q19vRsGg8FgMAYsSeokrDi2Ak63s8fjnG4n3tn7js8pDbQWUqfWodnSHFKtqVwqB8+Lcxu8r2Yf9tWc0dw6aHieD9hh74zD5YDerodOE1hjR+/72ZP2yZaTkElkGBY7DI2WRvAcjwRVQtB7ZTA6wxxTBuO224CkJE/UlMFgMBgMRlDIJXJsKtkEF/kl2mfXAtv+CnzXtZzZKTix/NhyAMBPVT9he8X2gHRSNClwup1osjYFvVerw4o91XvQZA5+DS8GuwEGuyHkdQCgzliHPdV7QprVWm+uBxEIUtSBRTI3l27u0cF2CS40WBqQHZMNcJ603wRVQr+NPDMGHswxZTAiIoCHHwY2bQIKC/t6NwwGg8FgDFgsTsvpf/AuYNdLwP5HALeky3HejrgKqQL1pnpYHf7Xe6ZqUjEyYSSU0uBnfPI8j1J9KZqtgdW40qbB0oBSfWlIzl6UIgojE0ZCp/Y/YmqwG9BqbYVKdvbZ21JeihtH3IixSWN9TasSVYlB75PB+DXMMWUwAODBBz0O6nvv9fVOGAwGg8EYsGjkmtP/kFuBqEpAkAOGrC7HebvOeru/lrWV+a0hl8oxKWUStIrgGwQppArIJDLROvOKhbnDDJVcFVKacbQiGpNSJgW0Rom+BBzPeaKh3dA5zVchVSBZnYzhccMhlwSfcsxg/BrmmDIYAJCYCNx1F/DZZ2cOXGMwGAwGg+EXd427CzL+9DxTxJ3y/LdlpO8lGS/DvHHzAHicqDhlXMAzTQVBQI2xJqSUV5VM1e9mmRo7jCGNirG77Kgz1gVUfysIAioMFdCpdGedXVrYUoh1p9b53m+O40IeacNg/BrmmDIYXv70J8880w8/7OudMBgMBoMxIHly6pOQSTo5pvFex3SE7yWZRIbHL3zc9+/smGyYOkwB1Xs2WZuwo3xHSGNjtBFaURxTtVwtmpNmcVpCWqu8rRzbyrfB6PA/ElxjqoHdaT/r7FJBEFDUWgQpL4VUIkVBc4FoNbUMRmeYY8pgeBkzBrj6amDRIsAR/BNYBoPBYDDOVXJic7Dq5lWIlEZCyklPR0xbR0ACCZQyJVbdvAo5sTm+c7KiszBeNz6g1NxEZSJkEhnqTHVB79U7KzSU7r4AcHHGxbg44+KQ1gA83XSlvDSkGab15npEyiIDml8aHxmPcbpxSNd2P7u02lgNi8OC3PhctFhbYHPaukbFGQyRYI4pg9GZxx8H6uqAlSv7eicMBoPBYAxIZgybgeMPHcfNo2+GQlcJAOBaR+G64dfh2IPHMGPYjC7Hy6VyjEkaE9DMTZ73jClpMDcEvc/xyeNxU+5Noo2NCRW5VI45o+ZgdOLooM4XBAHNluaAmh4BgFKuxLikcWd9HwqaCxApi0SGNgON5kao5Wqo5GdvksRgBEv/+E0UmY6ODqZzjuu43W64XEEMp542DRg5Enj7bYCQXg/v6OgA8eO4UBlMn81g0xEEAU5nzzP7xIDZGoPBGEjkxObgXzP+hf899v+QmCRg3syhmDtqLhKU3c+8FAQBxa3FqDP6HwFNVifD5rT1eVrp7qrd2F21u0/3AAAt1hY43U6kaPwfE1PVXoXytvIe12y1tmJE3AgYOgxwuB0BO74Mhr8MSse0qakJb775JnWdH3/8Ed988w11nc8//xyHDh2irvOPf/wDtbXB12r4y4svvgiLxdL7gSHA8zyeeOKJwNNzeB54+mngyBFg69ZeD29tbcXrr78e3CYD4Oeff8bq1aup6/z3v/9FXl4edZ1//OMfqKmpoa7z0ksvwWym29iC4zg8+eSTIaeC9YbBYMCrr75KVQMA9u7di6+//pq6zldffYX9+/dT12EwGH1HbGQsUpJ5bD9ajP+8q8HFGReftX6S53kcazyG/OZ8v9dP1aQCAOpN9UHtTxAE/FD2A4pbi4M634vZYRalVjW/KR/byrcFfb43rTlZk+z3OccajiG/6ezveawiFlPTp2J43HA0mBsQKYtElCIq6D0yGD0xKB3TtLQ0vP766/jPf/5DVSc3Nxe33XYbvv/+e6o66enpmDZtGgopz9hUKpW4+uqr0dLSQlXHYDBg9uzZVCMmHMfh0KFDePTRRwOPMt15J5CcDLz1Vq+HJicnY+HChVi0aFGQO/WP3Nxc3H777di8eTNVnYyMDEyfPh0FBQVUddRqNa6++mo0N9OdH2c0GnHTTTfBbrdT0+A4DkePHsUjjzxCNaKZmJiI9957D//85z+paQDAqFGjcNddd2HTpk1UdTIzMzF9+nScOHGCqg6Dweg7OI5DRlQGMmJSoZQrkRWT1WPabFZMFhrNjX47eVqFFtOHTceIuBG9H9wNPM+jxdrim8nZ1zRbm9Fubw/6/HFJ4zB92HS/U6L1Vj0MdgOyYrLOegzP88iJzYFcKkd6VDrStGlB74/B6I1B6ZhyHIcxY8bgkUcewYoVK6jppKSkQKVS4cYbb8Tu3fRSOMaOHYuWlhZcffXVqKiooKpTWFiI6dOno709+D+M/uhs2bIFd9xxR3DptgHovP/++3jhhRcCOzEiwtOhd+tW4ODBHg/12tqjjz6Kzz77LPjN9kJSUhKioqJw00034aeffqKmM3bsWLS2tuKqq65CWZn/M+WC0Tl58iSmTZsGg8FAVWfr1q24/fbbqdva4sWL8dxzz1FzTjmOw9ixY/HHP/4Ry5Yto6IBAAkJCYiNjcXs2bOxa9cuajpjxoxBW1sbrr76apSUlFDTYTAYfUuUIgpquRoGA7BkCbDl8AmcajnV7bFDYwKfaRqvjA+pRlQToek3s0zNHeaQOvLyPI94Zbzfx5e2lYLjuS6NqDpzovEETjSefniojdCG1JiJweiNQemYAp6bHkII7r33Xqxdu5aKhtcpsVqtuPbaa3H48GEqOklJSYiLi0NtbS2uuuoq1NcHl7LSG2PGjAEAHDx4ENdffz2sVitVnTVr1uD++++nlgLp1Xn99f/f3n2HR1WsfwD/nu3Zlt5JTwi9F8GCclGqoEhVrFixcS1gu2JXrFe9V39esQFWkCJSBAQBkRJqICRAOqT3ZLPZbJvfH+uGhLRNsrOb8n6eJ48mOXu+s5shZ9/MnJk32z61+4EHAK0WeOcdh3PuvvtublO77X2tpqYGU6dO5Ta129/fHwEBAcjLy8OECRO4Te22v2bHjx/HtGnTuE3ttuds2LAB99xzD/e+9vbbb3Od2m3PWbhwIdep3QMGDIDBYMC0adO4Te329fVFcHAw8vPzMWHCBJdM7SaEuIfZasaCu6tx333Amh+lOF14usnfx1qFFv4qf6SVOr6nqd6ox6GLh9q01Ux9aqm60+xlWmWsanfhl1uZi4ScBIf3dbVarcgoz0CwOrjJEVaz1YykoiQU1xSj2liNi5UXYbFa2tU2QhzVrQtTwLYIzpw5c/D7779zzamoqMDEiRORkpLi9Ax7UQIAaWlpuP7661FSUuL0nICAAPj72xYl2LdvH2655RYYOWybMnDgwLr//+abb7B48WIuo0z21wwAnnnmmbZN7fb0BB580LY6bysjh/Ycq9XKdWq3PaeyspLr1G57TkZGBrep3X5+fggKsi2esH//fm5Tu+v3gVWrVrVvancbc55//nluU7vr9zWeU7vtOVVVVVyndttzsrKyXDK1mxDiPtfdWAAA+GtLFGpMNcgob3rBnWjvaIhFYuiNjv1xXCKSILUsFdmV2e1ql1auRY2pBmZr+2fVeCm82rQ9S1P0Rj0sVku7R0wzyjOQXpYOiUji0PE6ow5ysbzZvUvPl5yHyWJCH78+yNPloURfAkEQ2tU2QhzVbQvT+sVP79698ddff3Evsvr374+dO3dyeeNbP6dPnz7Ytav9N8c7mhMREYEDBw44PaN+USKVSiGXy3H2bNPTejqifrEQGBiI7OzsthVZjz8OiMXA+++3eFj91ywuLg4HDhzgUmTVz+nXr59L+lrfvn25/VGnfk5kZCSXvubj44OQENvqhBKJBEqlkktBX7+vBQQE4OLFi1yKrPqvWWxsLA4ePOiSvrZjxw6X9LWdDiw4RgjpeiQiCWZMk0LjacaZUzKUZoUguajp38VxvnGYHj8dSpnSoXPLJDL4KHyQX9W+bWO8Pbzhq/R1eKSxKaN7jcboXqPb/XgAMFqN8FH6wFvh3a7H5+vy4a/yd3has1ahxYw+MxDuGd7k91OKU+Cj9IGn3BMVhgoEqAIgErpt2UA6iW7bwwYMGICoqCiMGzcOOTk5ePzxxyGTybjkXHPNNYiKikJZWRkWLVrE5S9KAwYMwNy5c+Hh4QGpVIrZs2c7PcOec/fddwMAQkNDMW7cOC45gwYNwp133gmTyYQxY8agT58+Ts/w9fVF7969MWvWLBQWFmLBggXw83P83guEhAC33w58+SXQQpHRv39/REZG4tprr0VOTg4ee+wxyOVyJzyDhgYMGICrr74aMTExKC0txcMPP8ytr82ZMwdKpRJisRhz5851eoY9x97XQkJCcO2113LJGTRoEO666y6YzWaMGjUK/fr1c3qGl5cX+vTpgzlz5qCwsBC33XZb3ewDZ+rfvz8iIiIwfvx47n3tyiuvRFxcHEpKSvDII49w62uzZs2CSqWCIAiYP3++0zMIIZ1DuG8grr+xDABw6vdBKDeUt7gHqdlqdngUM1gdjHJDOQzmti90F+EVgclxkx0uhHnxUnhhStwUhGgd3+rFrtJQiRpTDYLVjq3G29prm1WehWpjNfr69UVBdQFEgm3PWEK4Y4x1mo/hw4czZ0pOTmZ//fUXA8Bee+01p57brry8nOXk5LAvvviCAWDr1q3jkpORkcH0ej174oknmCAILCkpiUtOSkoKs1qtbNKkSczLy4uVl5dzyUlOTmZGo5FFR0ezQYMGMYvFwi2noKCAeXh4sLlz57bnBIwBjL34Yqs5hw4dYgDYyy+/3M7WtqyyspJdvHiRffXVVwwAW7NmDZeczMxMVl1dzZ5++mkGgJ06dYpLjr2vTZ06lXl6erKysjIuOcnJycxkMrHY2FjWv39/rn2tsLCQqVQqNmvWLC4Z9pyEhAQGgL3YSr9sL51Ox7Kzs9nKlSsZAPbDDz9wycnKymI6nY4988wzDAA7ceKEU88P4AjrBNe2rv7h7Gsz6bl++DWXAYz1CrOy3Wl7WFF1UZPHVdRUsO8Sv2Pnis85dN6CqgK26sQqllqS6szmOmxPxh62J2OPW7IZY+x0wWm26sQqVlFT4fDxP5z6gVXXVjf5/YKqArYnYw+rMdawo7lHWXZ5tjObS3q4lq7Nbr/g1f/gdfGbOHEi8/b2ZhUVjv2DbQ+j0ciioqLY4MGDub3xZYyxvLw85uHhwebNm8ctgzHGDhw4wACwV155hWvOl19+yQCwn3/+mWvOU089xQRBYKdPn277g2fMYMzHhzGdrtVDp0yZwry8vLgVWYwxZjKZWExMDBswYADXvlZQUMCUSiWbPXs2twzGGDt8+DADwF566SWuOd988w0DwH766SeuOUuXLmUAWGJiItecadOmMa1Wy0pLS7llmEwmFhcXx/r168fMZjO3nKKiIqZSqdjMmTOdel4qTDv3tZn0PDqDnoX0MjGAsT2t1HHrzqxj285vc+i8FouFbUjewFKKUtrVrm3nt7GDFw6267H2xzva1ubsy9rHfk//vV2PPZV/im0+t9nh4zembHTo+FpzLUsvTWe15tp2tYuQpvT4wpT3qKkd71FTO96jpna8R00ZYy4ZNWWMdWzUdP9+2z+Vjz5q9VDeo6Z2vEdN7XiPmtrxHjVljLlk1JQx5pJRU8YY91FTO96jpnY8Rk2pMO3c12bSMz33HGPXXGMrTCtqKlhmWWaTxx3PPd6mUcCO2Hxuc4cKS2cUphtTNrKdaTs7dA5HFFUXsVUnVrEzhWea/H5qSSqrqq3i3g7Sc/X4wpQxGjVtDxo1refKKxmLiGDMZGr1UBo1bTsaNW0fGjVtGRWmnf/aTHoei4WxxPxEds+Ge5jyNSXDS2Dq19XsoV8fajAVt6q2iq06sYodzT3axvO3/Zq4L2sfW5u0ts2Ps3NGYfpd4nftGrVt6/M9eOEgW524mtWaGo+CVtdWs9WJq9nBCwdZWU0Z0xv1bW4PIa1p6drcbRc/utyyZctQVlaGjz/+mFuGVCrFCy+8gJMnT3LbOxUAgoKC8NBDD+HHH3/kto0DAFxxxRWYNGkS3n//fVRUVHDLWbBgAaKjo/Hyyy9z22cSAJ5++mkoFAq8+uqrbX/w0qVAVhbw00+tHrps2TKUl5fjo48+akcrHSORSPDCCy/g9OnTWLduHbecgIAAPPzww1izZg1Onz7d+gPaaeTIkZg6dSo++OADlJeXc8u59dZbERsby72vPfnkk1CpVHjllVe4ZQC2vlZZWYl///vf3DIkEgn+9a9/4cyZM1i7di23HD8/Pzz66KNYt24dTp48yS2HEOJev6VtxagVo7Dy5ErozbYtYXQmHVYcW4FB/zcIW89vBQCoZWoEqgORUdb0tjKXM5qN+PnMzzhT1Pb3RWqpusNbxnSEfauY9uxheqLgBDambHTomma1WpFVkYVQTShkksYLgp4pPgNmZYj3jUdWeRZyq3Lb3B5COqJTFaZmM79fCGPGjMHEiROxYsUKWCz8Ngi+/fbbERUVhc8++4xbBnCpyFqxYgXXHHuRtWbNGm4Z9oI+MTERBw8e5JZjL7LWr1+PgoKCtj146lSgb1/g7bcB1vK2GaNGjcKUKVOwYsUKrn16wYIFiImJ4d7XnnrqKSiVSnz++edcc5YtW4aKigr8+OOP3DLsRVZSUhL279/PLcff3x+PPPIINm7ciLy8PG45I0aMwLRp0/DFF1/AZDJxy5k/fz7i4uK49zV7Qc+7rxFC3COtNA2z1syCwWSA+eIQ4Oi9dd8zWU3Qm/SYtWYW0krTAABDg4fiusjrHDq3TCKDRCRBnq7tv3M1cg0A2+q27eGr9IWv0rddjwWAckN5g3a0Rb4uHzKxzKFtYkQiEcZHjceggEGNvme2mpFWmoYQbQiMViPMVjOC1EFtbg8hHSGwVt5ku9KIESPYkSNHuJ0/IyMDnp6e8PHx4ZYBAElJSYiOjoaHhwfXnOPHj2PQoEEQi8Vcc44ePYphw4Zx3VjZZDLhzJkzGDx4MLcMACguLoZOp0NkZGTbH/zVV8A99wDbtgETJ7Z4aEZGBrRaLXx923+hcsSZM2cQFRXFva+dOHECAwcO7BZ9zWw24/Tp0xgyZAi3DAAoKSlBZWUloqKiuOZkZmZCrVa3bSukdjhz5gwiIyOhVPLdUuHEiRMYMGAAJBLHNolviSAIRxljI5zQrB6N97WZ9ByLNi/CimMrYKr0Bj7IBixy4KGBQOClGTlSkRT3D78f/5nynzaf/9DFQ0gvS8fs/rMhETn+O6TcUI7E/EQMChoEL4VXm3M7qlhfjNOFpzEiZATUMrXDjzOYDVibtBYDAgZgSPCQDrUhuSgZR3OP4h/R/0CxvhgysQzxfvEdOichTWnp2tyjClNCOsRoBKKjgd69gV273N0aQkgrqDB1Dro2E2fRvqlFlbHK9smWj4DDjwJ91gHzbml4nFyLimdstxCV6ktxpvgMRoWManL6aX3ZFdnYm7kX10Zdi17aXjyeQqeSUZaB/dn7cUPMDQhQB7R4rN6ox/H84xgYMBBaReMpw0dyj6CougijQkchszwTsT6x8FR48mo66cFaujZ3qqm8hHRqMhnwz38Cu3cDCQnubg0hhBDSpeiMukufXP0GIKkBUmYCuUObPc5sNSOzLBMZ5a3faxqiCYEgEpBX1b5bKNp7j+mujF3YldH+P1i3Nze3KhdSsRR+ytZnzKSXpSOjLANWNH0v6oiQEZgYMxEWZoFKpqKilLgFFaaEtMX99wNeXsDy5e5uCSGEENKlNJimqskHRv7X9v+7X2n2uAB1ADRyDdLL0ls9v0QkweCAwQjWBLe5bTvSdmBH2o42Pw4ATBYTTJb23+e/5fwW7M3c2+bHhXmGYUDAAIfuL00rS4Ov0rfJqcr2e2tFIhECVAHo49enzW0hxBmoMCWkLTQaYNEiYN064Nw5d7eGEEII6TIWDFoAqUh66QtXLQekOuD8NODCFQAAiSDB7YNub/C4KO8olOhL6hYJasmAwAHtmsbrIfVAtam6zY9zhmpjNTykbV8rItwzHP0D+rd6XKGuEFW1VYj2jm70vWJ9MX45+wvSStNQbXTP8yfEjgpTQtrqscds03rffdfdLSGEEEK6jCfHPAmpuF5hqioGRv+9tdqefwEAxCIx/nnFPxs8LtY7FgCQWprqUE6pvhSl+tI2tU0r19pWC3bxljE6ow4Wq6VNix4BtoLSkUIdsI2WikViRHk1XowvpTgFYpEY3gpvpBSnoLSmba8bIc5EhSkhbRUYCNx1F/DNNwDHrUAIIYSQ7iTGJwZrZ6+FUqq8NHI69l1g5H8gvvERyMVyPD76cYRpwxo8TilTItI7EjJxy4sf2e3M2InThW3be1sjs23V4mix5yz2abSe8rbd03ky/yT2ZO5x6Fi5RI5o7+hGi0fpjXpkVWQh2jsapYZSSEQSt6xKTIgdFaaEtMdTTwFmM/Dhh+5uCSGEENJlTI6bjMQHE3H/8PuhlWshUlVAffOzuGXMSOy6cxcGBgzEuZLGt8pcFX4VBgU23n+zKUGqIORX57epXfY9RKtqq9r0OAAIVAUiUBXY5scBQEWtbfXhplbKbY7VakVhdaHD+4wOCx6G0b1GN/r6meIzYFaGSM9IVBgqEKAKgEig0oC4D/U+QtojNha45Rbg00+Bigp3t4YQQgjpMmJ8YvCfKf9BxTMVsLxoQcmSEiy9ailC1WEQ6YORXt70QkdWq9WhKbrBmmAYzUYU64sdbpOXwgvxfvF1BWpbDAke0u59RH09fBHvF9+mqbz5unxYrBaHFnlq6fXKKs9CiDYENZYaiAQR/FX+DreBEB6oMCWkvZYuBSorgc8+c3dLCCGEkC5LJpah7EIgrh/rjw8eH4eJ0ZOaPO5Y/jFsTdsKo9nY4vlCNaEAbNupOEoikmBk6EiHtl5xpgB1AEaGjmzTY3J1uRBEAkI0IS0epzPqsOX8FpwuaHpa8429b8SIkBGoqq2Cn9IPEpGkTe0gxNmoMCWkvYYPB/7xD+Df/wZqa93dGkIIIaTLGt4nEOUlchxJkGDn9qbvJY30igSzMqSVpbV4LqVMCa1CiwJdQZvaYLaa6+75bIuObDVTaahs84JL+VX58PNovZBMLbEtFhXuGd7k92USGbRyLQYEDGi1yCXEFagwJaQjli61LYC0erW7W0IIIYR0WV5aCZ55RgAAPP+CGRtTfkGhrrDBMX5KP2gVWmSUZ7R6vmsirsG4iHFtasOhi4ewPX17mx4DAFZmhZVZ2/44qxWbzm/C8bzjbXrcDTE3NHnP6OUyyjPgr/JvdP9qdkU2fj37KyprK8EYgyAIEIvEbWoDITxQYUpIR0yYAAwdCrzzDmBt+0WJEEIIITb33m+Cf6AJJ09IsPc3H5wpPtPomGivaJTqS1tdPddL4dVoFdrWaOQaGEyGVqcKO4verAezMmjlji98BNhGOltbPTdfl49qY3WTe5cmFyWj1lKLSkMlTheehsVqaVM+IbxQYUpIRwiCbdT07Flg40Z3t4YQQgjpsrRqKR5YbFusZ/0nw5FZnAOdUdfgmFjfWAgiAellTS+QVN/pgtNILkp2ON++ZUylse3TedvDXlzbcx3h6HPKKs+y7V3q3XDv0lJ9KYqqixDjE4OSmhIopUoaLSWdRrctTLOysrpNjl6vR2FhYesHdlB+fj5qXXCvZFZWFhhjLslxhawRI4CoKODdd/nmuOD51NTUoKCgbffktEd+fj4MBgP3nG7X17pRTm1tLfLz27adAyGk+3v0IQVCI2qRcc4DO37s06gIU0gUmBgzEUMCh7R6rjxdXpNbzzTHvpdoe7aMaQ97Tlu2ikkpSUFBdevX6ZEhI3F9zPWN7kM9U3wGYpEYfh5+MFvNCFS3b5sbQnjotoXpm2++iYSEBO45jz32GC5evMg1Q6FQYM6cOaiuruaao9frcccdd8DKeUpqYmIiXnnlFa4ZAPDTTz/hhx9+4J6z/L33kHnTTcBffwEHD3LLWbx4MS5cuMDt/ICtr82dOxc6na71gzugtrYWt99+O/e+lpSUhGXLlnHNAIC1a9fiu+++457zzjvv4CDHPmb3xBNPcC9OZTIZ5s+fj6oq17wBJIR0DQGenvjXWwXw8jEjKkSF9LL0RlNr/ZR+EIlafwsbrA5GVW1Vo1HX5tgLxApD27aBC9WE1q0E3BY6ow5ikdjhrWJK9aUwmAwOZYlEokYrDOuNemRVZCHKKwplhjKoZeo2bVNDCG/dtjANDg7G1KlTkZbW8sptHaVQKDB58mSUl5dzyxCJRCgpKcHcuXNhNrdt5ba2CA8Px/r16/H0009zywCAuLg4vPTSS1ixYgXXnJiYGNx5553YvXs315yQkBBcu3IlLFot8N573HI8PDwwefJklJWVccsQBAHl5eWYM2cOTCYTt5ywsDBs2rQJ//znP7mOaMbFxeHVV1/FZ5y39ImNjcVdd92F33//nWtOaGgopk2bhnPnHB8BaA+lUonJkyejtLT1/QLbSxAEVFZWYtasWVz7GiGk65k1XYWNB07hvrs8MCJkRJOrzyYWJOLAhQMtnse+0mxeVZ5DufYtY5pbxbY5AwIHYEDggDY9BgAiPCMwImSEw8fbt79pbf/SP7P/bHK6r0wiw4jgEQhWB8NoMSJIHdS2BhPCWbctTOPi4lBUVISJEydynQYbFxeH06dP46abbuI6DTYuLg6bN2/GQw89xO2NvEQiQXR0NN5//328//77XDIAIDo6GiKRCA8++CB+/fVXbjlxcXEwGo246aabcOrUKa45WSUl+FwQwNatAzJaXy2wvTlJSUm46aabuE6DjYuLw9atW/HAAw9w62sikQgxMTH46KOP8B7HYj4yMhJisRiLFi3CL7/8wi0nLi4OJpMJN998M06ePMk1p6SkBJMmTeI6DTYuLg7JycmYPn06ampquOZs374d9957r0umXBNCugYfDx8MjYhFhHcEYnxiwFjjt6s1phqkl6fDYG7+euij9IFCqkBOVY7D2fF+8fBR+rSr3W0VoA5AnG+cw8fn6fKgkWtaHOWsNFQisywTtebG70klIgni/eIR4R2BON84eCo829VuQnjptoVp7969AQBpaWmYNm0at2mw9pw9e/ZwnQZrz1mxYgXXabD2nCeffJLbNFiZTIbIyEhYLBbMmTMHhw4d4pITGxsLAKisrMSkSZOQnZ3NJcf+mr1WUQGL1QrjO+9wzdm7dy/XabD2nK+++orrNFh7ztNPP81tGqxUKkV0dDSsVivmzZuHAwda/ut6e8XExEAQBFRVVWHy5MncpsHaX7OMjAxMnTqV2zRYe87+/fuxYMECWCx8Vmy056xcuRIvvPAClwxCSNcjCAI0cg2MRuDV1yzoN6gG5woaXsPjfOJse5qWtjwzLlQTClEb3u7qjXpcrGzbLVq/pf6G31J/a9NjrFYrsiuyWyysLycSRAjVtjyN174oVKxvbIOvZ5RlIKkwqe69Q1tXAibEFbptYRoXd+kvUAkJCZgzZw6XabD1c3766Sc89dRTTs+4PIfnNNj6OTynwdrfkNbU1GDatGk4f/680zM8PDwQFhYGAMjNzeU2DdZeAOcA+B6A5X//g6moyOk59X82a9eu5TYNtn4Oz2mw9XN4ToO159TU1ODGG2/E2bNnnZ4hl8sREREBAMjLy8OkSZO4TIO19zUAOHbsGLdpsPV/NuvWrcPjjz/Ova+98cYb+OSTT5yeQQjpuvJ1eVi52oJzZzww7eG90L6phehlEbRvavHC7hdQY65BRlnLs5TGhI3BNZHXOJyZXpaOPzL+4L5ljM6ow97Mvcgqd/wPmf+I/kerU3/TytIQqA5sNKqaWJCIjLIMpJeno7Ca/4KahLRHty1MPT094e/vDwBQqVS47bbbkJub6/Sc+m+sYmNjMWrUKFRUtO2m+bbmXHvttfD09OReaM+ZMwd6vd7pGZfnLFy4kNu0xPo5Dz30EJfFgzQaDYKCbPdp/Fcuh4fFAh2HqdD1n0t0dDTGjBnDva9dc8018Pb25l78zJ49GwaDgXvxs3DhQm6rDruirymVSoSG2v5arlAocPvttyMnx/Epao6q/1wiIyNx1VVXcbmPvn7OVVddBT8/P7rflBBSRyJlmLzYdhvG+Q2zUJXvDwaGKmMVVhxbgce2PoY9WXtQqm/9D4GOzjLSyF2zZYz9/I5Op3Wk/bmVuagx1TTauzS7IhtVtVUI9wpv88JOhLhSty1MAeC6667Dv//9b1RXV0MsFiM8vG03szvC19cXN9xwA5YsWYLU1FT069cPnp7On7MfFxeHefPm4ZZbbsGRI0cwYcIESCSNFwNwRs5LL72Efv36ISEhAZMnT3Z6BmAbMV2xYgU0Gg3Onj2Lq6++mkvOoEGD8M033wCwbVEyaNAgLjnjxo3Dhx9+iEO1tcjv3x/eq1YBRuf+tdXb2xsTJ07EM888g/T0dMTHx8PLy8upGYCtD8yePRuzZ8/G0aNHMWHCBEilUi45L774IgYMGICEhARMmjQJgiA4Pad37974/PPP4enpiZSUFFxzjeN/OW+LgQMHYuXKlQBso6aDBw/mknPNNdfg448/rivkIyMjnZ6h1WoxadIkPPfcc8jMzERcXBy8vb2dnhMXF4eZM2di3rx5OHr0KMaPH8+lrxFCuqaq2ip8XnI7MPgbwKIAtvwH+PvvlyarCQaLAR8f/hhZFS2POv6Z/Sd2pO9wKNO+pyjvAs5+fq3MsSm1W85vwaGLLd/6JJPIEO4ZjgiviAZfP1t8FgqpAgqxAhKRpNFqvYR0GoyxTvMxfPhw5kw6nY6ZTCYWFRXFhg4dyqxWq1PPXz+nsLCQeXh4sNtuu41LhtVqZTqdjh0+fJgBYK+//jqXnOrqamaxWNjXX3/NALD169dzydHpdIwxxpYsWcIEQWDJyclcc6ZOncq8vLxYZWUltxyz2cxiY2PZw1FRjAGMrVrFJae4uJgplUo2b948p5+fsUt97ejRowwAe+WVV7jk6PV6ZrFY2KpVqxgAtnbtWi459j7w7LPPMgAsKSmJa8706dOZp6cnq6io4JZjNptZ79692YABA7j+XispKWEqlYrNnj2bS4Y95/jx4wwAW7ZsmVPPDeAI6wTXtq7+4exrMyGOeujXh5jkFQnDUwEMilIGMIY5NzO8hLoP6StS9vDmh1s8T0JOAluduJrVmmpbzTRZTGzViVXseO5xh9u57fw2tu38NoePZ4yxgxcOsu8Sv3Po2OraarbqxCp2Kv9UmzIYY6ykuoStOrGKHbpwiB3JOcJyK3PbfA5CnKmla3O3HjFVqVSQSCR4+umncfz4cezcuZNbjr+/PxYuXIgffvgBmZmZTs8QBAEqlQojR47E+PHj8eGHH3JZLVOpVEIkEmH+/PkICwvD8uXLuUyvVKlUAGx7c0qlUrzDacEge84zzzyD8vJyfP7559xyxGIxnn76aXySkQFdWJht6xgnv3YqlQq+vr6477778NNPPyE9Pd2p5wcu9bVhw4bh+uuvx0cffcRlSreHhwdEIhHmzp2L8PBw7n3t8ccfh1wud0lfq6io4HZvrr2vLVmyBKdPn8aWLVu45fj4+OCBBx7Azz//jNTUVG45Q4YMwaRJk/Dxxx9z36+ZENJ1rE5cDbPVDKgLgX88Z/vitg+BWlXdMSarCStPrmxxOm+IOgTMypBf3fptQxKRBB5SD+hMju/nHe4Z3uYtZnRGXd3obGvsqwrbt79pSrG+GJWGxtOPrbAiUB0IrUILkSCCv8q/Te0kxJW6dWFqd9dddyEgIABvvfUW15wnn3wSALhutQIAS5cuRWFhYd0UVR5kMhmeeOIJHDx4EPv27eOWExwcjDvuuAOrVq3icq+c3VVXXYWxY8fi/fffh9HJU2zru+OOOxAQGIhPPTyAEycATotHPfHEExCJRFy3WgFsfa24uBhfffUVtwypVIonn3wSCQkJ+OOPP7jlBAYG4q677sLq1au53P9pN2bMGFx99dX44IMPuG4htWDBAoSEhGD58uXcMgDgn//8J8RiMd59912uOUuXLkVpaSm++OILrjmEkK5DZ6xXHA7/HxCSAPikAgavBsdVGatwouBEs+cJUgdBLBI7vJ/pleFXYlCA47f+9PXvi77+fR0+HgCGhwzHqNBRDh2bV5UHhVTR4jY2CTkJ2J3Z+D2Hn9IP18dcjzBtGMI9w5vcE5aQzqJHFKYeHh547LHHsGvXLiQkJHDLiYyMxNy5c7FixQoUcViV1e7666/H0KFD8c4773BZAMnu3nvvhbe3N/eC/umnn4bZbMYHH3zANWfp0qXIycnBt99+yy1DoVBg8eLF+Ne5czB5e9tGTTkIDw/H/Pnz8eWXX3Ldp3f8+PEYPnw43n33Xa59beHChfD19eXe15566ilYrVaX9LW8vDysWrWKW4ZcLsfixYuxb98+/PXXX9xyevXqhdtuuw1ff/01171Tx40bh1GjRuG9996jBZAIIQDQcGVZkRVYMAm4czzg2fAP2SqpCnm6POiNTc/uEYlECFAFIF/n2O+wIHUQtArHt1MxW822kd028FJ4IUAd4NCx+dX5CFA2f2yloRIl+hJEeUc1+HpuZW7da6KSqeCr9G1TGwlxtR5RmALAokWLoFaruY8uLFmyBDU1NfjPf/7DLUMQBCxZsgTp6en4+eefueWo1Wo88sgj2Lp1KxITE7nl9O7dGzNnzsRnn33GZTsXu2nTpqFfv35Yvnw5tz1AAeDBBx+ETKPB2qAgYMsWIDmZS86SJUtgMBjw0UcfcTk/YOtrS5cuRWZmJn766SduOSqVCo8++ii2b9+O48ePc8uJjY3FrFmz8L///Y/Ldi52U6ZMwYABA/DOO+9w2wMUAB544AF4enq65PdabW0tPvzwQ24Z9r6WnZ3NbQ9lQkjXsmDQAkhF9RZEU5YC9jXymO1DKpJi3oB5YFZWt4dnU+J849Dbt7dDuTqjDslFyQ5vGfN7+u/4Pd3xLc8MZgPOFp9ttpCuz2q1or9/f8T6xDZ7TGqZ7VaLWO9Lx5itZvx54U/sv7AfWeVZMFr4bn9DiDN0qsKU51/Jvb298eCDD8JkMnEd+Rk8eDCmT5/ObeN7u1mzZmHw4MFcR2YB4NFHH0VUVBSyshzfZ6s9li5diuDgYC7359qJRCIsWbIEnp6eXEcZvby8sGjRIvzaqxeYQgFwGp0bMGAAbr75Zu59bebMmRg6dCiKi4u55jzyyCOIjo5GdnZ26wd3gL2vZWS0vPddR9iLLN59TavVYtGiRbBYLFx/f/bt2xe33HIL97520003Yfjw4dz7GiGka3hyzJOQiptYqbskFli9DTh+N6RiKZ696ln4KH2QXt58YRruGe7wdNsSfQmO5h5FuaG8nS1vWWF1IRJyEhzakkYkEqF/QH+EaJu+v9RqtSKjLAPBmmAoZcq6r6eVpsFoNsJP6YdifTGsjN8f5AlxFoHHYiPtNWLECHbkyBFu57darRCJ+NfilNN5c6xWKwRB4LItyeU5IpEIuPde4PvvgZwcgMPWLt3pZ9Pdclze1zjrijmCIBxljLW8Gz1pFe9rMyEt2Xp+K2atmQWTxQST9e8/wCXeCqz7FlCUYfXO47jtyvFILkrGifwTuDH+xoZTgOvRG/UoN5Q3W+TZlRvK8evZXzEmbAxifGJabeNvqb8BACbGTnToOSUVJuF43nHM7DuzQTHZlIuVF+Gn9INComjy+6X6UmxN24qxvcY2mMq7MWUjBEFAhGcEVDJViyOuhLhSS9fmTjViypsr3lRRTufOEYlE3AsFew4AYNEiQK8HOC1U1Z1+Nt0tx+V9jXIIId3Q5LjJSHwwEfcPvx8amQYCBHgM2wDfQYcBgzfWfzAegG2q7i19b2m2KAWA4/nHsS97X6u389TtZVrLZy9TnVEHqVjaalFqtpqxJ2sPThWcavYYH6UPbul7CyI8L+1derHyIqpqq+Cv9IfZakaQOshpbSeEJ3oHQAhPw4YBV1wBfPKJ07eOIYQQQnqCGJ8Y/GfKf1D5bCVOLzqNv+7Zj1feK4RSZcHPPwPr1tm2eZFJZC2eJ0QTApPFhGJ9y7cLiEVi25YxtY5vGdMWlbWVUElVrR6XW5ULZmUI1gS3eJxComjwR73i6mJ4SDyglCihlqlbLNYJ6UyoMCWEt0WLgHPngF273N0SQgghpEsLVgfDT+WHe6+7AW8vFwMAHn4YKCuzTdX99eyvyChreg0Be4GXW5Xbao5WrnV4L9No72hEe0c7+AxsI6ZqeevFYl5VHsQicbMjnslFydhyfkujRZqGBA/BtPhp8FZ6t1rUEtKZUGFKCG+zZwN+fsB//+vulhBCCCFdmreHN3ppe0EmluGhh4AxY63Izweeeso2clhrqW12dV6FxLYXaJ6u9f1Mx4SNwYSoCQ61Kc43DnG+cQ4/h8lxkzEqpPU9TPN1+fBT+jW792hGeQbMVnODkWKD2QAAkEvkCPcMh1bu+LY3hLgbFaaE8KZQAAsXAhs3Ahcvurs1hBBCSJdXWVuJwzkHMWvpNmg0DJGRgCCIEOEVgbyq5vc0DVIHodRQ2upWMGqZutWpwXYGs6GuIHSEQqJo9f5SvVGPqtoqBKubHvEsN5SjVF+KaK/oBo9Zn7weR3OOQmfkMw2ZEJ6oMCXEFR54wHaP6f/+5+6WEEIIIV2aldm2SBEEAQERpfjtaAr+9S9AEIDePra9Su17e16uj28fzIif0WrRqTPqcCT3iENbxuzJ3IM9mXscanuxvhjH8o61WsgqZUpMj5+OWN+mV9M9X3Iegkho8P2UkhRYrBZYYXt9OtPOG4Q4ggpTQlwhKgqYMgX4/HPASJtcE0IIIe0lEkTwV/lDIpJAI9cg35xSt9KuDFr4Kn2bvc9UKVM6tBiQ2WpGSlEKiqqdu198ga4AZwrPOHSsVqFtcpsYq9WKrIosBKuD675vtpqRWpoKT4UnRIIIgepAl6wMT4gzUWFKiKs8/DCQnw9s2ODulhBCCCFdWoAqACJBBB8PH1Qbq3Gh8gJ++AGIjATMF4ein3+/ZreFuVh5EQcuHGjx/FqZ7d7MKmOVU9tdWVsJqVja7L6kgK3w/DP7T+Tr8ps9pr9/f/Tx7VP3eVppGoxmI3w8fCARSeCn9HNquwlxBSpMCXGViRNtI6e0CBIhhBDSIfbiy0PiAalYinMl53D0KFBQADz/eBAiNHHN7otcVVuFtNI0VBoqmz2/SCSCSqZCZW3zx7SHzqhrdauYYn0xMssyUW2sbrZtff37IkQbUve1tLI0KKQKKCSKuqKdkK6GW68VBOFLQRAKBUE4zSuDkC5FJAIeegjYuxc4Tf8sCCGuR9dm0p0EqgMhl8gxKnQUxkWMw8svAzExwKlTwOtvmpBUmASz1dzocaGaUABATlVOi+dXy9RO38u0sray1ZVy7dvZhGpDG33PYDYguSi50eJN46PGY3jQcMjEMvir/J3XYEJciOefU74GMInj+Qnpeu6+G5DLgU8/dXdLCCE909egazPpJmRiGQYGDkSUdxRkEhmUSttSDgDw1hsS/PpnOrLKsxo9TqvQQiVTtbptjFqmRq2lttV29Pbtjd6+vVs9zmq1wmw1t7qHaZ4uD14Kryan+6aVpuFobuNVdxUSBaJ8ojAwcGCz28sQ0tlxK0wZY3sBlPI6PyFdkp8fMG8esHIlUOXc+1YIIaQ1dG0m3RFjDFllWdhyfgtGXqnDffcBRqOAL18di/PFTe9pGqQOQlF1UbP3oQLA6NDRuKXfLa3mR3lHIco7qtXjRCIR5g6YiyGBQ5o9xmg2otRQiiBNUJPfzyjLgJfCCz5KHwBAqb4UW85vwcWKi7QKL+nyaAI6Ia62aBGg0wHffefulhBCCCFdXlZFFnJ1uSjWFyOlOAVvvw0EBwPnTvji8VeToXlDA9HLImjf1GLR5kVIK01DiCYEKqkKenPT+50CaPYe1cvpjLo27Rva0nl1Rh00Mg1C1CGNvleqL0W5obxBEZxcnIxSfSkuVF5odWoyIZ2d2wtTQRDuFwThiCAIR4qKnLsk96FDh1BRUeHUczZl165dsFgs3HN27tzJPQMAduzYwT3DarXi999/556TmZmJ8+fPc89JSEhAeXm5YwePHAn0728bNW2j3bt3u6SvuaIPuCqHMeaSfzvZ2dk4e/Ys95wjR46grKyMe87u3bthNje+N8vZXNXXSNvwvDYT4mx+Sj/IxDJoZBqklaZBrTXjnueOQfA7h1TJBuhMOjAwVBmrsOLYCgz6v0E4U3QG0+Kntbh1jNFsxJ/ZfyK7IrvF/P3Z+7E/e3+r7cwoy8Cf2X+2OErro/TB9PjpDRY2sjtfatu7NMYnBoDtftPMikxo5VrIxDL4evi22gZCOjO3F6aMsf8xxkYwxkb4+zv3Zu3i4mI88MAD3Kc2HD16FK+//jrXDAD49ttv8fPPP3PPeeWVV3D8+HGuGSKRCA888AAKCgq458ydOxe1ta3fI9IRJSUluO+++xzra4IA3H478NdfQFpam3KOHz+OV199tZ2tdNwPP/yAn376iXvOa6+9hqNHj3LNEAQBDz30EPLyWr6XqKPEYjHmzJkDg6HlTdM7qqysDPfeey/332snT57Eyy+/zDUDANasWYPvv/+eew5pG57XZkKcTS1TQy1Tw1vhDaPFiN/Tf8f7FVeDPTgA1sjdDY41WU3Qm/SYtWYW0krTWiwSJSIJsiqyUFhd6JR25uvykVOZ0+KIaUvtqTZVI1QTWnfvaUpRCixWC7w9vOGp8ISH1MMp7STEXdxemPKk1Wrx448/YsWKFVxzNBoNXn75ZezZs4d7zsKFC5GR0fSm0c4il8sxd+5cVHG+B1Kv1+P2229v8ZdwR2m1Whw/fhxPP/00twzA9rNZu3YtPvvsM8cecNtttgJ11ao257z66qv4448/2t7INtBqtbjvvvuQnt70vTnOolAoMHfuXFRWOnc5/ssZDAYsWLCA62izRqNBYmIinnzySW4Z9px169bhU84LaGm1Wrz++uvcZzZotVrcf//9SE1N5ZpDCOnegtRB0Mg1kIql+ODgBzBbTYDEdOmA2oYjoyaLCS/98RLWnFkDg7npPyiKRCIoJco2TdNtSWVtJTRyTfPfN1RizZk1zY7Qjo8aj2vCrwEAmK1mnCs9B6VUCaVUiSB10/ekEtKV8Nwu5nsABwDEC4JwURCEhbyymqPR2P7xP/bYYzjNcXsOrVYLq9WKW2+9FcXFxVxzKioqMH/+fJhMptYf0E4ajQbnz5/HokWLuI7KaDQa7NixA8uXL+eWoVbbLkQff/wxNmzYwC1Hq7Ut/b548WIkJia2/oBevYDx422FaRte4/p9jef0Oo1Gg8rKSsydOxdGo7H1B3QgJy0tDQ8++CD3vrZr1y68+eab3DLsfe2TTz7hOrPB3teeeOIJnDhxgluORqMBYwwLFizgOrNBo9FAp9O5ZGYD6RzXZkJ48FR4QiFRIMwzDH9m/wmT9e/3SbUqYOPnwKcnAaOy7niT1YSNKRthspiQV9X8jBqtXOu0LWN0Rh3U0uanDudU5cBkMTW5nYx92xv7aKsIIgwMGIheml51I8aEdHU8V+WdzxgLZoxJGWO9GGNf8Mpqjv0NnMFgwNy5c6HXN3+De0fYC+Dc3Fzcdddd3N5g23MOHTqE559/nksGcOl1W716Nb755hvuOf/617+wf3/r92a0h0QigVJpuxDdc889yM5u+T6R9rL/bGprazF37lxUVze9KXYDd9wBpKfbpvS2MScvLw933nknt9Fm+8/myJEjePbZZ7lk1M/5/vvv8eWXX3LPWbZsGfbt28clQyQS1RWnCxcuRGZmJpecy/uaTufcPfbs7K9Zfn4+7rjjDu597dixY1i6dCmXDHJJZ7g2E8JLb9/euDLsSuhN9d7vSQxA3nCgPBrY82KD43UmHaRiad2+oU1Ry9SoMnZ8BpnZakaNqabFPUzzdHnwkHrAS+HV4Ot6ox5rktbgfMmlNTNEIhH6+vfF6F6jEe0d3eH2EdIZdPupvHZnzpzBY489xj1n8+bN+OCDD7jnvPPOO9i6dSv3nIcffhjJyclccywWC+bPn4/SUj47GNhzysrKuI0213/NUlJS8Mgjj7T+oJkzAaWyTdN56+ds3boV77//fpva2Z6c999/H5s3b+ae8+ijjyIpKYlrjn20uaSkhGsOz5kN9V+zc+fO4eGHH3Z6xuU527dvxzvvvMM958MPP8Qvv/zCJYcQ0v1JxVIAaDh6KLYA0x4AYAX+ehLIH1j3LY1cA3+VP/J1+c2e00vhBaVUCaO5+dlDff37oq9/3xbbZjAboJFr4KnwbPL7VqsVRdVFTU7JTS9Lh8Vqgb/Kdr93vi4fyUXJMFvMEASh7nkT0tV168LUPrIgkUgQExOD4cOHc5lqa88RiUS4+uqroVQquUx/1Gg0kEhsmybPmzcPxcXFXEZn6+c88MAD3O79qp/z6KOPciuA7TlyuRx33nknl+dTv69FRUVh9OjRKCxsZbEEtRq4+Wbgxx8BB6cw2nPEYjGuvPJKqNVqLtMf6/9s5syZg5KSEpf0tbQ2LgbVnpxHHnkEZ86c4Zojk8lw9913c1kR2j4qK5FIEBERgTFjxnCZalu/r40dOxaenp7c+9qsWbNQVlZGe/ERQtpNZ9ThhugbIBbEl77YKwEY9V+ASYBN/wOsAqQiKW4fdDtCNaGoMdWg3FDe5Pni/eIxo88MyCSyZjPDPcMR7hneYrvUMjVm9JnR7H6nhfpCmCwmhGgar8abXp4OH6VP3UhqUmESDuccxqmCU6gx1bSYS0hX0q0LU7lcjsWLF+PJJ59Eeno6ZsyYAT8/P6fnaLVafPzxx5g6dSpSUlKwcOFCyGTN/wJrLz8/P/zyyy+IiYnBxYsXcfvtt0MQBKfnREdHY8+ePZDL5aiursaNN97o9AwAGDVqVN1InFwux5VXXsklZ+bMmfjss89QW1uL6Oho9O3b8l8120MqlWLx4sVYsmQJMjMzMXXqVAQEBLT+wDvuAMrLgV9/dShHq9Xi3//+N2688ca6viaXyzvW+Cb4+flhw4YN6N27Ny5cuIA77riDS1+LjIzEnj174OHhAZ1Oh+nTpzs9AwBGjhxZN8NAJpPh6quv5pJz88034/PPP4fRaERERAT69evn9AyxWIzFixfjmWeeQVZWFiZPnozAwECn52i1Wrz33nu46aabkJycjHvuuYdLX/P19cW6devQt29fZGdn48477+TS1wghPYNSqsRdQ+6CRCRp+I3xLwCaHCDnCuDoA5CKpfjnFf9EqDYU/QL6NT6+DcoN5c0Wtg63W6JEH/8+CNYEN/h6sb4YlYZKRHlF1WXlVeVBK9dCIpbUrdBLSLfAGOs0H8OHD2fOZrVa2enTpxkA9u677zr9/PYMxhj78ccfGQC2ZcsWrjnLli1jAFh6ejrXnNmzZzMvLy9mMBi45VitVta/f382cuRILhn2HJ1Ox1QqFbvzzju55pw5c4YBYMuXL3fsQWYzY8HBjM2Y4XAGY4ytXbuWAWCbNm1qZ2sdy3nllVcYAJaamso1Z968eczT05PV1NRwzRk0aBAbNmwYlwx7TnV1NdNoNGzBggVcc1JSUhgA9sYbb3DLYIyx9evXMwBsw4YNXHNef/11BoCdPXvWaecGcIR1gmtbV//gcW0mhKecyhy2fN9yJntVxiQvSxhegu1jzkwGMAZ5OVv95+8On2976nZ2Kv9Us9/fdn4b23Z+W4vnOJp7lO3O2O1wpt3BCwfZ6sTVrNZUyxhj7M+sP9mXx75kf2b/yQp0BW0+HyHu1tK1uVuPmAK2PQz79++PIUOGYPXq1dwyAODGG2+ERqPhnnPbbbcBAL777juuOQsWLEB5eTm2bNnCLUcQBCxYsAAJCQk4e/YstxyVSoWZM2fi559/5rYIliAI6Nu3L4YNG+Z4HxCLgVtvBTZvBhyYZm7/2UydOhWenp4u62vffvst15wFCxagoqKC272s9XOOHTvGbdq4IAhQKpWYOXMm1q9f79giWO3MiY+Px8iRI7F69WouU1/tr9nkyZPh7e3Nva/deuutAPj1NUJIzxGgCsD1Mdfj7QlvY3zUeGjlWogEEVSDtiN85EncMlPApD7j6443W83IrshudpE3vUmP4pqO3QpWVF3UcFGmeoxmIy5WXqxbebe+vn59MbbXWMgkMhjMBmRXZEMpVUItVcNP6fxZgIS4U7cvTO0WLFiAEydOcFtcBQA8PDwwa9YsbNiwgdtKmQAQFxeH0aNHc3tDajdp0iT4+Phwf6PoqjekCxYsgE6nw6ZNm7jnnDp1yrFtYwDbdF6z2XavqYMUCgVmz56NjRs3ct0DNDo6GmPHjsW3337Lta/dcMMN8PPz41b82M2fPx+CILikr1VXV2Pjxo3cc86cOYOTJ09yy5DL5ZgzZw42bdqEiooKbjmRkZG4+uqrufc1Qkj3JxFJ4Kf0Q1//vnj8isdxYfEFWF60QPd8FVL3D8ba77Tw9b10fE5lDvZm7m12ESS1TI3K2o5da6uMVc2uyJtTlYM/Mv5Asb5x8atVaOvuSzWYDVDJVAhQBSBAFQCR0GPexpMeosf0aFe+IdXr9Vz3zLTnpKSk4Pjx49wyZDIZ5s6di02bNqG8vJxbTnh4OMaNG8e90B4/fjyCgoK4Fz/z5s2DSCRyvK8NGmT7WLmyTTkLFiyAwWDA+vXr29HKtuWcO3cOR44c4ZYhlUoxb948bN68mdvqzADQq1cvXHfddfj222+5bX8CANdddx2Cg4O597W5c+dCLBZzz1mwYAFqa2u57s9qz0lLS8OhQ4e45hBCur8gdRCuCr8KU+KmQKu4VBDm6bNxusC2t73RCBgMQLA6GIJIQK6u6W1j1DI1qo3tnwFjtpphMBma3cM0tyoXUrEUAcqGa1MkFiQit/JSm7wUXpgePx0jQ0fWrdBLSHfSqQpTs7nxFAZnCQkJwfjx47m/IR03bhxCQkK4v1GcM2eOS96Q3nbbbTAajVi7di33nIyMDBw4cIBbhkQiwbx587Bt2zYUFRVxywkODsaECRPa1tduvx04fBhow3Tmq6++GmFhYdz7wOzZsyGRSFzS10wmE9asWcM9JzMzE3+1Yf/YthKLxbj11luxfft2Livm2gUGBuL666/Hd999B4vFwi1n7NixiIiI4N4HZs2aBalUyj2HENL9ScVSKKW2fcz1Rj1K9bY/euZU5uBU4Sns/8uEIUOAZcsAmUQGH4UP8quaHjHVyrWwWC3QG9t3K1ClwTba2txWMfm6fPir/CESXXpbrjfqkZifWFcsF+uLYTAbANgK5Y4s1kRIZ9WpejXvlRifeuopXLhwARaLpcE/fmcSi8V44403oFKpuJzfLiAgAG+99RZGjhzJNWfs2LF47rnnMHr0aK45s2bNQmZmJnr16sU1Z+HChQgODoZUynfPryeffBKZmZkwm82OrdB8663AkiXADz/YrpIOEIlEeO211+Dh4dHB1rbMz88Py5cvx9ChQ7nmjB49Gs8//zzGjBnDNeeWW25BamoqwsLCuObcc8898Pf357JCd31PPPEE0tPTYTabIRaLW39AO9j7Gu9/Nz4+Pli+fDkGDx7MNYcQ0jMwxpBVkYXdGbsRognBxNiJiPGOQVppGnKqcpGSEoHUVOD++22jpqcLT8NgNjRa6dbbwxuB6sAm7wEFgP4B/VtshxVW+Kv84SlvXJiWG8pRY6pBP/+Gq7inltm2tov1iQUA/HXhL5TpyzA+ejzCPPlevwhxF6Ez3cszYsQIxnO6ICGd2pgxtntNExLc3RJCugVBEI4yxka4ux1dHV2bSVeWWpqKE3knoDfrMSVuCvyUftiYshEysQw/vTEZX38NzJkDfPxFIbanbceYsDGI8YlxWfuSi5JxNPcopsdPbzDl2N7GyXGTkVuZix3pO6CVazE0eCgivSJd1j5CnK2la3OnmspLSI92443AkSNAbtP3uBBCCCGkbYLUQQjVhkJv0iOlOAUAEOUdhRJ9CZ58rgIKBfDTT0DaKT9MipvUrqK0WF/c5MJFjoj3jcekuEkNitJCXSGqaqsQ7R0NAEguTobBbECIJgSBKufvW01IZ0GFKSGdxY032v7LacsUQgghpKdRy9Tw8fCBRqZBVnkW9EY9Yr1joZFr4BNYjcWLbcctXSqCr0fz26/8nv47/sj8o8nvHc09iqO5R5t97I60HdibubfJ74lEokbbvhgsBmjkGkR5RaHcUI6cqhx4Kbzgq/SFh5Tv7TuEuBMVpoR0FgMGABERAOftbAghhJCeJEgdhF7aXtAZdcjT5UEpU2JGnxkI0YbgmWcAX19g3z7gp3U1OHDhAMoN5Y3OIQhCu7eMqaitaHJtk0JdIQ5dPNRoUaVwz3DM6DMDMokMeVV50Jv06OXZC0HqoHblE9JVUGFKSGchCLZR0507gZoad7eGEEII6RY8FZ7o7dsb8wfObzBV12w1Q+qhx4svAgEBtu1j0krTcLHiYqNzaGSadm0ZY98qpqk9TLMrs5FaltpghV29Ud9gRf++/n0xf8B8xHjHQC1rersZQroLKkwJ6UymTbMVpbt2ubslhBBCSLcRrAmuKw7tq+tuOrsJh3MP48EHgdRU4Pb5HtDINcjT5TV6vFqmhsVqgc6oa1OuffRVI9M0+l5+VT58FD6QSS6t3r7/wn5sS9vWoJ2eCk8aLSU9AhWmhHQm114LqNU0nZcQQghxsmpjNX499ys2n7Ot5RCiCUFOVQ4gMkLzd91osprw9v63oXlDA9HLImjf1GLR5kUoqykDcGlPUkdV1VYBADTyhoWpwWxAuaEcwerguq/pjDoU6AoQpA6C1WrFhpQN2Ja6DXpT+/ZPJaSrocKUkM5ELgduuAH49VegE23lRAghhHR11aZqmK1mFFcXI7siGzE+MWBWhrSyNADA+pPbMf/RZPy+ajh0Jh0YGKqMVVhxbAUmrJqA/Or8BqObdoODBmNwUNP7L3tIPRDpHQkvhVeDr+dV2UZlQzQhdV9LLfl771LvWKSVpaG0phRWZkWNiW7vIT0DFaaEdDY33gjk5ADHj7u7JYQQQki34af0Q4Q2ArWWWiQXJcNP6QetQouM8gyklaZh/n/fhnnXv8D2vABUXZo6a7KaUGOuwbI/lqHCUNHovEHqoGan2gapg3BV+FUN7iMFAKPFCI1c02BF3ozyDPir/KFVaJFcnAyL1YIwbRh8PHyc9AoQ0rlRYUpIZzNlim0hJJrOSwghhDiNSBAhUBMIX6UvcipzUKwvRrRXNEr1pXjjzzdgDdsLxG8ATGrgj2WNHm+ymPDOX+80+nq+Lh/5uvwmMw1mQ5Nfj/eLx4w+M+pW683X5aPaWI1o72jkVuaiUFeIQFUgAtWBEASh/U+akC6EClNCOpuAAOCKK6gwJYQQQpwsQBWASM9I6Iw6pBSnINY3FjfE3IA1SWtgspqACc8Aghk4di9Q1KfBY01WE1aeXNnonCfzT+Jk/skm8345+wsOXDjQ4Gv1V921C1IHYULMBER5RyGlJAV6kx4RXhGN9jglpDujwpSQzmjaNODoUSA3190tIYQQQroNiUiCcK9wXB1xNUaEjIBCokCAOuDSarv+Z4HhnwNMAux8q9Hja8w1TRaWTTGajTCajVDJVA2+fqboDH4+8zOMZmODrwepgyARSXBF6BW4Kvwq9NL2gkigt+qk56DeTkhndOONtv9u3uzedhBCCCHdTLAmGEODh0IhUQCwFZAeUo9LB4x7GZDqgLMzgMyrGzxWIVFAb3ZsldxKo20FX0+5Z4OvF1QXQCKS1C2klFGWgUMXD9VtD6OUKTEsZBgC1YHten6EdFU9ojA1m82U08NzGGOwWCzcc5z2XAYMAMLCgB07+Oa0gnLarsv1tR6WQwghgO13dXJRMrae3woAuCrsKogFse2bmgJg7Lu2/z89v+4xEkGCq8KuqtubtDV1W8XU28PUarWisLqwwWJJ50rOIbcqF2arGVvObUFaaVoHnhkhXVePKEz379+P4y5Y4fT7779HSUkJ95z/+7//c8mbuP/+97/cM1yVU1paiu+//557zoEDB3D06NGOn0gQgLFjgQMHmvz2jz/+iKKioo7ntIL6WttVVFRg9erV3HMOHTqEhIQE7jlr1qxBQUEB95zPPvsMJpOJew4hhAC2RYmyK7KRVpqGtLI0PDjiQYhF4ksHjP4YuPM6YOqiui9JxVJMip1UV3C2xr6Cr1ahrftavi4fFqsFwRrb/qWVhkoUVRchyisK50rO4XzpeWRXZMNoMTZ5TkK6sx5RmObk5OD555/nnpOSkoK33mp8P4Kz/f7771i1ahX3nE8//RQHDx7kmmEymfDCCy8gP7/p1eycJTc3Fy+++CKMRr6/6J3a18aOBS5etH1c5uzZs3jzzTedk9OCP/74A19//TX3nM8++wz79+/nmmE2m/HCCy8gl/N9u7m5uVi2bBlqa2u55zz33HNcMwDg3LlzeOONN7jn7N27F19++SX3HEIIAWz7i8b4xICBIaU4BeMixuGxUY9BIVFAKpICylIg6g9AAKQiKZRSJX6e8zP+EfUP+Kv8G5xreMhwDA8Z3igjSBOEQUGDGmwVk6vLhSAS6vYvTS2z7V0a7R2N5KJkyMQyRHlHQSZuvF8qId1djyhMc3NzsXXrVuzbt49rTl5eHv7zn/8gJyeHe85LL73kkje+vAv6goIC6HQ6vP7661xzcnNzkZGRgS+++IJrTl5eHn777Tfs2bOn4ycbM8b23yZGTfPy8vDJJ5/gwoULHc9pQV5eHl5++WUYDE0vd+/MnOeeew6MMW4ZhYWF0Ol0eO2117hlALa+lpWVhc8//5xrTl5eHnbu3Ildu3Zxz/m///s/ZGVlcc955ZVXUFNDG8kTQlwjSB2EMM8w5FblQmfSYVzEOHw08SPcP/x+aOW2UU61VI25Ic/iwIJTmBw3GUOChzRaKddP6dfk6rlB6iAMChzU6GsDAwbWFasZZRkIVAeiSF+EouoiRHhFIFBF95aSnqlHFKZ5eXkAwP2Nb25uLgwGA1599VVuGfac7OxsfPbZZ9wydDodqqqqsGvXLuzcuZNbjn306rPPPkNGRga3HHsfePXVV6HXO7ZoQXvYn49T+trgwYBC0WRhmpubi9raWrzyyisdy2hFbm4uLl68iE8//ZRbRk1NDcrLy7F3715s376dW469D3z++edIS+N3/44957XXXkN1dTW3HKf2tVZyjEYjXn75ZW4Z9pzc3FyXTesmhBC1TI14n3gYzAakFKUg3i8eAwIH4KNJH6HimQqwZQyP66vw7X0v489fowHYFkoq1hc3OM/Fyou4WNl4dlOxvrjRyru9tL3qilWj2YggdRB6+/ZGUlESzFYzevv2brgQEyE9SI8oTO1v4P78809s27aNW479DekXX3yB1NRULhlWq7Vu2uvrr78OnU7HJcf+XAC+b3ztOSaTiesbX3sfsI9q82J/Pn/99Re2bNnSsZPJZMCIEc2OmALAV199hXPnznUspxmMsbqcN954A1VVjt1T01au6mv2PmA2m/HSSy9xyaifU1BQgI8//phbjv11O3ToEDZx3PPWnvPNN98gJSWFS0b9vvbmm2+isrKSSw4hhFwuRBuCvn59EawJRpxvHMaEjYFIdOntcVSfSjAGfPwxwBiQWJiI39J+a7BlTFJhEpIKkxqc12g2Ytv5bThXcukaXW4oR6m+tO5zmUSGK8OvRJg2DKGaUMT7xTdYFImQnqZTFaa8VrK8/I2vo/tPtVX9N77Lli3jklFSUlK3QEhhYSE+/PBDLjn178NLSEjAhg0buOesWrUKZ86c4ZJTvw+89dZbKC8v55JT//k8//zzHe9rY8bY9jO9bCqtPcdiseDFF1/sWEYzysrK6qaLFxcX44MPPuCSU/81O3bsGH7++WcuOfX7wLfffotTp05xz1m+fDnKysq45Fze13j9/rTnWK1W/Otf/+KSUVlZWTeTobS0FO+99x6XHEIIuZynwhNTek/BwMCBdV/L1+XDarXCbDVD1m8L/IOMSEkBdu60rbDLrOzSvqfNsK/cq5FfWpH3dOFp7MywzUIzmo0o1BUCAEQiEYaHDMek2ElQy9ROfoaEdB2dqjDlNSKTm5sLX19fKBQKXHfddThy5IjTM4xGIyoqKuDp6YnIyEhoNBoui6zk5eVBrVZDKpVi1KhRyMnJ4XKvaV5eHnx9fQEAU6ZMweHDh7mMZNXPufXWW7lNG7b3Ad459ucjl8sxfvx4HD58uGMnHDMGMJmAY8fqvmQ2m1FaWgpPT0+Eh4fDy8uLy33N9r4mk8kwcuRI5OXlcbn/r34fmDRpEo4cOcKlr9XvA/Pnz3dZX9vRzJY/HWV/3aRSKW644QYcOnTI6RkWiwXFxcXw8vJCWFgYfH19udzXnJeXB5VKBblcjuHDh6OwsJDuNSWEuJTRYsTxvOM4X3weO9N24kLlBUhEEgR5+uKGubbbPz7+2FbIApf2KG1OlbHxVjH5unwEqWwjohnlGdieth3ppek4VXAKRosRgiDweGqEdBmdqjD18vLict53330XS5YsgcFgwJIlSzBq1CinZ+j1euzcuRM33XQTKisr8emnnyIkJMTpOXK5HEeOHMGQIUMgk8nwySefQC6XOz0nIiICSUlJUKvVCAsLw5tvvsnlF+bVV19dtxrryJEj8dhjjzk9AwDuvvturFy5EgBw0003YdasWVxyli9fjmeffRa1tbV46qmncMUVV3TshE0sgFRdXY3t27fjlltuQUVFBT799FOEhoZ2LKcJUqkUCQkJGDZsGKRSKT799FN4eDj/vpewsDAkJSXB09MTvXr1wltvvcWlr1155ZU48PfrOGLECPzzn/90egYA3HHHHXXbxUyfPh1z5szhkvPGG2/ghRdegMlkwuLFizF27FinZ+j1emzbtg2zZ89GRUUFPvnkE4SFhTk9RyKR4PDhwxgxYgQkEgm3vkYIIc05mX8SO9J3oKK2AgqpAqmltluygtXBGDvjNORyhl9/BUou2gpT+1YwzbFvKWPfKqZUXwqDyVC3TUx6WTo0cg0KqguwNXUrzhTymTFGSFfSqQpTXqZPn45hw4YBALf9TL28vHDNNddg2LBhKC0tRXZ2Npec+Ph4xMfHY+jQoTh+/Di3acljxoxBYGAghgwZgmP1Ruuc7frrr0fv3r3h4+PDNWfatGkYPty2lDvPnPp9zSk5QUFAVFSDwtTT0xPXXnsthg4dioqKCm6LRvXu3Rt9+vTB0KFDceLECW5TRa+44gqX9bXY2Fj4+/tTX3OQRqPBddddh6FDh6KyshLp6elccmJjY9GvXz8MHToUJ0+edMneuYQQUl+EVwS0ci2Si5IRpg1DfnU+9EY9QjQh0PrUYvJNtntNv/zcA2KRuNWpvJW1lfCQetStvptbZZtFF6oJRbmhHCX6EoRoQpBUlAQfhQ/CPJ3/Rz9CupoeUZgCwNChQwHwfaMIgPsbxfo51dXVOH/+PPecxMRErhvfC4KAYcOGcX/NAgMDERISwj3H6X1tzBhbYXrZ9FZX9jW9Xs9tkaX6OadOneK616yr+pq/vz/CwsK45wwZMgRA9/q9ZjAYuC2yRAghzfFT+iHGOwaF+kKIBBGYlSG9LB0+Sh8opApMuS0NUqltyYexYWMR5xNX99jRvUZjdK/RDc7XL6AfRoaOrPs8T5cHrUILpUyJ1NJUCCIBVmZFaU0p4v3i4ePh47LnSkhn1WMKU19fX0RERHB/YzV48GAIgtCt3ijW1tYiOTmZe86ZM2e431fmiqLEy8sL0dHRzi1Mc3OBy+7t6459zWQyISkpqfWDO5iTkpLCddsgew7v10yr1SIuLo57zqBBgyAWi7tNXyOEkMuJBBH6B/SHWBAjsywTPkofXKi0XXfHR47H3VMHITcX+O9/baOrPspLhaSXwgteCq8G5/NT+iHcM7zu83ER43BV2FUAbKOnAR4BOF96HiqpCvF+8XR/KSHoZIUpr2mpdsOGDeM2lddOo9Ggd+/e3HMGDhwIsVjMPceVRYnFYsHp06e555w/f577dhRO7WtN3GcKACqVCn369OHeB/r37w+pVOqyosQVfdpqtSIxMZF7Tnp6OrcVoOvn8H7NPDw80LdvX+59oF+/fpDJZFSYEkLcIkAVgGifaJisJowKHYWJMRMBAD5KH0hEEvj52Y7TG/XIKMuoe9+aXZGN7IpLt3CZrWZklGXAYL60or5MIqsrZqfETcHAoIEwW8yI8YmBn9LPRc+QkM6tUxWmvEcwhg4dioyMDG7bN9TP4f3GSqFQoF+/ftxz+vTpA7lc3vWmv7aSc/LkSe452dnZKC4ubv3g1gwaBHh4AH/91WTOsWPHuO39CdgW3Orfvz/3n018fDw8PDy6XV87ceIE95ycnBwUFhZyz+Hd16RSKQYOHEiFKSHELSQiCSbFTsKtg26Fn9KvwX6mx/KO4XzJeVgswMqfyrF6W3LdfabJRclILro0s6xUX4r92ftRWF1Y9/3TBacb5ASpg3DX0LswPmo8REKnejtOiNsIPN9ktNWIESMYj61c7AoLC2GxWBAcHMwtAwAuXLgAlUoFHx++9wukpqYiKCgIajXfPa+Sk5MRHR3NZfVfO6vVipSUFMTHx0MsFnPL0el0KCoqQmRkJNdpM0VFRTCbzc7ra2PG2IrTXbsafNlVfS0tLQ2BgYHc+1pKSgqioqK49jXGGM6cOYM+ffpw72uFhYWIiori3tdMJhOXVcDr64p9TRCEo4yxEU5oVo/G+9pMSGekq9UhqyILGWUZmBQ3CdvOb4NYJMbJnyfj2WeBCXPP4ovPPBDuGY7fUn8DAEyMtY2wppWm4cCFA5gWPw1eCi/8cvYXyMVyXBd5HbanbUecbxzCPMOglCrd+RQJcYuWrs0SVzfGnQICAlySw2M7habExsa6JKdv377cM0QiEfr168c9R61Wcy+uANviN04VGwvs3dvoy67qazExMS7J6dOnD/cMQRDQv39/7jldtq81o7v1NUIIaU6BrgBfn/wa0V7RqDXX4kLFBQRpgnC25CzCB2YCiMTvvwuI+HcENDINxkWMw8y+M+seX1Fr20pGK9NCb9Sj0lCJIUFDkFaWhnJDORILEvHruV9x95C7G9yrSkhPR3MHCOkKYmNtix/V1rq7JYQQQki3ppVrEaAMQEF1AQRBQGppKkLUITiRdwILjw4E5BVgxb2B8nBUGauwNXUrHtr8ELae3wrANtrqIfWASCRCTlUOACBEE4KM8gxIxBLkVuUiWB0MtZz/Hy8J6UqoMCWkK4iJsW0Xw2nPUkIIIYTYeEg9MDhwMCoMFWCMoUBXgOLqYnx8+GMYmA6I3G07MO16AICFWVBrqcWsNbOQVpoGnUkHrVwLAMiryoNCqgBgu/fUbDFDZ9RhSNAQyMQytzw/QjorKkwJ6Qrs0xvT0tzbDkIIIaQH6O3XGz4ePiitKYWFWfD6n6/DbDXbvhmz3fbf9OsbPMZkMeGDgx/gqrCrGuxhGqwORlpZGixWC0r0JQhUBSLKO8pVT4WQLoMKU0K6AipMCSGEEJdRy9QY4D8A1aZq+Cv9sSV1CyzMYvtmzA7bf9P/AVgvLW5nspqwKnEVtApt3b6m10RegyvDr0SgOhA+Sh/oTLbRUg+ph4ufESGdX49a/IiQLsvfH9BogNRUd7eEEEII6RGGhw5Hv4B+8FX6otpYfekbPqmAZyYgNgJVIYBnTt23qmqrkFSYhBifGMhEsrotZ8I9wxHuGY4rel0BjVzj4mdCSNdAhSkhXYEg2EZNacSUEEIIcQmlVFm3pYtapkaVscr2DQHAg0MAj4pGj1HJVDiedxyh2lDsubgHKpkKoZpQ+Hr4QqvQwl/lmpXUCemKaCovIV0FFaaEEEKIS5ksJvx0+if08+8HsVBv7+smilKpSIrJsZMBAAqRAsU1xRAg4K+Lf+Hjwx9jY/JGWKwWVzWdkC6HClNCuoqYGNuqvBa6qBFCCCGuIBFJIBaJMTxoOMQiceMDKkMAkxwAIBVLMSN+BlQyFQprCsGsDEazEWX6MtSaayESiZo+ByEEABWmhHQdsbGA0QhcvOjulhBCCCE9giAIGBk6EiHaEMzuOxtysfzSyOma74H3cyDK+gfkYjnWzl4LT7kn1DI18qryIBaJUWGsQGF1IZRSJUaFjnLvkyGkk6PClJCuglbmJYQQQlyul7YXeml7IVAViGXjlmFC9ATbvac+tutxRMl9+HTqp5gcNxnVpmpo5Vrk6/IhE8tQWF0IvVGPSO9IBKgC3PxMCOncaPEjQrqK+oXp+PHubQshhBDSQ4gEEUaFjkJqaSqMViOeu+o5BKoDkTU6ChMnAMrs6Zg/0AgAuKXfLbBarUgrS0OeLg/H845DKVfiitArIAhCK0mE9GxUmBLSVfTqBchkNGJKCCGEuFicbxwmx05GH78+8FH6AAAirwKUSiApSYTyYgWCgmz3pEIE9PXvi77+fTHQbyBSy1MR7hXu5mdASOfX46byFhcXd5sci8WC0tJS7jmlpaWwWq3cc7rTz4ZLjlgMBAQARUV8c5pgtVpRUlLCPae0tBQWFyzu1GX7QA/IcVVfI4SQtpCIJBgbPrauKK00VCKvJhPRfWxbyOw6cgG5lblIyElAZmkmdAYdAMBf448xYWMgEnrcW25C2qxH/SthjOG5557jnlNSUoJ33nmHe87hw4exYcMG7jnr1q1DQkIC95y3337bJYX2c889B8YY1wzGGJ599lnnn1itBnS6uk/LysqwfPly5+dcJiEhAevXr+ees3HjRhw6dIh7zrvvvuuS4qdL97XLVFRU4M033+Sec+zYMaxdu5Z7DiGEtEdyUTJe2/savjrxFQ5cOACFVxkA4ExGCXJ1uThbfBYHLh7A58c+xxt738D5kvNubjEhXUenKkxramq4nv/48eNYuXIlqqurueZs3brVJQXjpk2bsGnTpm6RwxjD+vXrsW3bNq45VVVV+Oabb3Dy5EmuOYmJiVi5ciWqqqqce+LLCtNt27Zh/fr13Iuf7tTXAGDDhg3YsmUL14zq6mqsXLkSx44d45qTlJSEr7/+GhUVjffUc6bffvsN69at6zZ9jRBC2iOvKg/Z5dkorCqE0WKExlcPACgrlkNn1MFkNUFv1iNfl4/simyU6GkGCCGO6lSFaXl5Odfzb9q0CbW1tdixYwf3nHPnzuHcuXPcc7Zv3w6DwcAto6amBjt27OD+RvHs2bNITU3lnrNjxw4YjUbuOZs2bYLRaMT27dude+LLCtNNmzYhLS0NKSkpzs25zKZNm7Bjxw6ufzwyGAzYvn0795/N+fPncfbsWe45O3fuRG1trUv6mtlsxm+//cY9JzMzE0lJSdxzfv/9d+j1eq45hBDSHqNDRyNAFYBCfSEKqwtx9ayTWPjRSlwzJR+6Wh2MFiMKdYUoqilCqDYUw0KGubvJhHQZnaow5f0X/19//bXBf3kwGo11o348czIzM3H69Gno9Xr88ccf3HJ2796NmpoaJCYmIisri1uO/bXaunUrTCYT9xyePxsAdcWI03PqFaYmkwlbt27lk1NPdnY2EhMTUVNTg127dnHL2bNnD6qrq5GUlISMjAxuOfbX6rfffoPRaOSe02X7Wj1ms7luhJlnTk5ODo4fPw6DwYCdO3dyyyGEkPZSyVUYFTqqblTUKywXwf3Ow8vXiCpjFfQmPfJ0eTBZTBjTawxkYpm7m0xIl9GpCtPq6moUFhZyOXdubi6OHDkCwPbGitdiPvv27UNlZSUAcB0pqX9uV+XwfENqz6moqMCff/7JJcNqtWLz5s0AbPfn5ufnc8nJz8/H4cOHAQCbN2927mI+KlVdYbp///66WQY8+0D9n3t36tOVlZXYt28flwyr1Vr3uh09ehS5ublccgoLC3Hw4EEAwJYtW7gtHHXgwIG6+7+7Q18jhJCOGBs+Ft4Kb+RW5aLSUAkLs6DGVAOr1YrSmlLkV+fDV+mL0b1Gu7uphHQpnaowBVBXOPA8b0FBQV2R6mz130zt27cPZWVl3HM2bdrE5b4vxphL3iiWlpZi//793HMOHz7c4A8fruhrRUVFdUWqU9QbMa3/Ou3fv5/bYj6X/3GCV19zRWFaXl7eoBjllXP06NEGf/jg9UedLVu21P08SkpKcODAAS459V+nAwcOoOiylaF55PD8AyIhhHSEn9IP10ZeixtibsC8iMWo3fYajnw3HbcNvg2PX/E4JkRNwA3RN0Aj17i7qYR0KZ2qMPXy8sLx48e5nPvEiRO4+eabAQB33nkn9u7d6/QMxhgyMzNx3XXXAQDuvfde7N692+k59hHZQYMGISgoCKNHj8bp06ednpOYmIgrrrgCgYGBGDx4MBhjzl/MB8CuXbtw7733AgDGjx+PjIwMLsXPvn37cOeddwIAZs6ciRMnTjg9A7AtsjVz5kwAwB133OHcUbl6hWlGRgb+8Y9/AADuu+8+LtNsdTodLBYLhgwZgoCAAIwdO5bLwlFJSUkYOXIkgoODMXDgQIhEorp+7ky7d++u62vXXXcdMjMzufS1vXv31vW1m2++mVtfO3bsGG655RYAtr7Ga7ZBWloaJkyYAAC4//77ufQ1vV4Po9GIoUOHws/PD+PGjeN2PSCEkI6a1X8W7h56N+QiT7z/nggrv7G9pfZT+uH+EfdjSu8pbm4hIV0QY6zTfERHRzOz2cx4MJvN7Ntvv2UA2KlTp7jkWK1WZrFY2PPPP88AMIvFwiXHfs6bb76Z9enTp8HXeOTEx8ezmTNncs0xm80MAHvhhReYxWJhVquVS05iYiIDwL777juufe2HH35gANiJEyecm/P884yJRMxqsTCLxcJefPFFBoCZTCZuPxur1cpmzZrF4uLi6r7GI4cxxvr27ctmzJjBPQcAe/bZZ7n2taSkJAaArVq1imtfW7NmDQPAjh07xu33mtlsZi+//DIDwAwGA9e+NnfuXBYdHV33tY4AcIR1gmtbV/8YPnx4m197QnqCamM1e3f3fxnAmFhiZst+f4l9dvgzZjQa3d00Qjqtlq7NnWrEFADEYrFLzssjRxAEiEQNX1IeOU2dszvliEQiCILAPadL9jW1GrBaIdTWuqyvXf6zoL7W9pwu2df+JgiCS3Jc1dcIIcRZzhWfw7bs9RB5VMJiFmP76QSsP7seWRX8FoskpDvjWpgKgjBJEISzgiCkCoLwDM8sQnoEtdr233pbxhBCSFvQtZkQ5xgcNBjRXtEQqW333RcWCujv3x+xfrFubhkhXRO3wlQQBDGA/wKYDKAfgPmCIPTjlUdIj0CFKSGkA+jaTIjzCIKAab2nQaSxFaaWKj/M6DPDza0ipOviOWI6CkAqYyydMWYE8AMA+tdKSEdQYUoI6Ri6NhPiRJPjJkOmtW2n5WGIwtheY93cIkK6LgnHc4cCuFDv84sAWtzQiff9RN7e3hg2bBgUCgXXnJCQEAwbNoxrBgBER0dzuT/ucv3790d0dDT3nGHDhiEkJIRrhkKhwLBhw+Dt7c01x97XPDw8nHviywrT4OBgl/U1s9nMPadfv36IiIjgnuPKvubj48M1x8vLi09fu4y9r/H+nRMVFYWamhquGT1cm6/NhJDmScQS+IUXobrwCGL9etG98YR0gMA4bJUAAIIgzAYwkTF279+f3w5gFGPs0cuOux/A/X9/Gg/gbCun9gNQ7OTmdiU9/fkD9Br09OcP0GsA0GvgyPOPYIz5u6IxXQVdm7np6c8foNegpz9/gF4DgF6DDl2beY6YXgQQVu/zXgByLz+IMfY/AP9z9KSCIBxhjI3oePO6pp7+/AF6DXr68wfoNQDoNejpz78D6NrMQU9//gC9Bj39+QP0GgD0GnT0+fO8xzQBQJwgCFGCIMgAzAPwC8c8QgghhLSMrs2EEEI6JW4jpowxsyAIjwD4DYAYwJeMsSReeYQQQghpGV2bCSGEdFY8p/KCMbYFwBYnn9bhqUXdVE9//gC9Bj39+QP0GgD0GvT0599udG3moqc/f4Beg57+/AF6DQB6DTr0/LktfkQIIYQQQgghhDiC5z2mhBBCCCGEEEJIq7pcYSoIwquCICQKgnBCEITtgiDw3YywExIE4R1BEFL+fh3WC4Lg5e42uZogCLMFQUgSBMEqCEKPWf1MEIRJgiCcFQQhVRCEZ9zdHlcTBOFLQRAKBUE47e62uIMgCGGCIOwWBCH57/7/uLvb5GqCICgEQTgsCMLJv1+Dl93dJkLXZoCuzQBdm+naTNdmujZ37Nrc5abyCoKgZYxV/v3/jwHoxxh70M3NcilBEG4AsOvvRSyWAwBjbKmbm+VSgiD0BWAF8BmApxhjR9zcJO4EQRADOAfgeti2fEgAMJ8xdsatDXMhQRCuAaADsJIxNsDd7XE1QRCCAQQzxo4JgqABcBTATT2sDwgAVIwxnSAIUgB/AnicMXbQzU3r0ejaTNdmgK7NoGszXZvp2tyha3OXGzG1X/j+pgLQtSprJ2CMbWeMmf/+9CBs+9D1KIyxZMZYaxu+dzejAKQyxtIZY0YAPwCY4eY2uRRjbC+AUne3w10YY3mMsWN//38VgGQAoe5tlWsxG93fn0r//uhx14HOhq7NdG0G6NpM1+aeia7Nzrs2d7nCFAAEQXhdEIQLAG4D8KK72+Nm9wDY6u5GEJcIBXCh3ucX0cN+8ZFLBEGIBDAUwCE3N8XlBEEQC4JwAkAhgB2MsR73GnRGdG1ugK7NPQddm0kdujZ37NrcKQtTQRB2CoJwuomPGQDAGHueMRYG4FsAj7i3tXy09hr8fczzAMywvQ7djiOvQQ8jNPG1HjcqQQBBENQAfgaw+LKRqh6BMWZhjA2BbURqlCAIPW7qmDvQtZmuzQBdm5tA12YCgK7Nzrg2c93HtL0YYxMcPPQ7AJsBLOPYHLdo7TUQBOFOANMA/IN1tRuFHdSGftBTXAQQVu/zXgBy3dQW4iZ/37vxM4BvGWPr3N0ed2KMlQuC8AeASQB65KIbrkTXZro2A3RtbgJdmwldm+vpyLW5U46YtkQQhLh6n04HkOKutriLIAiTACwFMJ0xpnd3e4jLJACIEwQhShAEGYB5AH5xc5uIC/29uMAXAJIZY++7uz3uIAiCv321U0EQPABMQA+8DnQ2dG2ma3MPRtfmHo6uzc67NnfFVXl/BhAP26pvWQAeZIzluLdVriUIQioAOYCSv790sAeufngzgI8B+AMoB3CCMTbRrY1yAUEQpgD4NwAxgC8ZY6+7t0WuJQjC9wCuBeAHoADAMsbYF25tlAsJgnAVgH0ATsH2OxAAnmOMbXFfq1xLEIRBAL6B7d+ACMBPjLFX3NsqQtdmujYDdG0GXZvp2kzX5g5dm7tcYUoIIYQQQgghpHvpclN5CSGEEEIIIYR0L1SYEkIIIYQQQghxKypMCSGEEEIIIYS4FRWmhBBCCCGEEELcigpTQgghhBBCCCFuRYUpIYQQQgghhBC3osKUEEIIIYQQQohbUWFKSBchCMJIQRASBUFQCIKgEgQhSRCEAe5uFyGEENJT0bWZEOcRGGPubgMhxEGCILwGQAHAA8BFxtibbm4SIYQQ0qPRtZkQ56DClJAuRBAEGYAEAAYAYxljFjc3iRBCCOnR6NpMiHPQVF5CuhYfAGoAGtj+OksIIYQQ96JrMyFOQCOmhHQhgiD8AuAHAFEAghljj7i5SYQQQkiPRtdmQpxD4u4GEEIcIwjCHQDMjLHvBEEQA/hLEITxjLFd7m4bIYQQ0hPRtZkQ56ERU0IIIYQQQgghbkX3mBJCCCGEEEIIcSsqTAkhhBBCCCGEuBUVpoQQQgghhBBC3IoKU0IIIYQQQgghbkWFKSGEEEIIIYQQt6LClBBCCCGEEEKIW1FhSgghhBBCCCHEragwJYQQQgghhBDiVv8PWooF7n7hjz4AAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "import numpy as np # Librería para poder trabajar con matrices y vectores\n", "import matplotlib.pyplot as plt # Librería para poder dibujar gráficas\n", "\n", "delta = 0.2 #malla espacial\n", "nq=2 #separacion entre vectores en quiver plot\n", "\n", "# Damos valor a las constantes del problema\n", "u0 =1.0\n", "v0 =2.0\n", "w =2.0\n", "\n", "#Calculamos la longitud de onda y el periodo\n", "lmb = 2.0*math.pi*v0/w #longitud de onda\n", "Tp = 2.0*math.pi/w #periodo\n", "\n", "t=Tp #Definimos el instante temporal para el cual vamos a hacer la representación gráfica. Podemos elegir cualquier valor!\n", "\n", "L=0.50*lmb\n", "\n", "#Generamos la malla de puntos en los que haremos la representación gráfica\n", "xp = np.arange(-L, L, delta) #generamos un vector de puntos en la dirección x, desde -L hasta L, con un espaciado \"delta\"\n", "yp = np.arange(0, 2*L, delta) #lo mismo en la dirección Y\n", "X, Y = np.meshgrid(xp, yp) #con esto generamos una matriz de puntos\n", "\n", "#Evaluamos las componentes de la velocidad en esos puntos\n", "U = u0*np.sin(w*(t-Y/v0))\n", "V = v0*np.ones((len(yp),len(xp)))\n", "\n", "#Generamos la figura, en este caso 2 figuras\n", "fig, (ax,ax2) = plt.subplots(1,2,figsize=(16, 8))\n", "\n", "#------ Figura izquierda (ax) ------\n", "#Representamos el campo de velocidades y la linea de corriente que pasa por el origen\n", "ax.quiver(X[::nq,::nq], Y[::nq,::nq], U[::nq,::nq], V[::nq,::nq]) #la función quiver nos permite hacer la representación de un campo vectorial\n", "xx=u0/w*(np.cos(w*(t-yp/v0))-cos(w*t)) #ecuación de la línea de corriente que pasa por el origen en t. En xx almacenamos el vector de valores.\n", "ax.plot(xx,yp,'r-') #la función plot nos permite representar una curva pasándole vectores xx y yp\n", "#ax.streamplot(X,Y,U,V) #Con esta función podemos hacer una representación de las lineas de corriente sin tener que calcularlas!\n", "\n", "ax.set_xlabel(\"x\")\n", "ax.set_ylabel(\"y\")\n", "ax.set_ylim([0, 2*L])\n", "ax.set_xlim([-L, L])\n", "\n", "#------ Figura derecha (ax2) ------\n", "npoints=20\n", "delta=Tp/npoints\n", "for i in range(0,npoints):\n", " t0 =delta*i\n", " yy1 =v0*(t-t0) #esta es la posición y de la partícula fluida en el instante \"t\" que ha pasado por el origen en \"t0\"\n", " yy0= 0.0\n", " xx1=u0/v0*yy1*(np.sin(w*t0-w/v0*yy0)) #esta es la posición x de la partícula fluida en el instante \"t\" que ha pasado por el origen en \"t0\"\n", " ax2.plot(xx1,yy1, 'g.', ms=20)\n", " xx=u0/v0*yp*np.sin(w*t0) #esta es la ecuación de la trayectoria de la particula que ha pasado por el origen en \"t0\"\n", " ax2.plot(xx, yp, 'g--', lw=1.5, alpha=.2)\n", "\n", "xx=u0/v0*yp*np.sin(w*(t-yp/v0)) #esta es la ecuación de la traza\n", "ax2.plot(xx, yp, 'b--', lw=2)\n", "\n", "ax2.set_xlabel(\"x\")\n", "ax2.set_ylabel(\"y\")\n", "ax2.set_ylim([0, 2*L])\n", "ax2.set_xlim([-L, L])" ] }, { "cell_type": "markdown", "metadata": { "id": "MadOetynoj2I" }, "source": [ "## **Animación**\n" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 1000 }, "id": "Seo3rRPlXwiV", "outputId": "614efa37-a6bb-4728-c831-fab49b354d88" }, "outputs": [ { "data": { "text/html": [ "" ], "text/plain": [ "" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6YAAAHgCAYAAAC2HHCzAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOydd3gVxfeH39vSKyRA6L1KEywUCyJNRRSxd+lYEfxafoqKDUUFkd4EUSxgoUiTDhHpvSeBBEhCervJ7fv745IA0lLuCSHM+zw+srmb/czunJw7Z8/MGZ2maSgUCoVCoVAoFAqFQnG10F/tBigUCoVCoVAoFAqF4vpGBaYKhUKhUCgUCoVCobiqqMBUoVAoFAqFQqFQKBRXFRWYKhQKhUKhUCgUCoXiqqICU4VCoVAoFAqFQqFQXFVUYKpQKBQKhUKhUCgUiquK8Wo34Fy89D6aryGoFJQ0NECHrlSUlE7Z1YH87ZKuvXuq4DJT0ZVLlDEM7Zzrlrc+Km86yv+Unk6WIzlF07RwwSZdF4SFhWm1a9e+2s1QKMocVoeV0+bTpOal4nK50Ov1VPStSGX/yngbva928xSKMsn27dsv+d1cpgJTg85Im+AeeBv8RHVSbafQNBdh3jVEdazOXBKsUdT2ayGqo2kujpq30TDgZlEdgCM5m2kYcIu4ztGcrdTzvxG9ziCqk2CJwt8QQpApTFQnx5FGpj2Far4NPXbNZ3M20yd3Nz1DHwKde7Du0OzE5u6hnn8bj+lcDE3TOGLeQqNSsIUjOZtp4H8zOp1s4HM8dw8R3vWV/ykiZdn/LEuaHCvYnOuG2rVrs23btqvdDIWiTLH06FL6zOuD3WnH5XIB4MJFhj4Ds8HM/Ifn06NBj6vcSoWi7KHT6S753VympvLaXBayHCniOify9peKzknLQTLtSeI6ybY4kqzHxHVynVkcy92NU3OI6rg0Jyfy9pPtSBPVAYgrJVuIyztAliPZo9f00+zk6YwFQSm4A+1UW7xHdS5GpiOJk3kH0TTtyieXALvLyvHcPVhduaI6mqaVmi0o/1M8Ssv/KBQKxZWIToumz7w+5Npzsbvs531md9nJtefSZ14fotOir1ILFYprkzIVmLpwig/YLE4zp63HxXVcmosTeQdKKejZT44zA6dmv/LJJeBE3gE0XOQIB4yJ1hhsmoVs4WeX7Ugj3Z4g3kcOl51TlsMe1/HR7OTpvAqO3cHVPrIcyeIBY1zefuyaBYvLLKpzynKoVPxCmv0Uuc5M5X+KQXnzPwqFQnElvtr0FXbn5X2e3WlnzL9jSqlFCkX5oEwFpoD4QOqk5SAaLnGdZFssFpcZszMDh+CALdeRSYrtBKCJZhidmoOTeYcA+T6Ky9tfKjonzuhIB8Dx1qM4NTvZjlSPBoy+mh2LzlRwnOlIItuRikOzkefK9pjOf7G5LCRa3G+BJZ+dO9A+AJQfm1P+p3iUpv9RKBTXHw6XgwxLBtnWwn13/rDnhwsypf/F7rIzZ88cTzRPobhuKHuBqV1u0OGeIuoe6OY6M3G4bGJacbn7C/6d7UiV07EcKPi35LNLtMRg1yxuHcGBYZY9hQx7YsG/pXC4bJyyHHHreDhgPBdN0woCYIdmI8+Z5bFr+2p2cs8JTONy9xX8W9Lm8rOYAJl2z05PPpdU+0lynZmAbABsceaQZD0OKP9TZJ1y5n8UCsX1SZ49j+i0aBJyEgp1fo4tp3DnWQt3nkKhcFPmAtM8VxZ2l1Xk2knW2PPWqkkN2MyODFLtJwuOpQZsTs3BqTNZBJAdsOVnlEB2AJo/cAfOZBhdIjrxliMFUw+dmr0gAPI0GfbE8+zMk310bsbU5sojwXp2LYtUH2maRlzu+X0kxbnBlazNHTxTJ1f5n6JQHv2P4uLk5eXhdDrFdXbu3CmuUd50XC4Xu3fvFtdJTU0lNla+ltjevXtxOOTXkf+3b/Q693DYVcgxR4BXQKHO06wBDBsGu3aB5Aqb8mRr6enpHD9+XFxn79692O2yS1CgfPmb0tApc4FpgCFUbMCWYT9NJa/aAAQaK5IpNJBKtp2gqk/DAh2pbE+q7RQRPvUB8DeEkOOUmUqX40jHzxCEt94PH30AFldOoZ13UXBoduyahUBjRQw6E156X8wCAaOmaWQ5Uqhoqg64+0hqUJ1qP0UV73oiOudmTJOtcVTzaQRAgKGC3N+Q4zQVvapi0BnxMwRhdmaI6Fhdueh1BvwMwXjpfHHhxOayeFzHpbnIdWYSYqqMDp3yP0WgvPkfxaU5ffo0R48eFdd55ZVXsNnkZhKAO8geOnSoqAZATEwMX3zxhbjO8uXL+fPPP8V1Zs2axZYtW8R1xo4dy+HDh8V1Xn31VazWsy8hixqYPtXiKUx60+VPcprQdj/N119D69bQvDmMGgW5Hq7ld/z4cT777DPPXvQirFy5kt9++01cZ/bs2fz777/iOuPGjePQoUNXPrGEvPbaa1gsnh+/nIvVauXVV18V1QA4ceIEn3zyiahGmQpMdehpX6EPUnuZNg5sR6ipCgA3hdxHJe9aIjq1/ZoT4d3ArRnQnrp+rUV0KnnXop6fe1uQGr5NaRF4l4hOgDGUlsGd0TSNil7VaB/ap2Aqpycx6ky0Cu6Kl84Hf0MwHSo+gvGc4j6eQqfTcUPQnQQaK6JDT7vQhwg2VfK4DkB9/7aEe9UEoGVQZ6r7NPbYtX1dZzOm1XwbUdO3GQD1/G+kcUA7j+mcS6ipCk0Db8epOajsXY82IfeIZLW99X60Cu6CHgPBpnA6VnjU4xrgHoy0DL4bX30QXno/5X+KQHnzP4pLk5aWxo4dO0Q1tm7dysaNGzlw4MCVTy4Bv/76Kxs3biQvL09UZ8qUKaWyxc7EiRPF+8blcjFp0iRxnbS0NObOnSuus337djZs2MD+/WdnYhQ1MB3Wbhgmw+UDUy+jDjZFMmCAnYoVYf9++Ppr8DpnWOOJeGXq1KnlytZKQycjI4Mff/xRXGfXrl2sX7+evXv3iur8/vvvbNiwgexsufoi4La1rVu3imqUqcBUjx69zoCvoXBTJIqDxWVGhx6Tzgc/oQEogPVMtVJvvT9+xmAxHUuBjp+ojktzYtPy8Nb7423ww6i7wpvCEmB15eKt98eoM+Fj8BfUMeOt90Ov0wvbgvv1qKdtwV2V92w/nNWRtQXbGR0fvR9+hiB0Ojk34rYFP0x6b7z0PoI6Znz0fsr/FJHy6H8UF6Jpmvj0rYkTJwLy08QmTpyI0+kUHShaLBZmzJhBVFQUWVmeqyvwX44fP85ff/0l/sxWrFhBdHS0uM6sWbOwWCziOpMmTQLOt7X8fbILG5jWq1CP+Q/Px8/kd0Hm1KQ34Wfyo+62upC+i+ee20ZCAixaBKNHg9HoPi89HSpXhj59YMECKM5kAavVyvTp0zl27BgZGRlFv0AhiYuLY9GiReJ9s2rVKo4ePSquM3v2bPLy8q6KrUmQ7z8lp1rbbDamTZtGXFwcqalyy7hEA1OdThei0+nm63S6Qzqd7qBOp7tsGkdygJuP1ZWLj96/wAnJ6bgHbD56P2Gd/CBBLoBz6+Sd0ZG9H3APdr1LTUf2ueXr6DF6PPvrq9nJ058bmJ4NRiQ5N9CWxKU5sWuWUumj/JchpaGj/E9xdErP/ygujuTAKjU1lZ9//llcZ9u2bQXTUSUzJfPmzSsYuO3atUtMZ8qUKe4CeydOiA4Uz31pIFUoMD8rm68jRXp6OnPnzgXOt4GiZkwBejTowZ5BexjQZgB+Jrdv8jP5MaDNAH66/ScOLTpUoGMywX33wbPPnv39jRshOxt++w0eeAAiImDwYIiMLPx61N9++43kZHcRQklbmzp1Ki6Xi/j4eJKS5PbHLg1b0zStQEfSD2RmZvLDDz+I6+zZs4eNGzeK6/zxxx+cPn0akLU16UjwG2CZpmmNgZbAwcudrCuFBK7VZcbbID+4sbpyMehMGPWen4p6vs6ZYEQws1iaOk7NjkOziWZK87G6cvEpJVvwMfh5NBjRay58cJyXMbXkB4zC91SQJSs1ndJ5eVA6fkH5n7Kso7g0kgPF/ExZvo4U+YGPtE7+oFdSJz9TJq1z/PhxFi9eDEBSUhIJCYWrWltUVq5cSVRUFOAe9ErZWn6mDM5/ZsUJTMGdOR1/z3haVW4FQKvKrRh/z3gWf7+44JxL9U3PnhAXB1984V5/mpYGkydDx47QoAGYC7FNeGnYWn6mTFrnxIkTLFy4EHC/rDp58uQVfqN4rF69miNH3Lsy7Nq1C5dLpmbB999/T+6ZBcXKrxUesUhQp9MFAbcDMwA0TbNpmpZx2caUQsbU4iydzIjFWUpZP+fZqXSSnDtNVFTHWTo6mqadmcpbCgGw0/M6PmcqCp8/ldeMUeclPs0xv4/ks2RnpwxL4nDZcGp28fsB5X+KS2n5H8WlSUtL48SJEx6/7rmZMpAbKJ6bKQO5gdWOHTvOK9wipTN//nxSUs4WNpPSmTp16nlBopTOuYPejIwMkaqs+esX89m9e3dBten88WdxA+KRnUbSvnp7RnYaWbB+MZ/LPbPq1eGNN2DPHti92/3vqlWhWjXwP/NVoWkwcyb8N1G5e/duIiMjC6VTEn7//ffzsqSStnbu335p2Fp2djYxMTEe1zg3KwvurKZEtemsrCzmzDm7V67UM9u3bx/r168X1wHZjGldIBn4TqfT7dTpdNN1Ot1lR2SlkTHVcJXKANSFEx+93Fq1szoOvHS+GHRGUR2Hy4Yeg/izs2tWDDqT+ODdiQM9hlIZ6Lpwefx+fM8EppZzglCXVjo259TspfLsHC4reozitmDTLBh1XqUSMCr/UzxKy/8oLo7BYGDs2LEilXlTUlKYPn067du358Ybb2Tw4MEiQUlSUhKbNm0iNDSUBx98kBYtWogMFB0OR0Gw8OKLLxISEuJxDYCqVavy008/AfDhhx+eV2HWk3To0KGg4uu4ceNITEz0uIbD4eCFF16gb9++BAYGMm7cOBFbS01NZcqUKXTs2JFWrVrx8ssvc+zYsYLPi5s1BehctzORfSPpXLczSUlJbNy4kbCwMHr16kXr1q0LtS1Jixbu7GlcHPzyy9mfb9sGffu6A9Z774WffnJX9rXZbGzatAmAwYMHExoaWuR2F4bKlSvz66+/AvDBBx+IbbHSrl07Pv/8cwC++eabgmmjnsThcPDss8/Sv39//Pz8GD9+fEGm3pOkpaUxYcIE7rjjDlq0aMHQoUOJjo6+8i8WkdOnT7N+/XoqVapEz549adu2rYgvsFgsBcsgBg0aRIUKFTyukY9OarqETqdrC/wLdNA0bbNOp/sGyNI07b3/nDcAGADg4xXcpmOb4SLtORdN08TXeJVXHaDc3dO1qNMo+yTj901hRKMn2FShiZjOpVA2p3Suhg4UzRZWbnpvu6ZpbaXadL3g6+ur5eXlifZ1vXr1aNOmDb/++quYTl5eHn5+frz//vt88MEHYjo7duygTZs2/PLLLzz88MNiz+yHH37g6aefZu/evTRr1kxM55133mHUqFHYbDYMBoOYzgMPPMDhw4c5ePCgqK01aNCAFi1a8Ntvv52nsztxNw6Xg5ZVWmLUl+xlm9VqxcfHh3fffZePPvqoRPezYwd88AEsXQr571ICAqB3b2jXLprBgxsyd+4PPPbYY2LP7KeffuKJJ55g9+7dNG/eXEznvffe4+OPP8ZqtWIymcR0evfuzb59+zhy5IiorTVu3JjGjRvz559/iunY7Xa8vb156623+PTTT8V09u3bR/Pmzfnhhx944oknSqSh0+ku+d0smaI8CZzUNG3zmeP5wI3/PUnTtKmaprXVNK2tyVQ6b8NLYxBVXnXK4z1dizpVLe5CF6d8KorqXAplc0rnauiUlpbifEwm98wMqeevaRrx8fFUrVpVVCd/faS0Tnx8fIGOpM2Wpk7lypUxGo3iOtJ9czlbK0nGdFXMKjrM6MCqmFUABZllT9zPjTfCwoUQHw/jx8Ott0JODnz/Pbz5Zg1AX65sLTw8HC8vr2ve1kpL5/Tp02iaVm78mlhgqmlaInBCp9M1OvOjzoDsBmUKxXVCVWsaLnQk+MhM3VEoFOWXolbM9/KSLaKVkZGBxWIpGFhJce7AqrzoeHt7i03hPFdH+l5KSycrK4vc3NyL6hR1y5hzGbFmBP+c/IcRa0YAMjYQHg4vvgibNsHRo+4saufOewAHVatWJTMT2raFUaPA08vB4+PjMZlMVKxY8conl1CnvNhadnY22dnZ5crflIaO9KLOl4EfdTrdHqAV8KmwnkJxXVDVkkaKVxB2vdrPUaFQFJkiVczPz5hKUd4GVvk6ERER4jrS2YtzdSRxOp0kJiZeVRsoScb03OJHV9LxBPXrw/vvQ+vWSwG3rf35J2zfDm+/DbVqQadOMGMGeGJ70/Jkay6Xi4SEBHGd/87QkKK8+U/RwFTTtF1npum20DTtAU3T0iX1FIrrhWqWNE75yC0+VygU5ZPiVMxXgWnRdUJDQ/H19RXXKS/ZpeTkZJxO5zUbmJ5b/OhKOp4kPj6eoKAgAgICePxx95TfRx4Bb29Yuxb69YMqVdw/K0nNovJkaykpKTgcjnLlb0pLJyAggMDAQFEd2VKKCoVChKqWVDaFNr7azVAoFNce51bMbwlsB17VNO2SuyYGBMhWeK5evTpvvvkmjRo1uvLJJeDGG29k2LBhhIeHi+p069aNOnXqiGoAPPnkk+LTrDVN49VXX+XGGy8oEeJRjEYj7777Lu3btxfVqVatGm+99RaNG1/4/VnSLWPOpXXr1gwbNozKlSuX+FqXo2vXrlSvXh0ALy/33qg9e0JmJvz+O/zwA6xZ416feu77paQkqFSp8DpPPPEEer3sJEtN03jllVdo2bKlqI7BYODdd9+lQ4cOojpVq1blrbfeokmTJlc+uQS0bNmS4cOHU6VKFVGdu+++W1wDBKvyFoeggGraLS0GX+1mKBRlGl+nlYVbPmZ6zS78Uu32q90chaLMoqryXkhxKubXrFmzTWxsbOk3VqEoRaLSosi0ZFK/Qn2CfYKvdnM8xsmTkJICrVq5j3fuhJtugvvug4EDoWtXMBiuahMV1xlXqyqvQqEQoKolDbiwIq9CoVAUgiJXzJfOMCoUZQFPVuUtS1SvfjYoBdi6FXQ6WLAA7rnHvV71009BYItahaLIqMBUobjGyN8qJl6tMVUoFEVEVcxXKC5OSQLT/1blLcsMGOCu2vvJJ1C7Nhw/Dv/3f1CjBvTte7Vbp7jeUYGpQnGNkZ8xTVCBqUKhKB6qYr5C8R88WZW3rFOlCrzzDkRHw9Kl8MADoGng43P2nLw891pUhaI0UcWPFIprjGqWNNJMAeQZvK92UxQKxTWIpmm7ALX2VqE4Bx3F38e0c93OBRV5ryX0euje3f1ffLw7OM3nl1/c2dXevd1rUe+80z0FWKGQRGVMFYprjKqWVDWNV6FQKBQKD1KSjGl5oGpVqFbt7PHhw+B0ugPUu+6Cxo3hq6/chZQUCilUYKpQXGNEWNKIV4WPFAqFQqHwGOW1+FFx+ewz9/rTESPcQeuRIzB8uDt4/fDDq906RXlFBaYKxTWEl9NOJVsWp1TGVKFQKBQKj1GwjylF30bxWip+VBRq1HAHobGx8Oef0KMH2O0QEXH2nKQkSE+/ak1UlDPKbGDqdNmVThnW0TQXLpejVLTK27MriU793AQAYn2vvDP2tXA/RUHTtHJ3T0qneJSm/1EoFNcH11Pxo6JiNEKvXrBkCcTEwJNPnv3ss8/cGdVnn4V//jl/napCUVTKVPEjl7ee7Dq+5KbHk5uZSFjtC7ZW8ygOay5J0dup2rSTqI7mcnFy71pqtOwhqgMQt2sNNVvdI66TeHgDFWq2xMvXV1QnM/EomuYiJKLRlU8uAVZzOhnxB6lcr72ojsthJ/7gBqo371qs36930B2YbmnWkOzLPHtN0zixu3Rs4cTutVRv0Q2dTvY9V2rsLnyCwvEPrXblk0uA8j/Fp8z5n03iTVEoFOWEkgSm12rxo+JQu/b5xwkJYLHA99+7/2ve3F006emnITj4qjRRcQ1T5jKmmstFzOZ5uJzyb8Pjdi7CnpclrnP6SCTZycfFdTITj5Ic9a+4jtWcxondS9GECwS4HHaObZkPLlkdTdM4vvU3HLY8UR2Ak/v+xpJV/PrrzVNiORlQkTTfwMuelxa7i/ST+4qtU1hy0+NJOLAGTfgVqcOay/Htf4q/ilX+p/iUN/+jUCiuL6734kfF5eefISoK3nwTwsNh7154+WX3dN/vvrvarVNca5S5wPT0kUjMaSdA2DFkJh4lOWYrmsspqmM1p3Fiz1Lx+8kP4qQHa+4g7ndcDpt4wHhy399Yc1LF7yktdhcZ8YfE78ecHk/CwbVoxdXRNJonH2dvWK3Lnma3ms8EccK2cCaI0zSX+LOL27kIhyVH/O9V+Z/iUR79j0KhuL7Q6Yq/Xcz1Tr16MGoUnDx5topvXh40bXr2nOhoyM6+em1UXBuUqcDU5XS4B1EgOmBzOmzuTByIDqQ0TePYFvcgqtjBSCEpCOKEB7qp+UEcss8uP4iT1ikI4oR1NJeLY5t/Bc1VbJ0Iczphlmz2XSEwjdu5CIfVLG5ziUc2uoM4QNPk7C4z8QjJMVvP6MjdkzUnTfmfYlLe/I9Cobj+UFV5S46XFzzyCKxa5Q5Eb7757GcDBrizqAMHwtGjV6+NirJNmQpMbbnp7jfhIDo18NTeFVhzUs/oyA1uUmN3kplQGkHcqVIL4mLPBHGSWucGce5jucFu3A53EAeyz84dxJ106xTzfpqnHAdgT3jtS56TmXiElJhtbh3hIO7k7qUFx1J/r+4g7rezOkIBlqZpHNv6m/I/xaC8+R/F5ZGetl+aOpqmlZpOaaB0SqZTksD0SlV5r0dbq1sXziShsVrde6KazTB1qntP1Mceg927S67jCcqTzrVua2UqMHXarQX/lhp0mNNOkXBo/VkdoYGu3WImdvuCszpiQZyTY5vnnQ3iBAdr5wZxbm0ZrXODOJC7p8zEI6Qc2yauc2EQVzyd5snHMRu9iQmuctHPLwjipGwuP4hznq3AKmUL5wZxbm0ZHXcQd1hcR/mf4lNa/kdxaU6dOsWSJUvEdTZt2sS+ffJr5GfPno3DIb+efPr06eIamqaVio7FYmHOnDniOvHx8fz111/iOps3b2b3mehIsirvnDlzsNlsxW9oISktW5s2bVqRfsfbG9auhQMHoG9fMBjcU35btYL77nNX+v0vVquV77//3iNtvhyJiYksWrRIXGfr1q3s2rVLXGfu3Lnk5cnXTJGytTIVmJp8gwDwDa4imiWr3+7xszpCAymnPY+Gtz+HTqfHN7iyWNEWhy2XWm0ewDsgDG//UPQGk8hbDJfTQVidNoRUbYLB5IOXX7DIs9M0Df/QqlRpfDuQ30cyz85g9KH2Tb3P6ggNdJ1OGw1uf+6sTjHvp3lKLAcq1sCpN1z0c4c1l/rtn8Dg5YtPYHjBehlP43RYqdrsLgIq1sLkE4jRy09kKq+muQiOaERYnTbodHp8gsLF/l69/UOp3qI7oPxPUShv/kdxaTRN48UXXyQtLU1Ux2az0b9/f/FB/OnTp3n99dfFA9Pt27czevRoUQ2An3/+mQULFlz5xBLyySeflMpLg5dffpmUlBRRDbvdfp6tFexjWgwf1rluZyL7Rl60Mm9SUhJDhw4Vt7WdO3cyatQoUQ2AefPm8ccffxTrd5s0genT3dN8X30VfH1hzZqLV+/97LPP2LNnTwlbe2VeeeUVkpOTRTXsdjv9+vXDarVe+eQSkJKSwmuvvSZua3v27OHTTz8VuXaZCkxdTjtGbz9u6PYqwVUaiGj4V6iGxez+Ym10Z18qN5DZHsQnMAyHLQ9Nc1Gj1b0FAZCnMfkE4uUXgjUnhfD6t9LkroEig1C9wUhQpXrkpMYSHNGIpl1ewujt53EdnU5HUOX6mNNO4RNUiWZdX8Y/tKrHdQACwmqSl5mETm+gaZcXqVizhYiOX3AVbLmZANS99dFibRXja7dSPyOBvWG1L3mOt38I6PQ4bXlENL2T+h2eLmaLL4/R5IN/aHXM6SepULMlTbu8iN5g8riOTqcnuEoDclJPEBBem6Z3v4SPfwWP6wAEhtchNyNR+Z8iUt78j+LS/P777yxYsACnU3Yd8eeff87+/fvFdV577TXS09NFdUprMJqamsqrr74q/sz27t3LqFGjxHX++OMPfv/9d3Gd0aNHs3fv3gIdqaq8Q4cOJS0tTfR+HA4H/fv3F7e1tLQ0Xn755RLfS40aMHYsxMbCvHlQsaL75zabe7/Ub745wSeffCZuAwsXLmTevHniOl999RV79uwR13n99ddJSUkR1XE6nfTr1w+LxSJy/TIVmDrtFoKrNEJvNOFfobqYTmb8IXyDK+PtH0rgZdbrlVgn4TA6vYGgyvWEddzryEIiGhMQVgudXqZbzWkncVhzCanaGG//ULz9QkR0nHYLOcnHCIlojMHkjV9IhIgOuPsoMLwORi9fAq5QVKhkOocwevvjX6FasWyhSdoJjJqLveGXb2P+dNSQiMaiNpd1OgrN5SSkaiN8gytj9JLZz9aak4YlK4mQqo0x+fjjExQuoqO5XGQmHlb+p1g65cv/KC7E6XTy0ksvAYi+iT948CAff/yxuM7ixYv5+eefxXXGjBnDrl27xLMXw4YNIzk5WVTH6XTSv39/HA6HqE5GRgYvvvgiINs3hw8fZuTIkefpSBQ/Wrp0KXPnzj1PR4JvvvmG7du3i9vaG2+8QVJSksd0wsPhnnO2vv75Z1i4EF57rQYOx0727bsRu/3Sv18SsrKyGDJkCCDbN0ePHuWDDz4Q11m+fHnBNHtJnW+//ZatW7eKaZSpwBRNI7hqY1EJhy2P7JRYQoR1ADLiDxFYqR4Go7e4jsknED+hzGKBzpkBaHBEI1GdzMQoNM0l3keWnFQs2cniOprLSWbCUYIjGqHTFe9PrsWZfSivVJE3I/4QfiERePnJ7mqdkXAIncFIUKX64jrgDnokyUmNw2nLU/6nmDrlyf8oLuTkyZMkJiYCiL2Jd7lc502rlNLJzs5m8ODBBcdSOlFRUbz//vuA7CDx77//Zvbs2eI6EyZMYPPmzeI6b731FgkJCYCsrQ0YMKAgu+iJjOnFih/l5OQwaNCggmOp5xYTE8N7770nqgGwevVqZs6cKarz8MPw8MPrgFigKatWPUODBjBxonv7GU/y9ttvc+rUKUDO1jRNO8/WpJ6b2WwuFVs7fvw4//d//yeqYRS5agkwtW5Mjr9cvJx5OAo0F17Nm5JTTU7Hmp6MNSeVkJs6iuq4nA4yk44S1LAF5uoXX3voKdLWHMKnUjVs9UOQXP2Tsu8QOpMXulb1yDHKPbvUHe7soqlVU3LC5HTMJ4/jtOfh06xJsW2hyb9xRFesTEKdgEue48gzk5MaS9hNnURtTtM00pMO41+zPrm1ZIOe1C2HMQYE4WxWjRyhNbMAycfO2ILyP0WiPPofxYWcu9ZPajAydepUIiMjxXX+7//+j5MnzxbXk9DRNI1BgwYVTHWTupfc3FwGDhxYcCylExcXxzvvvCOus2HDBqZMmSKuM2PGDNavP1uELl9HR/H3MR3ZaSQj1ow4r/jRu+++S1xc3AU6niTf1vKL3Ug9s7y8PAYMGFBwLKWTknKCZct6AnnAEwQHjyI2NoIXX4SffoINGzyjExkZyaRJkwqOpe5n5syZrF27VlxnxIgRHD9+XFQn39Zyc3PFNKCMZUx1RhNG/0BRjZxjB9GbvPCrVkdWJ+YgAIF1ZDMjefHHcdmsBAjrOHJzyEs4Ia6jaRo5xw7hX6M+eqPn1y2eS86xQxgDQ/CuWFlcB3QE1C5epkenuWgZf5xdVWtf9jxz7BHQNPE+sqUlYc9ME9dxORyYY48SUKexWCGnfLKPHcKncnXlf4pIefM/iosTFhYGQHBwsMhgxOVy4XQ66dmzJwBBQUEiOtnZ2dStW5c2bdrg5+eH0WgU0Tl+/Di9e/emcuXKYs8MYN++fQwfPhydTieqs3//ft544w1AzgbAHQDnZ30kbc1ut9OrV68LdHQ6XcF3TVGD0/8WP8rJyaF27dq0bdtW1Nbi4uLo1asXERER4jbw+uuvo9frS8nWHAQHL6BXr/9j/ny48UZ47rmz56WmQklqY8XGxhbMnJC0NavVyoMPPiiqYzabqVGjBrfccgu+vr6YTCYRnRMnTtCzZ0+qVq0qagNlKjA1ePuIa+QlnsC/VgP0RtlkcV7iSUxBoXhVqCSrk3ACdHr8azWU1Tl9AoCAuk1EdezZGThys+UDYJcLy+mTBJZC0JOXeALfiBoY/S6d7bwctdOSCbHksrvq5afx5iWeQO/lLR705CW43wBL24I1JQGX00FAHVkdp82CLTVJ/H5A+Z9i65SS/1FcHE3TCAgIYPfu3TRq5Pmp1Hq9nhdffJGkpCRat27N+vXrqVDB84XOAgMDeemll4iOjubBBx9kwYIFGAyez/TXqVOHnj17cvr0ad58803GjBnjcQ2Am2++mXr16qFpGt9999152VNP0qNHD4KC3LsmrFu3ji5duojoPPnkkzgcDvz9/dm9ezdNmnj+712v1zNkyBCSk5Np0aIFGzZsoGJ+5R08VwApICCAl19+mZiYGHr16sWiRYswCvj9WrVq8eCDD5KQkMDw4cMZN26cxzUA2rZtS8OGDXG5XMyYMaNgbaan6d69O8FnSvSuWbOGHj268tBDsG3b+YHpqFFQqxYMHQrnTIAoNE888QROpxNfX192795N06ZNPXMD55BvaykpKTRr1ozIyEjCwz1fJ8Pf359XXnmFmJgYevbsyeLFizGZPJ/YqVmzJg899BDx8fEMHTqUCRMmeFwDQFdam8oWBt/K1bR6zw4X1dBcLpyW3GIHCYXW0TScuTniGRgAhzm7dHTyzBi8fdBdYrsST+GyWdEAg5fsNFHN6cRps2D09ZfV0Vw484pvc09tX89bq/+kR793OBEadtlzS80WSknHac1DZzCKZ89dDjuaw4HBR6aIUz7K/5RApxj+Z//o17drmtZWsFnXBV5eXtq9995b7C0iCkNKSgqVKlXi7bff5pNPPhHTiYyMpGPHjvzwww88+eSTYjrTpk1jwIAB7Ny5k1atWonpvPbaa0ycOJHU1FQCA+X+Drt27UpMTAxRUVFiGpqmUaNGDW688UYWLlwoppOWlkZ4eDhvvPHGBdur7Dm9B7vTTovKLTAVodr8qphVBVN587Om//77L+3ateP777/n6adlquSDe7po37592bZtG23atBHTGTZsGOPGjSMlJaUgeJSgR48eHDp0iJiYmIsmDjQNHnsMfv3VfWwywbPPwptvQv1Clr3QNI3atWtzww03iO6Xm5GRQVhYGEOHDhXdNmrr1q3cfPPNfPfddzx3bgTvYWbNmsXzzz/P5s2bufnmm4t9HZ1Od8nv5jKVMaWYhWGKJqEXHxSCe0pIaQzWgNLT8fUXD0oB9F7e4kEpgM5gEA9Kwb3tSUls7o6o/URXrHzFoBRK0RZKScfg7SselALojSbxoBSU/ymRTin5H8WF2O12unfvLqrx999/o2mauM6yZcvQ6XR07Vr0bbuKqlOlShVatmwprtOxY0fRoNRsNrNu3Trxvtm/fz+nTp0S11m5ciUul+uiOsXNmF6s+NGyZcsAxG1t6dKlVKpUidatW4vqLFu2jPbt24sGpXl5eaxdu5bu3btfcjabTge//AI7dsAjj4DD4d4btVEjePxxOHLkyjqHDh0iLi5O3NZWrVqF0+mkR48eojpLly4FoFu3bqI6y5Yto2LFiqIvQMpWYKpQKM4jwJpH25PRrK3n+WkmCoVCUVhKY2AVHBxMu3btxHXatm0rMqUuH7vdzsqVKy87uPYEx44d4/Dhw+J9s3btWmw2W6kNrktDJzAwkA4dOlzwWXED05GdRtK+evvzih8tXbqUNm3aULmyXB0Lh8PB33//Tbdu3dALbdUF7rWsBw4cEO+bdevWYbFYCqXTurU7QD10CPr2BYPBvd1MYdaelqatBQQE0LFjR3GdVq1aEREht72iw+FgxYoVdOvWTWQJRD4qMFUoyjAdjx3C5HKxtl6zq90UhUJxneLj40PNmjXFru9yuVi2bBldunQRWYeXz+nTp9m+fbv4YPSff/4hKyurXAVy3t7edOrUSVynUaNG1KkjVych39buvvvui67DK25g+t/iR8nJyWzdulW8bzZt2kRmZma5sjUvLy/uuuuuQv9Ow4bujGl0NIwdC+3bn/3s3XdhxQr39N//6tSvX5/6hZ37Www0TWPZsmV07twZLy8vMZ3U1FQ2b94s3jdbtmwhPT1dXEcFpgpFGebOqP2k+/qz+woVeRUKhUIKyal7ADt27CA5OVl8wLN8+XKgdAbXer1erEjQuTrVq1enWTPZF5dLly7ljjvuwM/PT0wjOzubjRs3ivfN7t27SUxMvKROSbaMOZcVK1agaVqp2FppTE1funQpERERtGjRQlzntttuIyCg6EteatSAV189e7xzJ3zyCXTrBjffDP/84/652Wxm/fr14n2zd+/eUpmaXtq2Jj1duMztY6pQKNwYXE5uO3aQtfWa4RKcoqNQKBSXQ3LaK0CrVq3YsGGDSBXWc3n44YepVKkSN910k6jOW2+9xd13301oaKioztSpUy9ZIMaTLF++nJycHFGNgIAAtmzZIrpWFqB58+Zs2LDhktWlPVWVt3fv3ixdurREBWIKw//+9z/uuuuu8yoLSzB58mSioqLEbW3p0qVkZWV55Fr16sFnn8HXX7ur+nboAM8/D6NG+bFlyxb8/WVrjDRt2pSNGzfSsKFs1foHHniAZcuWceutt4rqDB8+nNtvv138+6BMVeX1rllDqzb8tavdDIWiTHBTVDS/fDuJF59/mqWtZAtoKBTlkWOvDldVeT1A27ZttW3btl3tZigU4kSnRZNhyaBuaF1CfQv/YuFiVXkVZYPcXHeA+sUXYLNBaKh7u5kBA652y65frp2qvAqFooC79x3AZjCwobHn9w1UKBQKhUJxPp6syqsoG/j5wUcfwd690LUrpKe7p/kqyiYqMFUoyiid9x/g3wb1yPHxudpNUSgUCoWi3JMfmGoUbTbhxaryKsoWDRvCsmUwb5577Wk+e/ZAWtrVa5fifNQaU4WiDFInKZm6ScnMvu3CcvYKhUKhUCg8T0mq8qopvGUfnQ769Dl7bLHAQw9BRoZ7qu+zz4Iq6XF1UY9foSiD3LVvPwCrblD7lyoUCoVCURp4qviR4togPR2qVXPvffrCC3D77e4MquLqoQJThaIM0nn/AQ5FRBBfocLVbopCoVAoFNcFxQ1MV8WsosOMDqyKWSXRLIUQERGwZg388ANUrgyRkXDjjTB0KHioOLCiiKjAVKEoYwSbc2kbc1xlSxUKhUKhKEXyt0NRxY+uH3Q6ePJJOHQIXn4ZNA3GjoW77nL/W1G6qMBUoShj3HnwEEaXi5UqMFUoFAqFotQobsZUFT+69gkJgXHj3Hue3norDBvmDlrPJTotmiF/DSHosyD0H+oJ+iyIIX8NITot+qq0uTxSposfaZoGTic6o3wzNYdD6ZRlHZcLNA2dwSCvdZWfXc/tO0kIDmZPzRqiOp6mNHUwGMQ3+lb+R+koFIrrC1X8SNG6tXtK77lDjA8/hH3WpSzx74PdZcfusgOQbctm+o7pzN49m/kPz6dHgx5XqdXlhzL1ja4zuTBWzS04zljyL/63NMFYMVhUN3dvNJrThX+rBqI6toRU8g7HENzlJlEdZ66FzCX/UrHPnaI6mtNF6k8rCXuqq6gOQMpPK6nQ5070JlmTzY7ci6lKRXxqVhXVscTEY09IJbBD8/N+XiEzh9sPHWZmz/YYqltKrONIzyZn4x5Ce8pW93XZHaTNX0vY43eL6miaRuoPKwh7upuoDij/U1zKo/9RKBTXB6r4kQLOr8ybnAyfTorG1rcPOHIvODc/UO0zrw97Bu2hXoV6pdjS8keZncpr3h1FypzlGEMCRHVsCakkfPUrxpBAUR2n2ULC53PReZlEdTSni9Pj5uPKLXlQcyVSf16F9ViCuE7Whj1krdouHpRaok9xesIfGCsGieo40rNJ+GIu+gDfCz67b+NejC4Xf97RqsQ6LpudhNE/iS+S0DSN5GmLcCRniuoAZCzZhHlXlLiO8j/Fozz6H4VCcf1QsI+pWlyoOEN4OPT89Csw2i97nt1pZ8y/Y0qpVeWXMhmY2k6lkPj1rxiC/EWnbjrNecSP+hGXOU80GNGcLhK/mYftVLJ40JP600rM24+I62St3036nxvEdSxHT5I06U+MFYSDxbQs4j+fi+bSMAT5ienkB4uO1KyL3tMD63axr04EUTUqlUhH0zSSpi7CcvSkeMYvY/E/ZK3ZKW4L5l1HSZm9XFxH+Z/iU978j0KhuL5QVXkVF2PF6R9Af4XA1GVnzp45pdSi8kuZC0ydOXnEf/4jrlwLhgpyWQTN6SRxzDzs8SnoTMaLZq88RcqPK8jdeRRANMDKWreL9AUbxXXyjpwgafICcR1Hahbxo39CsztEdVxWO/Ff/IQzPRtjhUB0Qrsra5pG0uSFWI6eBC58dvVPJHHDsQSPZEszFkWSvW7XGR25vyPzjiOkzFlxRkeuj2ynkkkcMw80TVRH+Z/iU978j0KhuP4obmCqqvKWb3JsOR49T3FpylhgqpE45lfsCakAopmelDkryN3tnhJorBAkVkgla81OMhb9U3AsNZDKOxxXMFiT1LGnZpLwhTtYBMQyFi6rnfjRc3GmZ4vquIPFBVijT7l1BAe66Qs2kr1hNwA6Hy/0ft7nff7Aul049HoWd2x+sV8vNObth0n54e+CY2MFmb8j28lkEsfOK5gqLNVH7mBxbsH0UDFbcDqV/ykm5c3/KC6P3W4nJ0d+AJaenl4qUyrT09PFNZRO8SgtW8vIyEDTNPGqvOWpb8qbjsPhIDs7+6KfBXgVbllPYc7LtzVprtW+KVOBqTMzF3vq2XVqJqHBjXl3FHn7jxUcSw1ubPEpZP69Fd2ZtZF6f1/0Pl4e13Ga80j7dQ0677PXlhhUa04nqXNXgv7sIFpqAJq+cCOunLPr1KT6KCdyL9bYRHEdS9QpcjbtLyjzZqx4fjCid7q4f8Me1reuT1pw8dc1OtKySFuwEZ332bWEEpk/l9VOytyV6LzOrvuVeHaappH26xo0h/OsjpDNZa7YpvxPMSiP/kdxeV555RVsNpuoht1u56WXXhKvvp2WlsZbb70lqgFw+PBhvvrqK3GdlStXMm/ePHGdiRMnsmfPHnGdoUOHkpeXJ6rhcDgYMmQIOp0OHcXbx7Rz3c5E9o28bGXe9PR03nzzzRK1tTAcPXqUL7/8Ulxn9erV/PLLL+I6kydPZufOneI6w4YNw2w2X/Szp1o8hUl/+RoNOpeJm7yevuw559qaJJmZmfzvf/8T1QCIjo5m9OjRHr1mmQpMDcH+BN3WAgDfZnUwVJSZSuffsj4VHrnLrXNDHbHBjVfVMKq82gfN4cS3aW2MYTIZGIO/LxFvPYnOoMe7TgR6f1+Roi06g4EqLz+EqUoFjBWDMEVUFHt2FR/uhF/rBmDQ49OklphOYMcWhNxzKyBrCz71q1Gp332gaRfVueXAMaqkZbHg9lYl0jFWCKLqG4+D04VPoxoYKwaLFI3Se5uIGP4oej8fTNXCMIQEiDw7nU5H+Av34FOvGnpfb7zrRIj1UUiPW5T/KQbl0f8oLs3EiROZPXs2oaGhojqvvfYahw8fFtVwOBw8+uij4oFPeno6999/PwEBssXUjh49ysMPP0yVKlVEdVavXs0rr7xC9erVRXUmT57MtGnTCAsLE9V5/fXXOXjwICBXldfhcPDYY49dMvDxFJmZmdx///34+cnVygCIioqiT58+4ra2du1aXn75ZXFbmzZtGhMnTqRSpYvX9xjWbhgmw+UDU81hYtXHQ3n//UvXnHzjjTfYt29fSZt7WZxOJ4899tgls7+eIisri549e+Lr69mlSGUqMEXTyFyxDd9mtan6zlOi2ydkLtuMITiAau88Tci97cR0MpZvBaDyiw9SeVAvMZ2cTftxZpmp+Fhnqr37DDqjTNEW6/FELAdjCe52M1XffgpjpRARHWeuhay1Owm4pSlV33wSn4ae2dPzv2iaRsayzXhVC6fau88QeCYwkSBj2WZ03iYihj1G2BNdzvvsgXW7yfLzYXWbRiXWyVqzA83uIPz5e4kY/liJr3cpcvfGYE9IJfT+jlR96ykMQf4iOvbUTHK2HCSoU2uqvv0UXiUsDHUpNIdT+Z9iUt78j+LirFq1ildeeYVq1aqJvvGfNGkSEydOpFq1amIa4A5IVq5cKaqTH5AcOXJEVCcjI4OePXuSkZEhqpMfkDidTqpWldtWbc2aNbz88svitjZ16lS+/fbbgmcmVfzojTfeYMWKFaJ9kx+QHDp0SFQnP/hNT08X1YmJieGhhx7C4XCI6qxbt44hQ4ZQtWpV9JeoMVKvQj3mPzwfb4N3QVY9H5PehJ/JjyFh89Fn1mPkSHj6abBaz7/GjBkzGDt2rLhfe/PNN1m2bJm4rT3++OMcPHjQ4zplKjB15lpwpGUR3P0W9F4mvGvJvImxnUomd080wV3aojMZ8akv03kuq42s1Tvwb9sIU6VQMR1wD3RNlUPxa1VfVCdj2WZ0RgNBd7XBK6IiBn+Zoi3Z63ejWWyEdL8Fg78PXlVl3phaDsViiz1NcI9b0BkM+NSV+aJ1ZOaQ888+Am9riSHA97w+8rXY6PrvAZa2a4bVu2TbeWhOFxnLt+LToDo+9aoK29wW9AG+BHZojk+9qugMMu4k6+9t4HIR3O1mjKGBmIQyfzlbDyn/U0zKm/9RXEh+Ns7pdIpmL1avXs3LL78MIKozZcoUvv32W3Gd4cOHs2LFClGd/OA3P8MspZOZmUnPnj1JT0+nYsWKHs+U5BMdHU2fPn1wOByifbNu3TpefPFF4Owzkyh+NH36dMaOHXuejgT/+9//WLZsmajOuQGJpE5+Ni4tLY2QkBD8/WVefB87dqwg+L3SvfRo0IOm4U3R0DDoDOh1eoK8gxjQZgB7Bu1hwtAeLFwI/v7w44/QtSukpbl/d8OGDQwePBiQtYHvvvuuYMmApM5bb73FkiVLRHTKVmCaacZYMYiAmxqL6mQs3wIGPcFd2orqZG/ci8ucR0j3W0R1LFGnsBw9SXC3m8UqyoK7CE32hj0EdGiOMVjGScA5WcxaVfBpXFNMByBj6Rb0vt4E3d5SVCdr1XY0h5OQ7jdf8FmXLQfxt9o8Uo3XvOsojqR0gnvI2pw9KR3z9sME33Uj+hIG05fDZXeQuXIbfi3ri72cyCdz2Wblf4pBefM/igtxOp0FGRKQG/Ccm42T1Fm7di0vvfRSwbGUzrRp0/jmm2/Edf73v/+xfPlyAEwmE+Hh4R7XyA9IDh06BJROQCKpc2427lydgn1MKVpxmksVP1q/fj1DhgwpOJa6n5kzZ/L111+L67z11lssXboUAKPReMmpryXB6XTyxBNPcODAAUDe1lJTUwutM7rLaNpXb8/yp5bjHOEk861Mxt8znnoV6gFw772wcSNUrQrr10O7drBlywl69+6N3W4XvZ/IyEgGDhxYcCylM3v27PPWMHtax/OLz0qAZrFR/+nWNKyWIqbhyLVxbN0Oqt5Rl+ZN8wCZtSWaprFuVSQBNUO4sYs/Ot1pER2AHTPWYvA20vax6ngFyulE/7wLzWan1ZP1Ca0ip5O87QRRp1Jo+b9O1IpIEtPJS84hassBaj/QjGZ1MsR0XA4XK1dtpmLLqrS6RQec/+ye/HcLiRFB5N7pTZMS2smm1RvwCvWlba9wDF5yfXTgj38AjRufrIu/oC2cXHEYZ6aZGx5vRBVBnazoVI4eOE7j/rco/1NEyrL/OSrWmuuL9PR0GjRoUBCUSEwR0zSNOXPmUL9+fbZu3SqmY7FYmD9/PnXr1uXIkSNiOklJSURGRlKpUiWSkpLEdPbu3UtycjImkwm73X7Z6Ygl4e+//z4vayU1TfDXX3+lRo0aBRk5aVvLD0rydXQ6HTqdDk3T0DSt0NOIO9ftfEHhI6vVyrx586hbt25BNlvifpKTk9mwYYO4re3fv5/ExES8vLyw2WxERERgENjre+XKleetkZWytfnz51O9enX2799faJ2L9fN/adUKNm+G++6D6tU1liyZTb169UhJSSm0TlGx2Wz88ssv1KtXT9RPp6SksHbtWqpUqUJiYqKITpnKmKKDWj2bikqcWH4YR66dOr1LtiXHlUjbm0jW0RTq9G4uuj7Cmp5H/KqjVO/aEK9AHzEdzaVx7I+9hDSpRGiTymI6AMd+24spwJtqXeTW+AHELtyP5nRR+0FZW0iMPIYlKYc6D12oUyE5h5bbTrC2W8OCir3FJScug+QtcdS+vxkGL5k1fgBOq4PYxQeo3L42/lVli88c+30vfhFBVL5VNnN+7I+96E165X+KSHn0P4oLCQsLo3HjxhiNRvr37y/yJl6n0/Hhhx8SGBhIREQEDzzwgIiOj48PY8eOxWw2065dO1q1aiWiU6lSJUaNGkV6ejoPPvggTZs2FSlI07x5cwYOHIjdbueFF16gQQOZ783u3bvTpYu7NsLgwYPFsjH9+vWjSZMmGAwGBgwYIGZr77//PkFBQVSuXJnevXufp1Pcyrz/xdvbmzFjxpCXl8ctt9zCjTfeKHI/4eHhjBo1ioyMDB544AEaN25MYKDni/c1a9aMIUOGYLPZeP7558VsrVu3bnTr1g1w21qNGjI1Rl544QWaNWuGXq9n4MCBHu2b6tVhwwb4+WcdH3zwLqGhoYSFVaFPnz4iNuDl5cWYMWOwWCzcdNNNtG3bVkQnLCyML774oqCgW6NGjQgK8uw4sExlTE2B3niHylYSO7XyKEH1KlKhRYSszqqjGHxNVO8uOy0wYUMMLruL2sID3fSDp8mNz6LR8xdORfUktiwLSVviqNO7OUYfuSmimqZxalUU4TfVILCWbHXJUyuP4hPuT5Xb6lzw2R0rjqDXYE23khc9OrX6KDqDjlr3NyvxtS5H8tYT2LOs4sGV+VQm6QeTaDqondj6VQCX3UnC2miqdqqv/E8RKW/+R3FxnE4ns2bN4qGHHmLy5MnEx8eL6Bw4cIDVq1fz4YcfMmzYMCwWy5V/qRgsWLCAU6dOMXbsWNq1aycyHRHcU3ntdjsfffSRxwdv5zJ+/HgCAwMZO3YsGRkZIhqapjF+/HiaNm3KhAkTOHnypIhOTk4O3333HQ8++CCTJk0Ss7VDhw7x999/M2LECN58801yc3MLPtPr9Lg0Fy7NhYGSveRdvHgxcXFxfPHFF9x2221itjZ9+nRsNhsjR44kJCRERAPctubv78+YMWPIysoS0ci3tUaNGonamtlsZubMmfTq1YtJkyZx6tQpj14//93A0aNHWbZsNTVrHqJ58+rceGOGR3Xy+euvvzh+/DiffvopnTp1omLFiiI6M2bMwGq18uGHH1KxYkWPv/zWlcYmr4UlqF6Y1mm2XBVRcGd78k7nEFAzRFRHc7rIjk0nqK6MYRToaBpZ0akE15ddfweQE5eOb+VADN6y7zMsKWZ0Bp14kODItWHNyMO/qkwxnXxcDifmk5kE1q5w3s91Lo1JT/xAWkV/3pnQu8Q6pWkLWdGpBNapgE4vuxdXbmIWpgBvTAHeojq2LAvOPDu+lWW2iMlH+Z/iUxz/s/C2Cds1TZNdzHsdULNmTe3EiRNs2LCBjh07ium8+OKLTJs2jbi4ONFtKDp16sTRo0c5duwYJpPMC1C73U7t2rVp3Lgxq1ZdvFKrJ4iPj6dWrVoMGjSooJiTBOvXr+eOO+5g4sSJBUVcJJg8eTKDBw9m7dq13HHHHWI6r7zyCpMmTSI2NvaC6sJ7T+/F5rRxQ6Ub8DYW7rtnVcwqRqwZwchOI8+b6nn33Xdz4MABYmNjxWzN4XBQu3Zt6tevz9q1a0U0ABITE6lZsyb9+vVj4sSJYjqRkZF07NiRb7/99ry14J5m2rRpDBgwgFWrVnHXXXdd8fxL9fGVGDp0KOPGHUXTFqFpOvr2hUmTwNPm0LVrV/bs2UNcXBxeXp7fsxzctlavXj1q1qzJhg0bin0dnU53ye/mMjWVV2+Sb47B2yg+KATQGfTig0JwT0kpjUEhQEDNUPGgFMAnzF88KAUw+nmJB6UAeqPhgqAUoNXWE0ScymLpgzd4RKc0bSGoXkXxoBTAr0qQeFAK4BXkIx6UgvI/JaG0/I/iQpKTk2nZsiUdOnQQ08jMzGT27NnieyPu27ePtWvXMmjQILFAAeDPP/8kPj5edGAN7u1OHA5HQXVZKcaPH09QUBBPP/20mEZ+puyGG27g9ttvF9PJzs5m1qxZ9O7d+6Jb3hSnMu/FqvIePHiQVatWidta/gwAaVvLnwFQGrYWEBDAM888I6aRb2tNmjShU6dOhfqdy1VevhRnZwD48NtvOnx9YcYM6NEDPDm5IX8GwMCBA8WCUjg7A0DS1spUYKpQXE/c88deMkJ92XRHvavdFIVCobgkFouFl156SXS98vfff4/ZbBYfXE+YMAGTyUT//v1FdcaPH0+NGjXo2bOnmIbNZmPKlCncfffdNG4sN23/1KlT/P777zz33HMEBASI6axbt479+/eL29qcOXPIzs6+pK0VpzLvxary5tvagAEDStbgKzB+/HiqVatGr15ye1Xb7XYmT55Mp06daNZMbrlQQkIC8+fP59lnnxWd/r5x40b27NlTJFu7VOXly/Hjjz+SmZnJSy+9xIMPwtq1UKkSrFoFHTpAbGwxb+A/TJw4EaPReF5VXgnGjx9PREQEDz74oJiGev2sUFwFKiVk0faf48x/ug0Ok1yhIoVCoSgpBoOBJ554Quz6LpeL8ePH07p1a9q1ayemk5GRwffff88jjzxC5cpyRbT27NnD+vXr+fTTTzEa5YZZv//+O4mJiUyePFlMA9x7vjqdzvO2PZFg/PjxBAcH8+STT4pp5GfKWrRocclp6cXJmP63WmtWVlapzgD46KOPSmUGgOR0cSjdGQCBgYFFmgFQmIq855Jva82aNSuYln7zze6KvffeCwcOwC23wL//Qu3aRb2Ds1xpBoCnyJ8B8MEHH4hmZVXGVKG4CnRbsB9Np2O5cKEihUKhKClhYWEiFWXziY2NJSMjQzxTtnPnTnQ6nXhWdsuWLQQEBNCvXz9Rne3bt1O7dm3uu+8+UZ0dO3bQtWtXGjUqeZG+S2G1Wtm/fz/PP/+8aFY2Li6O1NTUy9pacQLT/7Jz506AUrE1f39/8RkA27dvp2bNmtx///2iOjt27KBz5840adJETMNms7Fv3z6ee+45kerF+Zw8eZLk5OQLbK12bYiMhM6d4bbboGYJNx3YtWsXmqaJ29rmzZvx8/MTnwFQpoofhTSupN0x/ZGr3QyFQhSjzcnM3rM42CKCzz6952o3R6Eot6jiR57hxhtv1Hbs2CGqYbVa0el0om/iwZ1dCAgIEA2A83UkB72lqaNpGjk5OeI6LpeLvLy88/ZLlcBqtQLu7VwuRnRaNBmWDOpVqEeIT0ihrnmxwjjK1squjsvlIjc3t1AvQYpb9AjcQbCmaRe1NbsdHA7w9S3SJS/KtWZr10zxI4XieqDDmiiCMy0sEd5iQ6FQKDyBXi8/VPD29hYPSgECAwPFB2/5OqVBaejodLpS0dHr9eJBKbht7VJBKVBgHyUtfqRsrezq6PX6Qmfmi1P0KB8vL69L2prJdDYozclxrz8tLuXJ1srUGtMgo4W7wg5d7WYoFKI8vHgbaXX8qNgth7t0yt4VCikWXu0GKBSKa47iTOUd2WlkQVZNUb6Q7tv0dLjxRkhKgr17oW5dEZlrhjIVmCoU5Z3wA9lU3ZXJurcbQCm83VIoFAqFQlF4PFH8SFF+kO7b0FBo3x7mzoX+/WHlyut7eKim8ioUpUiLn05i99Vz4IGIq90UhUKhUCgU/8ETxY8UiqLwzTcQHg6rV8P06Ve7NVcX0cBUp9Md1+l0e3U63S6dTrdNUkuhKOt4Z9pptDiRQ/dVwRYkV9ZdoVAoFApF8SjYx7QIxUFXxayiw4wOrIpZJdUsRSlTmn0aFgb5O/EMHw4nT4pLlllKI2PaSdO0VqoyouJ6p8mfCZgsLvY8Xv1qN0WhUCgUCsVFKE7GtCQFchRlk9Lu00cegfvvh6wsGDQIytCmKaWKmsqrUJQGLo0WP50kvnUwKU1Kp7KdQqFQKBSKolHc4kftq7dXxY/KEaXdpzodTJoEwcHw11+wYUOpyJY5pIsfacAKnU6nAVM0TZsqrKdQlElqbkojNDaPzS9d5+XWFAqFQqEow6jiRwq4On1atSpMngze3nD77aUqXWaQDkw7aJoWr9PpKgF/63S6Q5qmrT/3BJ1ONwAYABBa1eeCC2iahsupYTDKJ3edDpfSKcM6LqcGOtDr5cuVefqeWs8+gTnMi6iulUR1LoXSKR7K/ygdhUJxfaGj6PuYKhSe4rHHrnYLri6i3+aapsWf+X8S8Adw80XOmappWltN09oGhF5YEGb5xGPugESYHUtOk3DELK4Tty+LvauSxXUyk6xs/OmUuI7N4uTvKcfFdTRN469vokulhPaGH0+QlWzz2PUqROVQe0Mqu5+ojtPr7J/c4X/SiNqS4TGdS5F8PJetCxLFdXKz7Kz5Lk5cx+lwsWz8MXEdUP6nuJQ3/1PeUIUJFYpLo6ryKsoKO3fCquusnpZYYKrT6fx1Ol1g/r+BrsC+olxj7aw4ti9KxORtkGhiAQc3pPLjW/sJr+0nqpMYbWZK/12EVLkwM+xJzBl2JvfbiclbNovgtLuY/fo+clI9F8RdisVfR3NsRwY64ch026JEloyLIaSKt8eu2XrWCew+evY+drbo0fHdmcx4eQ9htXw9pnMxMhItTHxhJ/4hslWAbXlOpg3ejdMuG8S5XBq/vH+IpGPyQZzyP8WjPPqfcooqTKhQXITiBKaqKm/5oaz05b//wk03wVNPQXr6VW1KqSI5cqgMbNTpdLuBLcBfmqYtK+wvb/4jnj8/P0qV+gFiDQSI2ZHBzFf2EFLZG28/uQFo2qk8JvfbiTnDTpX6/mI6VrODqQN3kXDULKrjcmn89H8H2b8mRbyPVk47zqrpseI6+9YkM/ftA1Sq4+exANgvxUrjhQkcfCACy5kZAQlHcpg6cBcAoRFyQUJOuo2JfXeSnmARtQWHzcV3r+7l2I5MUR1N01jwxVG2/J4gbgvK/xSP8uh/FArF9YWqynt9U1b68uab4dZbITERXn/9qjalVBELTDVNi9E0reWZ/5ppmvZJYX93z99J/PzuQQDRwc2pQ9lMHbQbu8UlOrjJTrEyqe9OMhKthEb44OMvs7TXYXMx4+W9xO7JAuSenaZp/PHZEbYtShTVAdj06ykWfx0trhO1JZ3ZQ/fhcmpEeNAWWsw9icGhsfPZmgCknMhjUr+d5GY6qFLPX2y9rCXHwZQBu0iKycXkradidZnMrMup8eNb+zm4IRWAKg3k+ujvKcdZN/uEW0fQFpT/KR7l0f+UY/ILE24/U+dBoVCcoWAfUwo/A0hV5S0/lJW+1Othxgx3IaRZs2D//qvanFKjzFWMOLIpjdnD9pH/okpqoJt8PJdJ/XZiyXa4dYQGN7lZdiYP2EVybJ6ojtPh4vvh+ziyKQ2A4Ere+AXJTN9cNv4YG344u/uvVB/tXHqaXz84dFZH6Nmd2J/FtCG7sVtdHtUx5jlp8dMpYu4KI6O2H5lJ7gAhf/2q1P3YLE6mv7ibE/uyAahc1x+9wfMBsKZpzP/oMDuXJgFgMOkIqyETAG/48QRLvokpOJZ6dsr/FI/y6H/KOR00TbsR6AG8qNPpLqj/qNPpBuh0um06nW5bcvKF65L37dtHbm6ueEO3bt0qrlFaOpqmlYqO1Wplz5494jrJyckcOya/3n///v2YzfLLN/L7prhVeSP7Rhaqimt5s7Xdu3eL66SkpBATE3PlE0vIwYMHuTn85kL3ZXEpbN80agQ9e7r/vWOHnE5J8LStlanA1OXS2Ls6maDws+v7IgQGUi6Xxva/EgmpdHYaZYTQ4GbPimT8g88O0KQGUUc3p58XfEgNQBOjckhPsKA3urUCw7wICPXyuI453c7Rzen4Vzj77CRswWl3sXNpEsGVz7E5D/VRkwUJ+GbY2fGcO1u6c8lpgsLOPiupPjqwNgVvv7NZMSmbi92ThS3PWXBcua6/SHXU9AQLJw9k4+3vnupqMOkIr+X59ZjWXKfyP8WkvPmf8k5RCxOGh4ef91lMTAxPPfUUfn6y66I3bNjABx98IKoB8P333/P999+L67zzzjts2bJFVMPhcPD444+TmpoqqpOZmUn37t3FbeDYsWM88cQT4jqRkZGMGOGeuilZ/OiHH37gu+++8/h1/8t7773Hpk2bRDWcTidPPfUUF3tx5UmysrLo0aMHPj6y9RFiY2N59NFHCQiQXR6yadMm3n333UKf37ix+/+HDxdN56effmL69OlF+6Vi8MEHH7Bx40aPXa9MBaZ6vY7uL9YlN9NO3TYhBFQwUamO5wc4er2OroPr4LC7CKvpS5V6/mJT6W7tU5WAil6YvPU0al9BbMDWuENFqjcNBKB553AxnSr1A2jVvRIuh8YNncNEBu4A/qEmOvevRW6mg0YdKhAS4U1ARc8PQA0mPT1eroM1x0n1poGEVPGmSgMP2IJLo/XsEyQ2DyK+TQgAdz5XE6OXHv9QE3VaB4v1UavulQmr6YtOB83uDBPTqd0ymAa3hAJwQ2c5ndAIHzo+UR2r2UmzO8OoXM8fo5fnXZe3n0H5n2JS3vxPeaakhQnj4+O5++67CQ0NlWoiADt37uS+++6jTp06ojoLFizghRdeoEmTJqI6X3zxBaNGjaJZs2ZiGi6Xi/79+/PHH3+I6uTl5XH//fcTGxtLpUqVrvwLxSQhIYEuXboQEhIiWvhw9+7d3HvvvdSuXRuQK360aNEinnvuOXFb++qrr/jkk09EbUDTNAYOHMj8+fNFdSwWC7169SIqKoqIiAgxndOnT9P+qfYc73yc1cdWi+ns2bOHe+65h1q1ahX6dxo1cv+/KIHpX3/9xTPPPCNua2PHjmXkyJEetQHpfUyLRLDeQvzPO7CanXw50ohOF0yzCoeu/IvFYPmSPBKjzIz6KpgWrU1Urx6Hj6/nHV90lIOdS5J59gV/XhpqIiMjhZoBGR7XMZtdfDgrmVs7ePHdDANHDufRJOCAx3U0TeO7yalUqqznp8lGoo5CMwEdgPe+y0SPxqTRBjIzAmkWeFBE58ffzGQmWfnySz/CwrxpWieqxF+C/isshB7PJWFCCPecaffWzTaObk5n+NuB3P+gN0ZjAmEBSZ64hfNITnLy5i9J3Hu/D599aeREXCb1BfrI4dD4emoyDRsZmT/TyKEDDpoK2cLgqWn4B+j4bpyBUyd9xGzum8nZyv8Ug7Lqf17zeAvKBZWBP874OCMwt7CFCdPS0ujWrRvHjh3j3nvvFWvgkSNH6NatG1lZWaKD3tWrV/PII4/gdDpFdaZNm8abb74JIKajaRrDhw9n1qxZhIeHiwWMdrudRx55hPXr13PHHXeIBYzp6el069aN6OhounbtKqIBcPToUbp160ZmZmZB3+TfU3GLH11sCujatWt5+OGHxW1t5syZDB8+HJC1tf/973/MmDGDChUqUKVKFREdh8PBo48+ytq1a+nYsaOYrWVkZNCtWzfi28RDCJfsw5ISHR1Nt27dyMjIKFLfNG8OHTu6/18YNmzYQJ8+fXA4HKK2Nnv2bIYOHQrADTfc4LHrlqnA1OnUmD3TTKe7vbmhhdz2Fi6XxvixOdSoaaDng76YTHJv4iZ9m4PJC/oN9icoWE9QsEyS+uc5uaSnuXjp1QAMBh1Nmso8v8j1NnbvtPPuyCC8fXQ0ay6jE3/Kye+/5vJAH1+q1zBSvYaIDDarxpQJOTRvaeL2O7095vhCppqxVzeQc8/ZqScTv8kmJETHE8/4ERAgN1lh5lQzNhsMeSUAbx8d9RvK9NHiBXnExToZOzEEvV5H0xtkdA7st7NqhZXBLwcQEqonJFTm2WVlupT/KSblzf+UZzRNiwFaFvX3cnJyuOeee9i3z51clRrwnDhxgi5duhRMD5TS2bp1K7169cJms4nqzJs3j4EDBwIQHh7Of6dFe4pPPvmEMWPGAHL34nK5eO6551i8eLGojtls5t5772Xv3r2iOqdOnaJLly6cPn36PJ3iZExHdhrJiDUjLlowZ9u2bdx///1YrdbzdDzNb7/9Rv/+/QGoUKEClStXFtEZNWoUX375JeC+F4mA0eVy8cILL7Bw4cICHQlyc3O577773Otks6D2C7VFih7Fx8fTpUsXEhPdRfuKcj8tW8KGDYU7d8eOHdx3331YLJYi6xSFP//8k759+wIQEhLi0Wx2mQpMU1Nd5GRrDHlFdn736r+tHD7o4JPRwaKDwuPHHCz+M48nn/WjUmW5rSDy8jSmTzFz0y1e3NzOc/tv/hdN0xg/NpvwSnoeeUx2vcfUiTm4XDDoJVlb+H1+HokJLj78NNhjztV7tw2/zTaSRwTCmbVwO7fbiNxgY+gbAaJBaVqqk7nf59L9Xh+xgBTcL5EmjcuhXgMj3e6RXfcxaVwOfn46nusvO23z++/Myv8Ug/LofxTno2kaDz74IJs3by74mcSAJzk5ma5duxIXFyeqc+DAAXr06EFOTg4AlSpVIiwszOM6y5cv58knn0TT3NVdpQaJEyZM4L333is4ltDRNI1XXnmFuXPniupYrVZ69+593vpICZ2UlBS6dOlCbGzsBToFVXk1DU3TCjU26Fy380WzbAcPHqR79+5kZ7uLEVasWFEkm/3333/zxBNP4HK5g2mpgHHy5Mm88847BcdStvbaa68xZ84cUR2bzUafPn2IjIx0/+AYTG833ePZ0tTUVLp06XJeoTCJ+zl8+DDdu3cnK8tdGd/TAWM+q1at4tFHH8XpdNcY8bStlak1pikpLm6705uWreWKWeQPbqpVN9Crt0wF0Xwmf5uDwQj9B8sOdH/+wUxqiouXhsrq/PuPjR3b7PQb5C8y7TCfxAQn837OpVdvX2rWknt3YrNpTBmfQ9MbjNzZ2XMD6tCpZpyBOrLOGTyPH5tDULCOp5+XDa5mTDWTlycfXC1ZaOFYjJMhL7szZFIcPmhn+RILTz7nR6hQphQgO8vFrOlm5X+KQXnzP4qLM3fuXJo2bYqvr9tuJQZWAQEBLF26lKCgIHx9falcuTIVK1b0uE7NmjVZtGgRAL6+vmIB4y233FJQfERS57HHHisIFqR0NE3jgw8+4KGHHsLLywu9Xi+io9fr+fHHH7nhhhtEbc3f35+lS5cSHByMr68vYWFh5wWMxdky5mLUqFGDv/76C51OV9A3EgHjTTfdxIwZMwBZW3v44YcLXoJI2tqIESN4+OGHMZlMYram0+n4/vvvadGihait+fn5sXTpUkJDQ/H19SU0NLTI059tNjh0CJIus/qrWrVqpWJrbdu2ZdasWYCMDZSpjKnLCS+9Jju4WbvKyoF9DkZ+FoSXl9zgJi7WwYLf83j0CT+qRMhlKyx5GtMnm7nxJhO3tpetTjlhbA4Vw/Q89pRscDVtUg5OBwx6WdYWFvyex6mTTt55P9Rjf7zGU04C/rKQ0c8fV6D7i233Thsb1lp5ZVgAAYGC2dI0Fz/OyqVrDx8aNZHNlk78Noc6dQ3cc79stnTiuBx8fXX0HSBrcz/MMpOVqSn/U0TKo/9RXIhOp2Pz5s0cOHCAyZMnc/jwYSpUqOBxHV9fX3755ReysrJYuXIlf//9t8c1wB0AT548GW9vbyIjI1m2rFBLbItMcHAw3377LTVq1OC3335jv9BGhD4+PkybNo277rqLF198UWS6sF6vJzMzkz///JPBgwdTpUoVkUG8yWRiy5Yt7Nu3jwkTJnD06FGR+/H19WXevHlkZmayYsUKVq5ced7nep0el+bCpbkKgtTiEBAQwJQpUzCZTERGRrJ06dKSNv2iBAcHM378eKpVq8aff/4ptl2Qr68vU6ZM4Y477mDo0KEEBwd7XEOv15OVlcXvv//OgAEDqFmzppitbd++nT179jBu3DiOHTsmMv3Z19eX3377jfT0dJYtW8aqVauKPOZ85RWYMgXGjYOXX774OQEBAUydOhWj0UhkZCR//fWXB1p/IUFBQYwfP56IiAgWLlzo8e2CylRg6h+go3Ub2cHN7JlmIqrq6f2w7FSwud/notfDgBdlB7pL/8ojOcnF51/LVq07eMDOln9tvPl/gfgKZityclz89kse9z3gS+06cuapaRrfzzDTuKmRu7t5LlsaMsMMOsh44ezgec53ZgICdTwjnC39/ddccnM1hrwqa3P/bLARfdTBF2ODRbOliQlOli+x8Hx/fypUlAuuHA6NH2fn0uE2L+V/ikh58z+KSzNy5Ehq1KjBc889h8kk8+LLbDbz5Zdf0qlTJzp37kynTp1EdKKiovjxxx8ZNGgQrVu3pmXLIi+5LRTLli1j27ZtTJw4kZtuuok2bdqI6EyePJnk5GRGjBjBHXfcUTCd09N8+umnGAwG3nzzTapWrYpe7/kXrZqmMXLkSKpVq0bfvn3FbC03N5fRo0dz++2306VLFzp3Pn/6ZlHXma6KWVWwxvTcqaDHjh3j+++/Z8CAAaK29vfff7N582a+/fZb2rZty4033iiiM3XqVJKSkvjpp5+46667xGzts88+Q6/X89Zbb1G9enWR7xdN0/jwww+JiIigfpf6/BT5E6uPrfb4VN68vDy++OILOnbsSNeuXenSpUuRr9Gwofv/l6vMGxsby6xZs3jhhRdEbW316tX8888/jB07VsTWdPlrH8oCDRuZtL9WyRQGyCc7y8XxYw6at5QdgNpsGrt32LjpVrk1V+D+w/r3Hxu3tvcSHRgC7Npho0EjI/7+sjPAY485MJqgWnXZ9yapKU6SklweK9Siz3BR59Ykcrp4c/rbs1sp5OVpHNxv58a2sjbndGps3Wzj1vbyNrflXxttbvLCaJS1uUMH7YSH66kYJheYAiTEO8nL06hbT9bmlP8pPsXxPw1rJGzXNK2tYLOuCxo0aKBFRUUxYcIEhgwZIqbz1VdfMXz4cNasWcOdd94pptO3b1/mzJlDdHQ0NWrIVNbTNI127dpx8uRJoqOj8faW+VvMzc2lbt26NGrUiHXr1ologDvAatiwIf369WPSpEliOitWrKBbt26MGzeOly+VGvIAY8eOZejQoaxcufKCoBRgf9J+LA4LzSo1w8d45ZlBHWZ04J+T/9C+ensi+0YW/HzAgAHMmjWLqKgoatas6dF7yEfTNDp27MixY8eIiYkR2+8zLy+PunXrUq9ePTZs2CDm82NjY6lfvz7PP/88U6dOFdEA91rJu+++mzFjxjAvcN5F+88TfPvtt7zyyiusWLGiWEEpwF9/wX33QefO8J/kfgGDBw9m+vTpHD16tGDrIwnuuOMODh8+TExMTLH3F9bpdJf8bi5TgWnzFl7a70s8X4BAoSgNQr/NIeyLbGKXh2ETqkqqUCgKjwpMPUNAQIAWHBxMdHS02KA3P8Bq2LAh69atExv05gdYffv2ZfLkySIaUHYCLE+RH2AdPXq0SHswFoX8ACsmJoaYmJiCdX+eJj/Aqlu3Lhs3bryorR1IPkCePY8m4U3wM1158H2xjOnVCLBee+01MZ38AGv58uWiW/jkB1hHjhwR3cf43ABrU+Kmi2a8S4rFYqFevXrUrFmTf/75p9h+LSoKGjSA6tXhxIkLPz9x4gT16tXj6aefLlhrLMHatWvp1KkTX375JcOGDSv2dS4XmJapqbwKxbWKLk8jZKYZ853eKihVKBTlCrPZzGeffSYWlIJ7r8/Tp0/z448/imbfP/vsMwDefvttMY38KYJVqlShX79+Yjp5eXl8/vnndOjQgbvuuktMJ3+K4HPPPScWlAKsWbOGf/75hzFjxogFpQDTp08nMTGR2bNnX9LWijqV92JVeUeNGoWmaaK2Bu5p9pUqVWLAgAFiGhaLhVGjRnHrrbcWO+tXGE6cOMGMGTN45plnRIPSdevWsX79er788kv8/PwuWVW5pMycOZP4+HimT59eIr9WuzaYTHDyJJjN4P+flWGff/45LpfrvIrJEowcOZLw8HAGDRokplGmqvIqFNcqQfNzMaa4SB+iCrMoFIryhdFoFA2wLBYLn3/+Oe3bty9XAdb//vc/0QBrxowZJCYmMmLECNFgPn/QW54CrFtuueWyAVZx9jI9l9IOsN54441iT6ssDN999x3x8fHitvbFF1+UWoAVFhYmGmBZrVY+++wz2rZtS/fu3Ut0LaMR6td3//vIkfM/O3XqFNOmTePJJ5+kXr16JdK5HBs2bGDNmjUMHz4c//9Gxh5EBaYKRUlxaoRMMWNpZSLvVtm1gwqFQlHaVK1aVTTAysnJoUuXLrz//vuig16r1UrXrl3FAyxvb2969OjBwIEDRXWqVKnCY489JprBAmjYsCFDhw4VDbDsdjs33XQT7733nmiAZTabC2VrxSl+1GFGB1bFrALcAXC3bt3EAyyTyUT37t1FAyyAypUr8+ijj5Y4wLoSDRs25NVXXxUNsBwOB23btuW9997j39P/ntdvniTf1j744AOP+LX85fD/ncpb2rYmWWcA1BpThaLEBCzKI2JIBvFTQzD3kN2bUqFQFB61xtQztG3bVtu2bdvVboZCUWrEpMeQnpdO3dC6hPqGXvH8SxU/UpRtrqV+s9lgzRpo3RrO2XL3muRya0xVxlShKAmaRuikHGx1DZi7yu7pqVAoFAqFQp6iZkxHdhpJ++rtGdlppGSzFB7mWuo3Ly/o1u3aD0qvhCp+pFCUAN+NNnz2Ojg9OhgE9/RUKBQKhUJROnii+JGi7HOt9JvD4V5nej2gMqYKRQmoMCkHR2U92Q+qKbwKhUKhUJQHSlr8SKHwFDabe33pAw9AXt7Vbo08KjBVKIqJ9x47fhtspPfzR/NW2VKFQqFQKMoDOtzf6SowVVxt1qyBxESIjgbBGnRlBhWYKhTFJHRSDs4gHVlPylUQVCgUCoVCUbqUtCqvomxzLfXX77+7/9+799VtR2mhAlOFohiYjjsIWGIh82k/XIHqz0ihUCgUivJCUQPTEWtG8M/JfxixZoRksxQeoqz3V3RaNEP+GkLQZ0FMjdDDW0EcrDuE6LToq900cdSIWqEoBiFTzGgmyHhBbpNhhUKhUCgUpU9+YKpRuC0Vr6Xqroqy3V9Ljy6lxeQWTN8xnWxbNug08Mnmz7jptJjcgqVHl17tJopyndR4Uig8hyHZSdC8XLL7+OGsZLjazVEoFAqFQuFBVFXe8k1Z7a/otGj6zOtDrj33gs/sLjt2l50+8/qwZ9Ae6lWodxVaKE+Zz5hqmoamFe6NVUlxuZSO0rmyVshMMzobpA8seba0vD278qaj/I/SUSgU1x+qKq/iavDVpq+wO+2XPcfutDPm3zGl1KLSp8wHppO/zSkVnT9/yyUh3imus2uHjU2RNnGdhHgnf/4mX1c6N9fF7BlmcR2XS2PKBHkdgO+m5WCxXHywq8txETwnl5wePtjrlGzCwbo1Fg7ud5ToGoUh6qidv5dZxHXS0138/MOFb/k8jd2uMX1y6diC8j/Fo7z5H4VCcX2hih+VT8p6P/2w5wfsrisEpi47c/bMKaUWlT5lOjCdNimH1Sut6HSyW3GsWWlh5HtZRFSVnZZ59LCd/s+kUbWarE5amovnn0zFz0/2udntGq8MyiAzQzZjoWkan3+czZ6d8gPq3+flMue7XPz8Lv6nEfxTLoZMjfRBJcuW7thm45WBGdSsJWsL8aecvPBkGhUqyuqYzS4GPJuGS/jlssul8fbwTOJi5QN65X+KR3nzPwqF4vpDFT8qn5T1fsqxFe5leGHPuxYps4HpvJ9zGf1pNvUbyC6D3brZxiuD0qlV24BeLzeQOnnCwfNPppGbp1GjptzAMCfHRf9n0oiJcoo+O5dL463XM1i/xireR1Mnmvlumpl6DWV1Vq2w8H9vZFK3/iV07Boh08zktvPC2tqr2DqHD9oZ8FwaQcE6AoPk/gTTUp08/2QqiQku6gs+O5tN4+UB6ezeaRfV0TSNz0ZmsfD3POo3MInpgPI/xaU8+h+FQnH9kf9CsrCBaVkupqM4S1nvpwCvAI+edy1SJr/RVyy18N6bmQDUExx0HDxgZ9ALaVitUE9woJua4s5aJZ120aixEaNRZgBqs2q8NCCdvbvtGAxQs7bMs9M0jY/fz2LRn+7poZIB4y9zc/lqVLZb51IBowfYssnKq0PScTq55EA3cGEepgQXSZ8XP1t6Is5B36fSyMrUuKGFnM3l5Ljo93Q6x6KdVAzTExoqEwA7nRr/ey2Djevd2WzJPpr8bQ6zZ7inCksGI8r/FI/y6H8UlyZ/7bX0jAJN08Q1lE7Z1rkatiZZ/Kg89c21plOYfiotm76YxlMtnmL6jumXnc5r0pt4usXTJdLxNJ7UKXMZ03//sfL6y+kFUwKlBoZxx90BQnaW2+FJDXRzsl30fTqN48fc68ek7sfp1HjjtQz+2eAOEGrVMeDlJWOME77J4YdZ7gBBr4c6JVxreSmWL8nj/bczC46l+ujAPjuD+qZjs15GR9MInWTG2shI7p3exdJJSXby/BNpJCW5Lq3jAawWjSH90tm31y6qo2kaH43IYskid4AQHKwjLFzGpfw0x8yY0WenrkhlZpX/KR7l0f8oLs/EiRPFNVwuF5MmTRLXyc3NZdasWeI68fHx/Pnnn+I6O3bsYNOmTeI6f/zxB/Hx8eI6pWED/7W1gu1iPFz8Ljc3l++++86j17wYCQkJ/P777+I6u3btIjIyUlxn4cKFnDx5Ulxn4sSJ4gUPNU27pE0PazcMg+7yL6pNBhNDbx16RZ28vDxmzpxZrDYWhcTERH777TePXa9MBaZOp8avc3MJCDjbLIkBm8Oh8f13Zvz9zw6cpDI9v/yYy7kvEaQGhiuXW0hLPftmT2qq4749dvbuthfcU/UaBnx8PT8ATTrtZPECC37n9NElp9iWAEuexg+zzAQGnmMLF+kjvzVWvA87SB/sD8V4K6RpGj/MysXb++zvSgUjC/7Iw3pO8SYp294UaeNE7NmCPfUaGkXezB0/5mD9WiteZ94H+AfoqFzF864rK9Ol/E8xKW/+R3F5pk6dyg8//CD6Jl7TNF5//XW2b98upgFgt9vp06cP6enpojppaWl069YNX19fUZ0jR47QvXt3qlevLqqzZs0aBgwYQNWqVUV1pk+fzqxZs8Rtbfjw4WzdurXgZxJVee12O48++iipqakeu+bFSE9Pp1u3bvj4+IjqREVF0b17d6pVqyaqs27dOp5//nlxnZkzZzJz5kz0etnQ6M033+Tff/+96GdVfetRed18sPmh087/HjXpTfiZ/Jj/8PwrbhXjcDh47LHHSE5O9li7L0ZGRgbdu3fHy6v4y9v+S5kKTA0GHe+ODMaSp9HqRhMhITqqVff8eiijUcc77wdhMELtOgYqV9GLZWD6DgqgZi0jfn46mrc0iQUj3e7xpX1Ht2Hc2t5LbKB7QwsTjz7hh6a5daTup1JlA2+8HUhersZNt3hRvaYBf3/Pm6uPr44RHwVjt0OTZkaCgnUXfXahk8zYq+rJvr94gwqdTsdrbwQSEqonLFxPvQZGsT565HE/mjU3YTBA25u9xKY6tu/oTbd73V98kjZXu46RQS8FYLOe1ZEYpAQF65X/KSblzf8oLs38+fMZNGgQTZs2FdX59NNP+eabb0R1XC4Xzz33HEuXLqVJkyZiOmazmfvuu499+/aJ6pw6dYquXbuSl5dHjRo1xHS2b99Or169qFOnjmjA+PvvvzNw4EBxWxs1ahRjxow5r288XZXX5XLRt29fFi9eLGoDubm59OzZk71794o+t/j4eLp06UJWVha1atUS09m5cyf3338/tWvXLlHAeKX++fPPP+nfv79o3wB88cUXjB49+pI6Q4dC7MoeVNo6mXD/iviZ/NDr9AR5BzGgzQD2DNpDjwY9Lqvhcrno168fCxcuFL2fvLw87r//fnbv3u1RWytz3+qzp5vJzdX48LNgzDmaWEGQ5UssxEQ5Gf1NMLVqG8UKgkQdtbPsLwsvDPDn2b7+OBwyUwTMZhffTTfT8XYvJk6vwNEjly83XVw0TWPiuByqROiZ/n0F9uyW0QGYMjEHvR5GfxNC/Cm5rTTm/ZJLSrKL0WND8PbRERR8vvPz3mnD718bySMCwVR8e9z6r5Wtm228+X+B3NHZm4phMjaXnOTk159yue8BX979IIik0zLPzuHQmDI+h8ZNjcz8sQJ7BW1h0rgcAoN0TJgWyuFDchV5lf8pHuXR/ygu5O+//+aJJ55A0zTRAc/kyZN59913AcR0NE3jtddeY+7cuQBig3ibzUafPn3YtGkT/v7+YgFjWloaXbt2JTY2lrZt24oFjIcPH6Z79+5kZ2eL2sDq1at5/PHHcblcojrTpk3jnXfeAc63gZJU5f3vGkZN0xg2bBhz5sy5QMeT2O12Hn74YSIjI/H19RULGPMzssePH6d169ZiGcajR4/SvXt3srKySmwDl+uftWvX8thjj+FyuUSD+RkzZvDmm28CF7eBX3+FKVPA2xsi7pvM7vRE2ldvT2Tfwk+V1jSNN954g9mzZ19SxxPkZ/83bNiAt7c3derU8di1y1Rg6nRqzJll5q67vWnSVK4YSP7gpmYtA/fe7ytWDARg8ngzXl7wwgB/wivJVcP8eU4uGekag18JxMdXR/OWnkurn0vkeht7dtl576MgvLx1tL1ZRif+lJM/5+fxQB9fqlYziG1xYbNqTJuYQ4tWJtrf5nXRL/PQyWacwToyH/crkdbEcTmEhOp47Gk/kexvPjOmmLHbYNBLAQSH6AkOkdFavCCPE3FOvpkUgtGoo3UbGVs4sN/O6pVWhrwSQGCQXszmsjJdyv8Uk/LmfxQXsmXLFh588EHsdvfLAKkBz6+//sqQIUMKjqV0Pv74Y7799lsA/Pz8RALG/IzssmXLAGjcuLHIID4nJ4d77rmHAwcOAHLP7OTJk3Tt2pWUlBRRnW3bttGrVy9sNpuoTn72P5+SZExHdhrJiDUjLlrt9bPPPmPs2LEA+Pj4iASMLpeL559/niVLlgBytnZu9h/k+ubUqVN06dKFpKQkj+hcqn927NjB/fffj9XqLjIi9RLkjz/+YMCAAQXH/9XJyYHBg93//uoraNzj0vZ0OT7//HO+/vprALy8vDwaMOaTn/1ftGgRAI0aNcJg8Nz4okwFpqmpLnKyNYa8KlsGefXfVg4fdPDJ6GDRQWHccQeL/8zjyWf9RAeFljyNGVPN3HyrFzfdIjtQmzguh/BKeh5+tGRB2pWYNikHlwsGvihrC3/8lkdigosPPw2+aFBqinEQsNRC+ksBaAHFd/K7d9qI3GBj6BsBokFpWpqLn+bk0v1eH9EKuU6nxqRvc6jXwEi3e2TXsUz+Ngc/Px3P9ivZ3rFXYs53ZuV/ikF59D+K83E4HHzwwQcYjWd9isSA9OjRo3z77beYTCZsNht+fn7UrFnT4zpr165l4cKFBcdNmjQRGcTPnj2bPXv2FBxLPDNN0/j888/PW0smoWO323nvvfcKXkxI6WRkZPD++++L21pUVBTjxo3DZDJhtVrx8fGhdu3a552j0+nQNA2X5ioIVC/Fpaq9rl+//ryCV40bN/boID6fOXPmsHv37oJjqYBx9OjRnD59WlTH4XAwYsQIj9raxfonMzOT999//7z+kLifmJgYxo4dW2BrXl5e1K1b97xzAgJg0SL46ScYMgR0usJXec5nw4YN/PHHHwXHjRo1Ou/vyFP8+OOP7Nq1q+DY08+sTK0xTU1xcdsd3rRoJTe4yc9WRFTV06u3bBGCyRNyMBig/2DZge6vP7unog5+RVZnyyYr27bYeGGAv2jBkaTTTub9nEvPB32pWUsuuLLbNaZMcE9FvbPzxSvthk41o3lBxvMlz5YGBul46jnZ4GrWtBzy8jRxW1i+xMKxaCeDXw4Q3X8z6oid5UssPPGMn9iWN+DeXmf2DLPyP8WgvPkfxYUYjUbmzp2Lpmk0b96cwMBAkYCxQYMGTJw4EZvNRqtWrcSyPnfeeSdvvPEGAK1atRIbxD///PP06dNHVEen0/HRRx/Rpk0b/P39qV+/vkjWx2QyMWPGDCpWrEitWrUICQkR0QkJCSmwtRtuuIGAgIALAkZPUL9+fSZNmoTVai2wtf8GjJ4ogHT77bcXTN+UtLVnn32WRx55pEBHKvP3wQcfcNNNN+Hr60uDBg1EdIxGI9OnTyc8PJyaNWsSGhoqohMcHMyPP/4IwA033IC/v/8FAaMnqFu3LpMnTy7wa5cKGNu3h2+/LVZ9TQBuu+023n77bUDW1p5++mkee+yxAh1P902Zypg6nYgPbjaus7F3t50RHwWJbWcAZ6eiPvSoH1Ui5LIV+VNRW7Y2FRQfkWLit2emoj4lm63In4oqnS1dvCCPk3FOxk0OuWi21JDkJHB+LtkP++EML34fHthnZ81KKy++6p6KKkVmhos5s3Lp3MWbxk3kpqK6XBqTzkxFvaencLZ0fA5eXvB8f9mA/qc5uWRkyAf0yv8Un9LyP4qL8+2335KVlcWMGTNISkoSW1f26aef4uvry4oVK9iyZYuIhsvl4uOPP6Zu3bpERkaKbXeRlZXFN998wz333MOsWbOIiYkR0Tl48CDz589n2LBhPPPMMwQFBYnoLFy4kH379jFz5kyqVKkiMk0QYMKECWRmZrJs2TJSU1NFMozgtjUfHx+WLVvGtm3bLvhcr9PjxFmo7UNWxawqmHp5bqZL0zQ+/vhjateuTWRkJBs3bvToPeSTnZ3N2LFj6datGz/88ANRUVEiOocPH+aXX37htddeo2/fvvj5yfjjxYsXs3v3bqZNm0b16tWpV+/yVWgvx6X6Btzbw2RkZPDXX3+Rnp4ukmEE93RuLy8vlixZwo4dOwp+vnSpO/a5777Lt7Mw5NtazZo1iYyMZMOGDZ68hQLMZjNff/01d999N7/88guHDx/26PXLVGDq7y+/ZmjG1DNTwR6THdzMnmFG02DAENkB9V+L8jid6GLkqItPRfUUB/bb+WeDjaH/CxSdipqT4+KXH3PpcZ/sVFRN05gx2Uy9Bka69rh4cBXynRmdDdIHlKwPZ07Nwd9fxzN9ZW3h159yMefIB1eR620cPuTgU+GpqIkJ7i2DnnpOdiqqw6Exe7qZW9p5Kf9TRMqb/1FcHJfLVTDovemmm8R0zh30hoeHc++994roLFq0iL179zJt2jT8/Pzo0qWLiM6ECRPIyMjg3XffJTw8nPDwcBGdTz/9FG9vb4YNG0aVKlVENDRN46OPPqJWrVo89dRTmEwyLz9zcnIKBr233nqriAa4p43//PPPvPTSS1SuXPmitlaUjOmliuv89ddf7Nq1i8mTJ+Pn50fXrl09dxPnMGnSJNLS0nj33XcJCwsjLCxMRCc/wBo+fLjYVkH5tlajRg2eeeaZEm9Fcqm+MZvNfPXVV3Tq1In27duXtNmXJDo6mrlz5zJo0CAiIiIKbO3kSXjqKUhLg9WrYUTMpQs0FYZly5axfft2Jk6ciJ+fH926dfP0rQDu4nSpqam8++67VKhQgXbt2nn0+jrpjWSLQoOGJm3JahnHnU9KspNj0Q5uuvXiUzc9hdnsYtsWG3d0ks0oORwaa1Zaububt/g+X5HrbbRsbRLN+oF7EOrnp6N2Hdn3JqdOOkhJdtGy9YVOT5fros7NSeS19yZhamiJdDIzXOzba6fDbbI2Z7NqbFhnpXNXWZtzuTTWrrLS8Q5v0awfwPatNqrXMFC5ilxgChAT7cBm00QzzaD8T3Eprv9pWCNhu6ZpbcUadp1QvXp17dSpU2zcuJEOHTqI6Tz77LP88ssvxMTEiA56b775ZpKSkjh69KhH9987F7PZTO3atWnZsiUrV64U0QD3oLdhw4a8+OKLjBs3TkxnyZIl3HvvvUyaNOm8gkGe5ssvv+SNN95g3bp13H777WI6L7zwAj/++CMxMTGX3B/zQPIB8ux5NA1viq/p8ksvLpbt0jSNdu3acerUKaKiovD2lvH7ubm51KlTh6ZNm7JmzRoRDXCvlWzYsCEDBw5kwoQJYjrLly+ne/fujB8/nhdffLHE17tUJnLMmDG8/vrrrF69mk6dOpVY51L079+f2bNnEx0dXVBkzeGATp1g40bo0QMWL4Y1x4ufMdU0jQ4dOhAbG0t0dLTYHrZ5eXnUqVOHhg0bsn79+mJfR6fTXfK7uUwFps1beGm/L5F5y6NQFIXg781U+r8sTvxeEctNqvKnQnEtogJTz2AymbSOHTuWq0HvhAkTzqv+62nyB71r1qzhzjvvFNO52KDX02iaRvv27YmLi7smBr1X4vjx4zRo0IB+/foxadKkS553KOUQZpuZxmGN8fcq+uyTlStX0qVLF8aNG8fLL79ckiZflnHjxvHqq6+ycuVKOncueqatsAwcOJCZM2cSFRUlthWNpmncdtttREdHExMTg6+vTC0Gi8VC3bp1qVu3Lhs2bBB7sRoXF0f9+vV57rnnmDp1asHP33sPPv4YqlaFXbugpJMp1qxZw1133cWYMWN47bXXSnaxyzB+/Hhefvllli9fXqLs/+UC0zI1lTfT5cOSHNmNlBWKK+LSeHr6v5y+IZDfG7eEHFVoRaG4Nkm42g0oFzgcDt577z1RjVGjRqHT6QoKxUiQP0UwIiKCF154QUzHYrEwevRoOnbsyB133CGmExcXx+zZs3n++efFglJw7yn677//MnbsWLGgFGD69OmcPn26YL9PKT7//HOAK9qaDvd3f3GLH3300UdUrlyZfv36Fev3C4PVauWLL76gXbt23HXXXWI6J06c4LvvvuPZZ58VC0oB1q1bR2RkJF999ZVYUAowc+ZMEhISmDlzpuhsny+++AKXy8Vbb71V8LNVq+CTT0Cvhx9/LHlQCm5bCw8PP29LGk9jtVr5/PPPufnmm8WWP0AZq8qrUJQFam9IpcKxXHY+W7P45dEUCoWinODv7y861e3UqVPMmjWLZ599VqTabz7r168nMjKSN954QzTA+u6770hISODdd98VHfSOHj0al8slGswDfPLJJ1SqVIn+/fuLadjtdr744gtuvvlm7r77bjGd/GDk6aefvmK136KsMV0Vs4oOMzqwKmYVABs3bmT9+vUMHz5cNMCaPXs2p06dEre1L7/8EqfTeV6AJcEnn3xCWFgYAwcOLPG1/tsn+TgcDj7//HPatm0rtg4T4PTp00yfPp0nn3yyoNpvXBw8+SRoGowYAXfeeel2FpZNmzaxZs0ahg0bJlaMCtxbEp08eVLc1spUxlShKAu0nn2CnEreHO1a6Wo3RaFQKK46NWrUEB2IRERE8Ouvv9KiRQsxDYB27doxY8YMHn30UVGdJ554AqPRKFboJp+3336b9u3bi2xxcS4TJkwgJiZGdNBrMpn4+eef0ev1orZWuXJlfv31V2644YYrnluS4kc333wzM2bMKNjCRYrHHnsMnU5Hjx49RHXeeustbrnlFurXry+q8+233xIVFYW/f8kL912q6JHRaOSnn34CELW1SpUqMW/ePBo3bnzez00md0D67ruXb2dhadOmDTNnzizYmkqKRx99FE3TuO+++0R1ytQa05o3BGnD5t98tZuhuI6peCSHp3ptJnJoPbYNqH21m6NQKErAa01WqTWmHqBt27baxbbTUCjKM8fSj5GWl0btkNpU9Kt42XNLutWHwvOU1T45etQ9fTckxH1cVtspyTWzxlShuNq0+v4Edh89+x6+eJU+hUKhUCgU5Z/8jKnGlRM4net2vm6CimuFstInS5bA7t3w9tvu4wYNzv+8rLSzrKACU4XiDL5pNhovSuTggxFYQmW3DVEoFAqFQlF2KcpUXoXiYsyZA88/D04n3HILCNanKjeo4kcKxRma/3wKo83FzmfkqhsqFAqFQqEo+6jAVFESxoyBZ55xB6VvveXet1RxZVRgqlAABpuLFj+d5PhtFUmvW/JF9wqFQqFQKK5dSlKVV3H1uNp9oWnuabuvv+4+/uor+Oyz8zd5uNptLMuowFShABosOY1/io2dz6psqUKhUCgU1zv5FVuLWpVXcXW5mn3hcEC/fjBqFBiN8P33ZwPUstLGso4KTBUKTaP193Gk1vMnrn2Fq90ahUKhUCgUV5miZExHdhpJ++rtGdlppHSzFFfgavZFejqsWQO+vrBgATz99MXPU/ZyaVTxI8V1T7WtGVQ6mMPKDxufP9dCoVAoFArFdUlRAlNVWbXscDX7IjwcVqyA5GRo1+7S5yl7uTQqY6q47mn9fRy5oSYO3V/lajdFoVAoFApFGUAVP1IUhoQE+Pbbs8f1618+KFVcnjIdmGralfeOuta0lE7Z0gmMt1BnTQr7HqmG08eApmnX/D0pnWtLpzS1lI5CoVAUjoJ9TAvhZ1Qxm6vP1eiDqCjo0AFeeQVmzLj8ucpGCkeZDkwjfz5VKjrbFyeSl+0Q1zmxP4u4vVniOlnJVvb8nSyu47C52PxbgriOpmlittBs/il0Gux7uCoA//xSOjZ3ODKVlNg8cZ3k2FyO/JMmrmPJcbB9UaK4jsul8c+vpdNHyv8Uj/LmfxQKxfVJUTKmqpjN1ae0+2DnTndQeuwY3HQT9OpVttp3rVKm1phmOXxYndIYgPg1UUTNS8fW5W5RzcyjyfwzciPd/7oDXYrc+kJrei7rh8zj1q/vJzolVEzHZXfyz2sLqNO7OakpDcR0AHZ/sQavED9yz/SZFMd+30vSvxZsXTyro3e4eGrev2y/pSYLvFuTsuIku6YmYL1b1ubM8Vmsf30jnX9+Cq8UHzEdR66NDYN/o/nQ2zmVUk1MR3NpbP2/pYS1qUaWsC0cmr4ZS4oea2dZHeV/ikfZ8z/qzbRCoSgeRS1+NGLNCFXM5ipSmn2wZo07EM3Ohi5d4PffISCg7LTvWqZMZkyzolPZ+ekqvEP9RHWsGXlseWcpRl9TQVlwCVwOJ9tGLCcvKQefCrL3tG98JGl7EvAW1jm+cD+xiw6I66TujmffuI0iOm03Hadiipnl9zcjNzGLbSOW4xUiFygCOPLsbH1nCc48O6YAbzEdTdPY+elqso+l4VNRto+OfL+NxI3HxG0hYX0MR2Zvw1v4fpT/KT7lzf8oFIrrl6IWP4rsG6kK2lxFSqMPNA1mzoTu3d1B6aOPwqJFVw5KS6t95YEyF5jasixseWcJTosD71BfMR2Xw8X2D1aQl5gtPtA9MPEfUnfFozfpMQZ4ienE/XWQ47/vBRAdsKXtTWDvmPVndOT6KC8ph63vLUNzukTup9vC/aSG+bO5TXW2/t8ybJkW0WBE0zR2f76GrOhUvEP9RIORqB92kLAuGkD0nhIjj3N45hZxnexjaez4eKW4ji3bwpb/U/6nOJQ3/6O4NDk5OUqnjOpomlYqOlarFZvNJq5zNftGoviRsrWiY7PZsFqt4jqFuRe7HcaNA5sNXnwRfvwRvIuYYyhPNiChU7YCUw22f/g3ufHudVCSA7aDUzaRsv2kW0dwoHti2WFi5u1x61SQC0bSD5xmz1drC46lMiOWFDNb312G5nCd0fEX0XFaHWx9dym2dPc6TE8PdMMTs7hxcxx/39uEnV+tI/NIsojOuUT/vItTq466dQRt+/S/sRyc9i8Aei+DWDCSE5fOjo/+hjN1IaQys/Zsq/tlVZ5dVEdzutj+wd/knlL+p6iUN/+juDR2u53hw4eL66SmpjJypPyUt4MHDzJ58mRxnWXLlrFkyRJxnXHjxhETEyOu8+qrr4q+XAW3rQ0bNkxUAyAtLY0PPvjggp/rcN+fpwLTw4cPM3HiRI9c63KsWLGCxYsXi+tMmDCBqKgocZ3XXntNXMPhcFzW1vLrX3l5wc8/w+zZMH48GAxF08nIyOD9998vQUsLx5EjRxg/fry4zsqVK1m4cKFHr1mmAlNLipnkLXEFx1IDtpMrjxD9866zOkKDqIzDSewevUZcx5KWy9Z3l+Kyu52nVGbEaXOy9b1lWNNyC34mkbHQNI09X68j42CSmE6XxQfRdDpm6OHkiiNiOvkkbzvBgcmbzuoI2XbOyQx2fHg2WPQO9RUZPNjNNra8sxSH+ewbc4l70lwaOz76G/PJTFEdcK9fVf6n6JQ3/6O4PK+//jqHDx8W1XA4HDz++OOYzWZRnczMTB544AF8fWXtKDo6mscff5zw8HBRnTVr1jBs2DCqVJHd+mzq1KnMnz8fk8kkqvPGG29w8OBBUQ2n08kTTzxR4ozplSquZmVl8cADD+DjI7tcKCYmhscee0zc1tavX8/QoUOpXLmyqM6MGTP46aef8L5CWrKkFW/ffPNN9u3bd8HPXS4YNQqeeeZscNq4sfu4sOS3bUXUCp588kmysmSLEGZnZ/Pggw+K29rx48d57LHHCAsL8+h1y1Rg6l3Bl3qPtQK9Dp9KAWKZkUo31aTV23cB4FslUGxw4181mA7jHzxHR+Z+jD5Gbp/6MEY/U4GOyJtMTeOWL+4lqH5FvCv6oTPoZe5Jg6aD21O9a0MMPka8gn08mhkxOJx0WXyAHbfUxNC7BU0GuTec8q0SKJbpCW4Yzi2f3VOgI2UL3qF+3DatDzqDTlRHZ9DRcWJvfML98a0UgMHbKBKMaC4Xrd+9m/CbamAK8sbgaxS5J03TqPtIK+V/ikG58z+KSzJr1izGjx8vHvi88847/P3336I6LpeLp556iiNHjojq5OTk8MADD5CRkSGqExsbyyOPPIKmaVSsWFFM559//uGll14St4E5c+bwzTffiOu8++67LF++/KI6nqrK63K5eOaZZzh06JDo/ZjNZh544AHS09NFA8YTJ07Qp08fnE6naAD877//MmTIkEI9s5JUvJ07dy5ff/31BToJCdCtG7z9NvzwA2zZUuRLn9e2F+a8wJIlS8T92rPPPsuBAwdEbSA3N5cHH3yQ1NRUj99PmarKq9PrObHsMJVvqUnTIe1xOWQ2NfYK9iFuyUF8Kwdw+7SHC6ZxehpToDcnlx1GZ9DTcWJv0vefFtEx+nlxauVRHLl2bh5173kZBU9i8DaSFZ1KVlQqN7zSEe8Kfhj9PR+M6PQ6dAYd8Wujqd6lIbV6NvXoALTtP7FUSM1l0v3N8Ar24cSSgwQ3CufmT+8hNzHbYzrn4hXkQ9zSQxgDvLh92sOk75PZWsXk78Wx+XvQnBq3fnEfWcdSRXSMPiYSt53EkmymzQddAUSCEb3RgD3HTPK2EzR48kYqtKwqMsVWp9NhCvBS/qcYlDf/o7g4W7duZdCgQQCiA55ffvmF0aNHi+uMHDmyYLqjlI6mabzwwgsFmRgpnby8PHr37k1KSgqVK1fGUNT5hYUkPj6ehx56CLvdLto327dvZ8CAAYCsDcybN49Ro0ZdUqdgH1OuvI/p5SqufvLJJyxYsOCSOp5A0zT69u3L3r17RXUsFgu9e/cmOTmZ8PBwjEaZMCIxMZGHHnoIm81WqHspbsXbnTt30q9fP+D8Z7Z0KTz7LCQnQ3g4zJoFt9xSpEuf17YXf3uRw5MOX6DjaT777DP++OMPUR1N0+jfvz+7du0S0SlTgak924otI49avZoRWLuCmE72sTTSdifQuN8teIf4UunmmiI6DoudEysOU+W2OviGB+B7ZyHKdhWT4wv3E1AzhIqtqoqu+4hduB+9l4Hq3RvhFSg3TeDkssO4bE5q3d+M0KaeNfpuC/eTEu7Ptltrkbornpy4DFq+cSe+lQLwrSTTR5ZUM4kbjlG7VzO8Q3yp0rGOiI7mdBG7aD8VWkYQWKcCgXXk/o6OL9iPV4gvEbfXRW+SGQgBxC3aD0DNns3wrxokppOwPkb5n2JS3vyP4nzsdju9e/cuKEAi9cZ/9+7dvPDCCwXHUjoLFizgww8/FNf54osvmDdvHgAmk4nQUM9v1aRpGgMHDmTHjh2A3L1YrVb69OlDYmKiqE5ycjK9e/fGYrGI6uzbt4/nn3++4PhiOjqdDp1Oh6ZpaJp2Wd/WuW7ni1ZbXbx48XlrCqXu58svv+SXX34BwGAwiGTNNU1j8ODBbNu2DZC7F5vNRp8+fYiPjy+0zqWe/+VISUnhwQcfJC8vr0DHanVnSMeMOXPdzjBnDkREFO0eziXCEsGpkafgzGxxqee2ZMkS3nvvvYJjKZ0xY8Ywd+5cAPR6ffmeymvNyMOnUgCVbqklqhO7aD86g46a9zYR1YlfFYUjx0btXs1EdTIOJ5F5OJlaPZuJDgrt2VZOrTpKtbsaiA4KNU3j+IL9BDUII6RJJY9eu1JCFq23xPH3fU1xGfXELtiP0c9Etbtl91w8seQQmtNFLWFbSNoSR97pHGr3ukFUJzcxi6TNsdS8p7FoUOpyOIlbcpBKN9cUDUrBHfQo/1N0ypv/UVzI6dOn8fc/u5xC4k281Wpl1KhRVKhw9qWQhE5ycjKTJk06L0iU0Nm3bx9Lly7Fy8urQEPi72PJkiXnFTuSypJMnz69IFiU0tE0jS+++OK8Nb8SOjabjc8++6xQtlaSyrwpKSlMnDhR3NYOHDjAX3/9VbAOs1KlSuj1nh/eL1++nKNHjxYcS9najBkzCoJFKR1N0xg9evQFtvb11+6g1GCAzz6DFStKFpTabDY+/fRTcb+WmprK+PHjxXUOHTrEokWLCmwtPDzc4zM0xANTnU5n0Ol0O3U63RVLhDnz7NS6rwl6o1yznFYHJ5YepkrHOviEyVZ0PL5gH/7Vgwm7sbqoTuwCdxahRo/LbTRfck6uOIzT4hAPrtL2JJATm07t+z0/0O2y+ACaTsfKe5tgTc8lfl001bs2wugnNyVQc2nELjpA6A1VCKort/YHzmQxg32IuKOeqE7c4oOgQc2eTUV1Ejccw5qWR637ZW0uJy6dlB2nlP8pBuXN/ygupHr16txwww0EBwfTpUsXkTfx3t7ezJ07l8DAQJo1a0aTJk1EdMLDw5k3bx52u51OnTpRs2ZNAgqzCWERueGGG5gwYQI2m41evXpRs6bMzIh77723oGrpww8/LJYlefHFF+nVqxcAffr0EdHR6XSMHj2ali1bEhgYSNeuXUV0vLy8+OGHHwgODqZJkyY0a9bskjqFrcx7seI7YWFh/Prrr9jtdu68805q1KhBcHCw527kDE2bNmXy5MlYrVbuv/9+atWSebnavXt3Xn/9dUDW1gYPHsyDDz5YKJ3iFj3S6XR8/vnntG7dmoCAALp3706VKlV47TXo2RM2boS33oLixvf57dpwcgNz5swhNDSURo0a0bx5c5HnVrFiRebPn4/D4eD222+nevXqIjM0GjduzJQpU7BarfTs2VPE1kpjKu+rwEGgUOmOmvfKDnTj10Rhz7GKD3QzjyaTcTCJpoPbodMLZhHMNk6uPELEHfXwChbOYi7cT2DdioQ2k63CdnzBfgy+Rqp1aejR6xocTu5efJDtt9YipXIgcT/uQHPIZzGTt54gNyGLRi/cJKqTdzqb05tiqfdISwxeslnM2MUHCGtbnYDqIWI64J4i6hPmT+X2tcV10OuU/yki5dH/KC7EbrezYMECBg8ezCeffCK2P97GjRs5ePAgkyZNokePHmIZmblz55KTk8MHH3xAlSpVxDL9U6dOxWg0MmnSJLKzZeoXAEyZMoWqVavy448/cuzYMRENh8PB9OnTufPOO/n555/FdJKSkvjjjz/o378/n3/+uVgF002bNrFv3z7Gjx/P/ffff8npiIXNmJ5bfOfcKaU///wz2dnZjBgxgmrVqonamsFgYOLEiaLVrKdMmUKVKlVEbc3pdDJt2jRuu+02fv7558tuf3Sp514YUlJSmD9/OU2a/MbMmR1wuTLw9QVP7H5ybrsCkgPYvXs333zzDb179xYJGMG9Pj8zM5P33nuPmjVrimTNwW1rer2eCRMmnJfZ9hSigalOp6sO3At8Arx+pfP1fj4cd9UDmbowAJyYvxBT5VBSqrchNVEuM5L08xZ0RgN5bW7nYKJcZiRjxVaceQ50t3XkYKLcgC3vcBzZMWmE972XQ6flKoo5s3OJXxNN4B2tiMquAR78Lu+6+QAV0nKZfnsHDiRUIvbPw/g0qE58QDPiBW0u/tfV6P19yWrSnoOJcuX1U+cdAJeGo93tHEz07Jz/c8nZfABrai6hz/YUtTlbYhop205S4aE7OJxSgrk0V8Bld3B8yVH8b2yk/E8RKW/+R3FxUlJScDgcDBw4kMDAQAIDA0V0pkyZgr+/P0888QRBQTJT9zVNY8qUKTRp0oTbbrtNLFDIy8vj+++/p1evXkRERBBRkvmAlyEqKoqVK1fy3nvvYTKZaNjQsy9081m6dCknT55k9OjRGAwG6tevL6Lz3XffYbfbGThwIAEBASLZbHDbmp+fH0899dRls5iFDUwvVXxnypQpNGzYkDvvvFPM1iwWC7Nnz6Znz55Uq1ZNRAPcW9GsWLGCd955R9TWli9fTlxcHJ9++il6vf6ytlbcokcAH3+8FLv9X/bsacC778KMGZ77rjy3XVM+noKvry9PP/20WFDK/7N33uFRVVsffs/MpPdOICGF3lERFSwUAVEBRdRr7xUFrPez4ZWr16tXxK5YECsICKJgR3qTjjRpISQkISG9TMrMnO+PYcKIgUwmsyYh7Pd5eCBh5vz2OWfNmr3OWntt7LbWvn17Bg0aJBaUVlZWMn36dC677DISExNFNKQzpq8BjwMn/BbTNO1u4G4AY7hccw4HcQ9chSW/GE3opjmIvGYQgb07YAqTLdcLvbAXxiB//DvLrovzb9+G+MeuI6CbTNMeB4bgANpMvAVjmOdt4YolmzkcEcKy3h3QNI34x6/HZq7yuM7xxNx+KdUHczH4ye75Fn7pufgmxuLbWi4oBQg8owOtJlxN8NmypZs+seG0fvpm/BI8u874eAw+Jto8dROaUCdLZ5T/cQ9v+Z/TCU3TjMB64JCu65ef7LVHjhyhf//+dOsml+nPz89nzpw53HzzzWJBKcD69evZtGkTr732muia6FmzZlFUVMQ999wjpgHwwQcfYDAYajuLSjF16lSio6NrSywlsNlsvP/++5x77rn07NlTTKewsJBZs2Zxww031Fta62pgWlfznQ0bNrB+/XomT54samtz5syhoKDAK7amaRp33XWXqM7UqVOJioriqquuqve17jQ9stng1Vd1Xn/9WsCXnj3h0UfdHGw94yoqKmLEzBFce+21okHp5s2bWbt2LS+//LJYUAowd+5c8vPzRW1NLDDVNO1yIFfX9Q2apg040et0XX8feB/Av12b+ntyNxLfVpH4tpLruOnAFBYkPnEHMPj7EtK/h7iOZjQS3Fe2WQvY6/4DuiR7/LihZWYu3LSHz4efg81o/9D6JcoGPA58osLwifL8upLjMQYFEHKu/Po7g6+Pd2zOYCCol8xT+ePxbyf3lNkZ5X/cw1v+5zTD5WU21dXV4pPeTz75hKqqKnGd9957D39/f26++WZxndTUVAYPbtikuSFUVVUxbdo0hg8fLraGFeDgwYP88MMPPPLII7VNTyRYtGgR+/fv/0tnUQk+/fRTKisrXbK1hmwZczxTp07Fz8+PW265pcHvbQjvvfceycnJDB06VEyjurqaadOmMWzYMJKTk8V0MjMzWbBgARMmTMDf3/PLQ3Jz7dvA/PijBvgyaNAOFi7sioAUYN+P12w2i/u1qVOn4uvry6233iqu07ZtWy655BIxDcnH9v2BkZqmHQBmAoM0TftcUE+hOCFDft+Jr9XKgvPlJ9EKhULRnHFaZvOhK683Go2MGTNGbDy6rvP+++/Tp08fzjrrLDGd4uJiZs6cyTXXXCOavdi6dStr1qzh7rvvFs1ezJs3jyNHjtTuLyvFhx9+iM1mq91bVIqpU6cSHh7ONddcI6bhKOU+44wz6NOnT72vd7crb0lJCV9++SVjxowR2brFwfbt21m5cqW4rc2fP5/c3FxxW/voo4/EbO3IEejVC378EXx9SwkI+AfffpskFpQ6bK1nz56c4+4mqC5QVlbGF198wejRo4mJiRHT2blzJ8uWLeOuu+4S2ysZBANTXdef0HU9Qdf1ZOAfwG+6rt8opadQnIzLVv5Belwk21JbN/VQFAqFoql5DfsyG5dm21FRUX/ZVsHT7Nu3j6ysLPGswpo1a2rXL0qydOlS/Pz8/rJPpgTLly8nMTGR4cOHi+tcfPHFYutKwZ79/f3337n55psJDAwU00lLSyMzM5N77rnHpfJaVwPT47vDrl271iuVBkuXLsXX19crttamTRsuu+wycZ2BAwfSqVOnk77OnW680dH2jrsXXmgjJmYIt98e/ZdtsDyB87jS09PJyMhw2dbc5ffff/dKtcmyZcvw9fX9y17TEmi6Ll49y9FS3kfrW8fi366N3vYl2acxitOPqKIyVtz9P94bfSGv/0OurEqhUDQv9lw9cYOu6/WnRU4jji6zuVTX9ftP9t3s3P8hMTHxrIMHD4qOq6ysDJPJJFK+58yRI0eIiooSnSg6dDy98XxT6ei6TkFBgWjmD+zdnysqKkS2VHGmvLwcg8Hg0sOWtMI0CswFpESkEBlw4mUY/T/qz6rMVfRL6MfKO1YCytbcwVVbq+t618XChRARAf362X+urAQfH7DZaigvLyc8PNyDo//7uMrLy9E0TfRhC9jX6EdGRp4ytqZp2gm/m8X3MQXQdX1JfUGpQiHF8NXbMeo6C72wFk6hUCiaOS4ts9F1/X1d1/vout4nNlZ+PX5wcLB4UAr2vSWlJ28OHW/gDR1N08SDUgAfHx/xoBQgKCjI5QoAh6240pW3X0K/v3SHVbbWcFy1tbqutzO5uXDddXD55XDbbfaAFMDfH4xGu615Oiita1xBQUHiQSnglQcg4B0b8MY+pgpFk3LZyj/Y1TaOvV5qdqRQKBTNFV3XnwCegL9UM6llNgpFHTSmK69CjhNdb12HTz+Fhx+GggIIDIR77gGTl6IdZQeNxysZU4WiqYjPK+KsPw/yff/uTT0UhUKhUCgUpxDuNj9SeJ+0NBg2DG691R6UDh0K27bZg1RvBaaKxtOsbpVeY8CSJZ/yVpw+XLJoLQDz2/dVtqVQKBRO6Lq+BFjSxMNQKJotDWl+NHHxRCYNnKQyZoKc6DpbLDBwIKSnQ2QkvPYa3HgjeKG6Vd17D6MypooWzYiNm9mclEhGtPz6GIVCoVAoFC2H2n1M62kUOnHxRFZlrmLi4oneGNZpy4mus8kE//mPfV3pzp1w003eCUpPNiaFe6jAVNFiSTmcS/fMQ3x35hlNPRSFQqFQKBSnGK5mTOtrxqPwDI7r/FT/STzxBLz44rH/u/56+PJL8EKvtjrHpO69Z2hWpbwKhScZsXEzNk1j4Rm9mnooCoVCoVAoTjFU86PmxeDUwRjSB3P3CNi7195l9847ISamacek7r3nUBlTRctE17l802bWtksl1wvt5xUKhUKhULQsVPOj5kNhIdx1FwwaZA9Ku3aF335r2qBU4XlUYKpokXQ5lEX7w7ksOLN3Uw9FoVAoFArFKUhDmh/1/6g/i/Yv8sawTit0HZ6dvoi4J/rz4aJF+PrCc8/Bpk1w3nlNNy51z2VoloFpfYvMT0UtpeNdnWFbt2HVNH7s1VNcq6EoHaXjbS2lo1AoFA1Hw95Bp77AVDXAkeW1rROpiV9FyKiJbNoEEyeCr2/TjkndcxmaZWBasXkruk2+bKI6K5uaw4fFdawVZsy7dovr6DYbFZu3iusAlG/e0qx1Ltj1J1vbJlIYHOTS68179mIrLXNLqyFYCouoOpAurmOrqaHij+3iOtD8baGhKP/jHi3R/ygUitMb1fyoabDZ7KW7YO+u+9boSaSY+vH1A5Po2rVpx+ZA3XMZml1gaqusJH/efPSaGlEdXdc5MmcuNnOlqA5A0fc/YsnPF9cpXfM75j17xXUqD6RTsmyluI6lpISCed81+H1h5RX0PJjB8s6dXHq9brWSP2ceturqBms1lPxvvsXqhQC4+LelVB/KEtep2Lad8o2bxXVqcvMo+vEXcR3lf9ynpfkfhUKhqN0uhpNXaQxOHczKO1aqJjge4M8/YcAAuOoqexkvwE3nD2b/UysZ0q75XF91z2VoVl15DdVQNmcR1uIS/NOtmALl4uai7eup2peGb5aFQB85HfPhTEpWrCLuohEEZsrpWMzlFM3/npB23UR1dJuN7C/mooGoDkDmwu+xlpQQkKGhNWBDqkG79mLUdX6P6uzSGI+sW0ZNzmH8Miz4V8qdU1nan1Rs3kpEmx4ERsrpVBcXUPzzr0SeeYHoPbLVVJM5az5+ETGyNqfr5M75Br3ULG5zOUuU/3GHluh/FAqFQjU/8h4VFfa9SP/3P6iutm/7cuAApKQ09cgU3qRZfbPrlhryNywF7JNeKaxVZg4v+U5cR9dtZP86F3RdVAcgd9lCrJUV4jqFW1ZTmXtIXKc8Yx/FO9aDrqNbLQ16b/8Duyjx8+eP+Lb1vramtIi8lT8BsrZgs1jIXjRXXAcg57dv0C0WdGGdI2t/o6a4QPx8SndvpfzAn+I6lUdylP9xk5bmfxR1s3u3fEm40nEPq9XK3r3yFQtFRUUc9sIShOZybzwVmDaX8/EEnrY1XYdvvoEuXeCFF+xB6e23w9q1JQQE5HhM50Ts3r3bK30LWpINSOo0q8C0prTIXliO7IQtd+WPWCpKAUQn70Xb1mPOOmDXscjpVGSnU7h1LQC2mioxHUt5KYeXf39UR3BCbbWS/evXtT83SEvX6XdgN2uSOmI1GOt9ec6S72qvmeQ9yl+/hOrCPLuO4LUr3beD0r3bAPs6UymqCvM48vtvdh2LnI6tuorsxfPt/66pFvvy0HWdnEVzlf9xg5bmfxR1o+s6d999N1arVVSnoqKCBx98UFQDID09nUmT5NeGLVmyhM8++0xc5/3332fdunXiOs888ww5ObLBgq7r3HfffdQIL6kwm8088MADJ32NJ7ryHjx4kOeee879gbrIsmXLmD59urjORx99xJo1azxyLF2Hq6+GK6+Egwehd29YtQo++ghee20iWVlZot1vdV3ngQceoKrKte8ud8diNpsZO3asO0NsEJmZmTz77LPiOitXrmTatGkix25Wgamt+phh6EKT3crcQxRsXHFMU2iCY62s4PDSY+sjpYIE3XY0K3J0/YNkkHB42UJsVWa7ruBEt2DTCqqOHPvia8jkPTX/MK1Ki1iZXP/60rL0PZTs2lT7s9Q9qi4pJG/1sfWRUvfIZqkhe9E8p59l7pE9iJtXm8mWDBLy1vyCpbToqLAN3SYzKS7ZtZnyg8eeACv/4xot0f8o6mbGjBksXboUs9ksqvOf//yHnTt3imoAPPTQQxw5ckRUo6amhrFjx1JeXi6qk5eXx5NPPimus2nTJt555x0qKipEdWbNmsVvv/0mrvPf//6X7dtP3iTQ1cD0ZB1aH374YXJzc90fqAt4y9aOHDnCE0884TEdTbMHo2Fh8NZbsH69fQuYLVu28Oabb1JRUSHa/fbrr7/ml19+cdnW3B3Lyy+/zB9//OHOEBvEI488Il7RYLFYGDt2LGVlMv1SmlVgavCx937WDEaxJ+9lB/4kpF03Jx2ZCU5Z2i5C2ncX1zFnpRPYJgU0TVSnpqQQzWjCFBwqqmOz1FBdlI9/bBvQDIDWIK3+B/4EYGVK55O+Ttd1KjL2EnQ0gBW1hf07Ce0gbwvlB/cQktpZXKcq/zC+EdEYfP3QDEaxrJ+1sgJrZSW+ETFoR7PfElq6zYY5J8P+OUL5n4bQ0vyPom6sViuPPPIIgOjEd/fu3fzvf/8Tn1z/8MMPzJs3T1znjTfeYMeOHeIB1v/93/9RVFQkqmOz2Rg7diw2m030upWWlvLwww8Dsra2d+9eXnrppXo1HP0t3O3K+9NPP/H111+L28Dbb7/Ntm3bxHWefPJJCgoK3NbRdfj2W5gz59jvHnvM3vBo7FgwGu3zM2dbk+p+W1ZWxkMPPQS4bmvujGX//v28+OKL4vfm119/ZdasWeI67777Llu2bBHTaVaBKZqGb2QsSVffg2aQ6csU3XcQvuFRYDCQcuMETMFhIjphXc4kKCEVgLaj7ySgVaKITmBCCuHdzgZdp9XgKwnr1FtExyc0glYDR2I1lxPR+zxizx8usqWGweRD/MWj0W1WAhNSSLzi1ga9v3/aLvZHxpITGnHS12maRuz5wzEFBGH0DyTlhnEY/fwbMfITE9m7H/4xbQBIvu4B/CJiRHRCUrvWBj1tLruB4KSOIjr+0a2IPmcwtuoqYvoNJeKM/iI6Rv9A4odchbXKTEjHHrS+5FpsloatN3YFzWCg1cCRaEaT8j8NpKX5H0XdZGVl1ZZvSk1GdF3nwQcfpLq6WnRiVVlZWVsqLKlz6NAh/vWvfwGyAdbq1atrS+okdT755BNWr14NyF63SZMmkZWVJaqj6zrjxo2jqqqqXo3arry6ftKlJHV1aK2qqqq1Ncl7k52dzcSJE8V11q5dy4cffui2zr59MGIEjBoF990HBQX23/v5QVzcsdd99tlnrFxp77xeUVEh1v32+eefJzMzs1bHFdwZy/jx46mqqqK8vFxsOVJ1dXVtWbqkDRw+fJinn35aVKdZdeW1VVcR1LY9QW3bi+qUH9xLYHwSAXFtCIhrI6pj8PMnKKkDwQbXti5xT2cPAMHJneyTXiEqsg6gW60Ete1AaIceYjqW8lKqjuQQ029Yg3T8aqrpk7mP2b3Oc+n1uq7bbSGxndjE3UH5wT34hkcR2DqJwNZJYjplB/eAZiA4pbNYoA3Ulr0Gte1AYJtkMZ2qIzlYK8oISmxPRI9zxHRsFgsVWWmEd++r/E+DdVqW/1H8HecyRKnJyLx58/j5558Be/BotVoxGuvvE9BQXnnlFfbt2wfITuAeffTR2lI3KR2r1cr9999f+7OUTmFhIY8//ri4zvbt23nttdfEdb799lt++OEHwF4CW1NTg4+Pzwlfb9AM2HQbOjoaru8QMHnyZPbssftHSVt77LHHKC0tFdWxWq2MHTu2NrBqiI7ZDC+9BP/9L1RVQWgoPPOM/e/jKSoq4rHHHqv9Wep8du7cyeTJk8V1vvvuOxYsWADYqw6qqqrw9/f83GzKlCn8+ae9YlDS1h5//HFKSkpEdZpXxhT7RFcSi7mcytws8cmnruuUZ+wlKLEdmkH2Mpdn7MUnNAKfsEhZnYN7AY2gxHayOhn2SUNQUsNs4azMNPwtFlYmn7yM10F1YR6W8hJxm9OtVioOpYnrAFQc3EtAqwTRoBSOBj0+fvIBfcbRALiBttBQzNkH0C0W5X/coKX5H8XfMZmOPcOWyGKVl5czceJEQp1mqhJrWdPS0vjggw/w8/MD5DJyv/32GytWHFtLLqXz3nvvkZeXJ67z7LPP/iVwk9DRdZ1HHnmEiIhj1U4SOhUVFTz99NOEhYX95Xcnw5V1psc3xUlPT2fq1Km1QYjUvVmyZAnLli2r/VlK54MPPvhL0ytXdRYsgG7d4Lnn7EHpTTfZy3bHjQNTHamx55577tgDqRR49uCzHm96pOs6jz76aINszZ2mR2azmaeeeqpBtuYOBw8e5J133hG3teXLl/Pbb7/V/nx6lPKC+KSjImMfoItPDGuKC6gpKSQoUXgCarNSkbGfoLbtG7TXpzuUH9yLf1wbjP6B4jqayYeAVvVv9+JMvwO7qDKaWO+iDR3L+sneI3POQWw11eI61ioz5sOZ4jpwNOuXkIImkNE4XscUHIZveLS4Dij/01Baov9R/J2QkBBiY2O5//77RZ6Sm0wmtmzZQmJiIueccw7Dhw8X0WnVqlVtVmH06NF06CDzIOq8886rzf7ec889hIeHi+jcfvvtvP766wD885//FPsMvvTSS9x3330ATJw4kcrKSo9r2Gw25s+fz+DBg4mOjuaBBx4Qs7XNmzfTtm1bzj77bC677LJ6dVwJTI9vihMXF8fu3bvRNI0rr7ySjh1lltacc845/PrrrwDcfffdfwm2PMktt9zCW2+9BdizZgYXHnhaLPB//wdpadC9OyxdCp9+Cq1anfg9//nPf2pLUhNuTmB/zX6PNz2y2WzMnTuXoUOHEhkZyfjx4+u1AXeaHhmNRjZt2kRKSgpnnXUWI0aMELHp2NhY9uzZg9FoZNSoUXTu7FpypqH06dOHJUuWAHDXXXcRGSnzMLpZlfJqJh9MgcGiGuUH96IZTQS0ThbWsZdvSGdgzIczsVVXiutYq6sw5xwk6qwLRXXAfu0C26RgqOtx2knof+BPNiakUnm0iZYrOqbAEPyi4up/cSNwBD2BwkFCRcZ+0HVxW6guLqCmOJ/I3v1EdXTdRkXGXoJTu3kl6PGLiVf+p4G0RP+j+DulpaWMGTOGt956SyST6efnx+HDh9m+fTuTJk3iiSeeENmWJiAggCVLllBVVcX111/P8OHDPa7h0Fm8eDFgX1+WlCSzfMOh4+/vz7/+9S9sQuuuHTrdunXjueeeE8mUGI1GDAYDixcvZuDAgbzxxhsitubr60teXh5//PEHzz77LE8//XS9tuZKYDpp4CQmLp5Y2xTH39+f5cuXYzab+cc//sHll1/uuZNwwtnWHnzwQVJTU0V1fH19+de//nXCtZKVlfY/4eH2jOg778CGDfDAA3CSaum/6XTu3Jm3bn6LpxY95fGmR862NmDAAF577bV6bfr4++sKvr6+5Ofns2XLFp566in+9a9/YRHok+Hv78+qVasoLy/n2muvZdSoUR7XgL/a2gMPPED79jJz2mYVmBqNfgQfkm1oYd6/h5DoJEIPGwE5rZxdezD5BRJVHYsmeE4lO+wT0BjfVPwEdYqy9oHNRnRgO9F7VF1RTHVhHrFt+zRIJ6aiiA5Hcvgh0bX36bqNigN7CWvVgZAsHcd2FxJk7NmDf2gsEcXBUCx37fJ37EEzGInRkjAK3qO8/UdtLqAdQYI65QWHsFaaiQpJFbU5q6Uac1Y6cR36Kf/TQFqa/1HUjcViYeDAgWiaRmCgTMba8SR+4MCBmEymv5QPexJHKdpFF10kdi4OnVatWtG5c2fRB2u//fYb/fr1E1m35qCyspJVq1Zx1113AYhdt507d3L48OFmZ2uudOYdnDr4bw1xHLY2YMAAcVuLiYmhWzfZh7i//fYb5513HgEBAXX+/w8/wIMPwvnng2M71QsvtP9xlaqqKlasWMFtt91W5zX1FLt37yYrK4uBAwcC9du0u2NZunQpuq4zcOBAjEajyLp58K6tRUVF0b17d5ey5u7QrAJTH78gcY2Uvlfb+1UL06b7xUQln4GmyVZLRyWdiW9gBH6B4aI6wVFtad//RkJiU0R1TL6BdLzodgLCGpbFPCN3PwDrWrmeuelw/s0YTK5lVxtD2zNGYKmW3ZYAIK5jP0JiUzAKn1N4fGfanXcdgeGtRXX8Q6LocMEthEQni+poBiOdLroDn4A6OjF4GOV/3MNb/kdxYgYNGiR6/MWLFxMYGEjfvn3FdXr16kV0tNzyAJvNxpIlSxg6dKhooJCTk8POnTu54YYbxDTA3vm3qqrKKzYA3rE1f39/zj33XJde7+pepnXpdO/endjY2AaP0VV0XWfJkiW1wbwUeXl5bNu2jeeee+5v/3fgADz0EHzzjf3ngAAoL4cgN6b0a9eupbKyskXZmp+fH+ed51pTzsbodOnShfj4eDENXddrKxqkglJoZmtMDSYX8vyNJCQm2SuTm4CwOCLadBXX8QsKJzr5DHEdk18gUUm9MfrINtUxmHyIaNMV/+CGdffsXJBJpdHE/rCTLF5wQtMMhMa1IzhKtnkPQFBkG8JayawvccY/JJrIRPlupT4BIUSnnCXeVMfo409kYg98AkJEdQwGI2HxHQkMd812GoPyP+7hLf+jqBsfHx/atZNdf7148WLOP/98fH3lHqyVl5ezdu3a2iyJFNu2bSM/P19cxznzJ8nixYvRNI2LLrpIXCc+Pl5sPaazTv/+/WubYNWHO4Gp2Wxm9erV4vdmx44d5ObmiunsK9jH/QvvJ+m9JHgWXjK8xP0L72dfwT6qquCFF6BrV3tQGhwMkyfDxo3uBaVwLGAcMGCAx87hRDpxcXF06dJFXOdkWWZP4KhokLa1P//8k5ycHHGdZhWYKhTu0qngEPvC47EaZJvxKBQKxelGaGioaDbm0KFD7N69Wzx7sXLlSmpqasR1HGV13tAJCgri7LPPFtfp3bu3WLMTsGeZFy9ezKBBg0RtLSsri127djXo3rjTlXfVqlVUV1ef0rb2w54f6PleTz7c+CFmmxk0qLBW8OHGD+n5bk/aDfuBp5+2bwdz3XX2brsPP+zaWtIT8dtvv5EyOIVR80d5vBuvA+fM38lszZ1OvM441s1L28CaNWu8kmX2ll9TganilEfTbXQqPMSuyISmHopCoVC0OKS6yjqoqKjgmmuuYejQoaI6AQEBXH755VzYkEVvbtC6dWuuueYasUY0Drp27crdd9990j04G4uu65xzzjncdNNNYhoAZWVlXHHFFVx55ZWiOhUVFVx77bUMGzbM5fc4AtMTNfyBv3dt9ff394qtxcfHM2bMGI93mN5XsI8xs8dQUVNBja3mL/9XY6uhwlLB4YvG0K7PPhYtgi+/hNYeWN3Tt29fbBfZGtwBtyGUlZUxYsQIRo8efdLXudOJ1xlHM6JLLrnErfe7ip+fHyNGjBCvaGjVqhVXXXUVnTrJ7YsOoJ3sg+ZtgqMS9e6XTGjqYShOMRJKjzDnu//yn75X8237c5p6OAqFopmw9stHN+i63qepx3Gq06dPH339+vVNPQyFokk4UHSA/Ip8ksOTiQqse5nRov2Laru2SjXs8Sb3L7yfDzd++Leg1Bkfgw939L6bd0e85VHt5nItm8s4WiKapp3wu7lZNT9SKNyhU0EmgMqYKhQKhUKh8CiulPJKdpBtCj7f+vlJg1KwZ06/3P6ZxwPT5nItm8s4TjdUKa/ilKdzQSbVBiP7G9jJV6FQKBQKheJkuNuV91SmrLrMo69TKFxFBaaKU55OhfbGRxajKgBQKBQKhULhOTTq38e0sY1ymhNmM/jowS69NtjXtde5QnO5hs1lHKcrKjBVnNroOp0KMvkzok1Tj0ShUCgUCkULw5WMaWMb5TQnqqrAsO1GsJ68qZaPwYebenquKVZzuYbNZRynK80qxWSoshGSZm7qYShOIeIqCwmrNpNui1W2o1AoFAqFwqO4EphOGjiptlHOqci+ffauugEBEB4Or//jEcbv/ITKkzU/Mvrw0LkPeWwMzeUaNpdxnK40q8BUoWgoHcqzANgd7IE+5QqFQqFQKBROtOTmRxUV8OKL8PLL8H//B889Z//93WPakbhnDmNmj6HKUoVVt9a+x8fgg4/RhzlXz6FdZDuPjaW5XMPmMo7TFVXKqzil6VCehUUzkBaoGh8pFAqFQqHwLLX7mNJ8tldsLLoO8+ZB167w/PNQXQ05OX99zfAOw9l671ZigmJqfxfqF8rdZ93N1nu3MrzDcC+PWnE6oDKmilOaDmVZpAfEUmOQ22BcoVAoFArF6UlL68q7ezeMGwc//WT/uVcvePtt6N//769tF9mOz6/8XO3nqfAaKmOqOHXRddqXZ7MnSJXxKhQKhUKh8DyuBKanSifXHTugRw97UBoeDm+9BevX1x2UOhicOpiVd6wUC0qbw7VrDmNQ2FGBqeKUJdxSToSlnP1BrZp6KAqFQqFQKFogLakrb5cuMGAA3H47/PknjB0LpiaunWwO1645jEFhp1kFphZrlVd0jhTu8YpOftFedC+UfpSb86ioLBDXsdpqKCjeL64Drt2j6KoSAHJ9w0R1PIG3dIpK0rFYKsV1qmvKKSk7JK6j6zbyi1rWPVL+xz286X8UCoXCgabVv4/ppIGT6JfQr9l1ct21Cy691J4pBdA0WLAAPvoIYmObdmwOmsO1aw5jUNhpVoFpVXWJuIau29h9YCE2m0Vc62D2asoqcsV1svM2U1x6UFwnr2An+YW7xXXKK3I5mL2y3tfFVBcDkOcX6paO1VrN7gML0XX5hgb7Mn6lqrpUXOdQ7kaKyzLFdXKObKWwJE1cp7Akney8LeI6VdVl7Mv4VVxH+R/38Zb/USgUCmdc7corWe7aUMrL7V12e/aEH36Ap58+9n8+Lrbk8FZ5a3O4ds1hDAo7zSowtdlqxLM9BcVpVFTmU3J0mxEpqqpLyS/aIz5h03Xb0YlhhqgOQHbuJorK5HWy8jZRXJZZb7Yn+uiDjCNuZkxzC3ZSUZmPuarQrfe7Sll5DqXlWeL3yGKtIjd/m1eChKzcjRR5QSc7b6NXbDvnyBZKy7OV/2kgLdH/KBQKhTOnWvOjBQugWzd46SWwWOCuu+D99xt+HFXeqmgKmlVgCohne7LzNtp1hCdS9iyPLj55LyjeR1V1ibhOZVUJ+cX7KCk7JJrtselWsvO2YLVW1ZvtiakuwaIZKPIJcksrO28TgPjkPStvs1d0cgt2YLVVUyRs26Xl2ZRV5FBcmiGabbZYqzicvx1zVQFV1WViOrquk5W7EdCV/2kgLc3/KOqmuLhYXMNms7Fw4UJxnSNHjrB69WpxnbVr15KbK1+xsGDBAq9U/SxYsEBcw1s6DbU1d5sfFRQUsHJl/dVfjWXdunXk5OSQnQ1jxsCIEZCeDr17w5o19qA0Orrhxz2+vFXC1uq6bt60NemssK7rXjmfwsJCVqxYIa6zceNGDh2SXcbV/AJTwQmOxVJJbsFOANGJlK7rXpuAZuXag6uyisOi2Z6cI5sBHV23imZ7Cor2UV1jL3mtzxaiq4rJ9wnBpjXcjCurimrXq0neI5vNSs4ReymqdLYn+6gtFJdliK4tzDoa0FfXlIlmm3Pzt2Oz1QBQXCb3eS0tz6bcbJ9AKv/TMFqa/1HUTVaW/DVfvHgxM2fOFNeZMWMGS5YsEdeZPn26VwLgl19+mX379olq1NTUMG7cOGpqakR1srKyePbZZ0U1AJYtW8YXX3zh8utr9zE9SVBWV3Zx5syZLF682P2BuojD1ioqYOFCCAqCV1+Fdeugb1/3j3t8eevkyZPZvduzyymOv24Wi4Xx48dTXV3tUZ3jycnJ4ZlnnhHPCq9YsYLPPvtM5NjOfPXVV/z222/iOt7wa80uMJXM9hzO33Zsolt6UOwpY0nZIcrNeQCi2Z4ai5m8oxNdyWzPsYySHcnJblbeMZ36Ju/R1SUc8XOvjNeexdRd0mkM+UV7qK6x33/JbI+5srB2zacr2WZ3sdks5Dit+ZQM5BxBD0BxiaDOX2xO+R9XaYn+R1E3FRUVlJXJVS0AfPzxx6xatUpUw1s6ZrOZGTNmiOvs3buX5cuXi2flfvzxR9LS0ti8ebOozmeffcbmzZspKZHtN9JQG3AlY1pX8xxv2NrmzVV8+eUMVq5cSbt28MUX9kZHDz3k2W67aWlpLFmyxOO2dvx1+/nnn9m/fz+bNm2q552N4/PPP2fLli08fvbjok2PvOXXpk+fLu4Hqqqq+OKLL8R1ml1gKpntycrbhMFgX/Utme3JdtIBuWzP4fxt9hZrDh2hIKG4LINKp8ZUUoFcTU0FRwp3o2lGu249E9Do6hLyfBve+MieUdqEQbN7bclsj7PNSWZ7/mZzQvfoSNFurLZjT82lgoSKygJKyjIBu31LZZttNguHj/xRawvK/7hOS/M/ipOzbt06sWMXFxczd+5c9u/fT05OjpjOli1b2LRpE6tWrRItf50/fz7FxcXiE9JPP/0UQFxn+vTp4jq6rjN9+nRsNhu///67mE5paSlz5swhPT3d5ZJEd5ofbdu2jfXr17N69WpsNs9/p5SVwSOPwJln+lJUNKr23oweDW3bNv74x5e4Stna8dfNm7am6zr+2f5iTY/KysqYNWsWmZmZZGTIPVDduXMna9euZc2aNVitVjGdhQsXUlBQIO5vmlVgajT40iV1pMgTfpvNSsfk4bSK7omPKZCzut1BTU2Fx3UA4mN6077txQCc2fW22kDL04QGtaZXp+sB6Np+NP7+ESI6JqM/5/V6EICUhAFEhqWK6Fht1fTrPR5fn2DionqQ1Ob8E28hpOv2jKkbganVWkWvTtcTGZZKUEAsvTrfINIRWtd1klr3p238eQCc3f0esYxpVHhHuqSOAqBnp+vxMQWI6AT4RdCn2x0AdEweTkhQvIgOus75Zz2CphlIiDuHuKgeIgGjxVrJ2d3vJjgwjojQFOV/GkBL8z+KkyP5lHz27NmYzWZAdkL6ySefAPa1f3/++aeYjmNyvW7dOqqqZLbBs9lstecjec2OHDnCd999J67z+++/s2vXLkDW1ubMmUNFhd33NuR8XNkyxhnHvSkqKmLnzp31vLphfPcddO1qL9e1fy+2ZcOGDVRWeu4Bu3OJq7dsraCggPnz5wOyNrBhwwa2b98urjN37lzKy8vFdRz3pqSkhB2OfYEEcPi1jRs31vprCZpVYKppBlpF98Tfze0/TobBYCQsOIEaixkfUwARocmEhSR4XAcgLCSxNgMXFpxITEQnEZ3Q4DZYbfY6/CD/GFrHnCGiExwYi3607NXfN4zEVueI6Pj7hePvF4bFYsbHJ5CEuLMxGf3qHpO1kgBbDXludOQ1mfwJDoyjxlqJjymAmIhOBAV6fkMvTdMID2mLxVKJ0ehHWEiC2KQ6LCQB69EgPiQonrjoHiI6IUHx2HT7E7kAvwjaxPUR0QkMiMJo8EXXrfj6BtM2/lw0N9YS14evTzCBAVFH/UKg8j8NoKX5H8XJkZyQOiY8kjo1NTV8/vnn4jqHDh3il19+Aeylb1IliYsXL+bgQXv1wPbt2ykqKhLRmTFjRu3a0lPdBhqjU1/W1DnDaLFY/rKu0FPnk5lpz4iOHAkZGdCzZzWadg4wierqajZu3FjvMVzFucR22bJlpKXZlwrt3LmTgoLG71tdV9OhmTNn1q4tXblypVhVw7+/+DfcDqQ0T1trCBaLpTabLamTk5PD999/X6u5fv16ER1ohoGpNBaLGZNQNsmZGosZg2bCaHRxw6hG6ABiGTIHlqM6JpO/qI7NZsVqq8bHePLzia6yd4k80oggosZS4SVbqBC/P3ado7ZglL1HllqbCxTV8ZZtO7S8oaP8j3t4y/8oToxUSeLu3bvZuHEjBoMBTdPEJlbff/997VN+SZ1PP/2UwMBAcZ3p06cTHBxc+/OaNWtEdD7++GOCguyd7zMzM2uDYU9iNpuZPXs2/v7+aJomVpK4b98+1q1b55at1ReYOmcYf/zxx9pMmadsYP166NIF5s2D4GB4/XW47rrXCQr6s1bHk1k55xJbZ1vTNM0jzW/qajrkbGs5OTmkp6c3Wud4Kisr+d78PbQFBtq7Z1ssnq9kS0tLY82aNRiNRlE/8Msvv1Baam8Y6mkbcOaLL74gICBAXAfAg0ujG49m0zHtk21DbKkowc8QKK5jLSnAR/MV17FV2Nfj+GcWYTLIdcW0Vdvr4/1zKzAVyZ1Tlc0+cfArrj7ptWtVZf9yLMircns8lqpy/PQoeZsrLcLXZpK3ubI8NDT8DhypLTuSwFZpXyfrl12CKU/unHRLvl0n34ypXFBH17FYzfiWWZT/aSAtzf8o6iY0NJQPPviAvLw84uLiPHpsk8lEZmYmrVq14r777qNbt27YbDYMBs8+qG7fvj2rVq2iZ8+eTJkyhbAw9xrn1cfw4cPp3Lkzo0ePZu7cuWKdbCdMmEDXrl158sknWbNmjciWPpWVlXz66ae89NJLLF68mK+++or8/HzaemIRoxOlpaVs3LiRK6+8ksjISO677z5yc3OJj/fsUhFN08jMzKRNmzbccccd9OzZE6vVitFY/3KH+jrzTho4iYmLJzJp4CTiK+NZs2YN3bt3Z/LkyYSHhzd67D17QlISdOwIb7wBCQmwefMQunTpyBVXXMGcOXNEAiyABx98kC5duvB///d/rF692iO25ny9wF5dMG3aNCZPnsxPP/3E119/TUFBAcnJyY3Wcqa0tJRPbvmEe2beQ7vCdjz76bMcPnyYNm3aeFQHICMjg6SkJG666SbOPPNMLBYLJk92pAKSkpJYt24dXbp04X//+x8RETJLagYPHkynTp0YMWIEs2bNEl3L2rwCUy8kcGtsVQQbZW7c8To+Wt1lqJ7WAfDRfL2kI3tOrupE2+zrAI8Ygk/6uhOh6zo1tipMXrhHFi/ZguXo+UgGpdD8bKGxWPRqr+iA8j+N15E/J8XfMZlMjBkzRuTYqamplJWVUVNTQ0xMDHfffbeITrdu3Wqb6iQmJjJ69GgRnd69e9d2r+3SpQudOsmU0p911ll89dVXGI1Gzj77bBG/7+/vT/fu3SkoKCAiIoL+/ft7XAMgNta+lKagoID27duL3ZvU1FTMZjOVlZUNtrX6MqaDUwf/pYHOhg0bALutufPZKS2FF16wNziKiQFfX1ixApxj3N69e/PHH38A0LlzZ7p27dpgHVc466yzmD17NpqmcfbZZ3vkodHx18vPz48ePXrU2lq/fv0arVEXMTExXB9zPRNvmkj73u258sorRXRSUlKorq6mvLyc2NhY7rrrLhGdrl271vqbhIQErr32WhGd3r17165f7dSpEz16yCwXg+ZWyovshBqgRq/ExyBfDuY9nSpMmq94GXSNfnRiaBAORvRKl3SireXYgEKDeyWEVizo2PAVPh84eo+8pCN9fxw64A1baFk6di3lf9zVAe/cI8XfcSWj1BgKC+0dqiMjI5VOA3UiIiLEH0YWFhaKn4u3dNy9N6505q1Lx50M1jff2JsbvfQSPPbYsd/XlXiVsLW61n8WFhYSHh7u8UqG42mJtiaVxTxep7l+dhpKs8qYmoSfuuu6To+QgQQYQ0R1ADoEnY1cM/pjJPh3IcrH8yUIxxPlk0DP0EH4uhkIukqQMYxeoRcTaoo56evCdTOlmj9WNzuOGjDQO3QIQSb57FXn4P7iGSWA5ICe1Oiym1IDxPmlEmgMxajJuo8wUww9QwcTZAwX1fHV/OkVejFh9dhcY1H+x3285X8UdePp8rPjcTRTkZ7AeVvHEyWc9elIn4tDp3PnzqIaVquV4uLiZmsDDQ1MHToNmcQfPAgPPgjffmv/uU8fGDfONR1PXjfn9Z+OrKY3bS01Vbbzus1mq32oI4k7NtAYneb62WkozSpjahDa1sCBpmm08m9HmI/nO7AeT5RvAtG+Ml03nQnziaGVfztxnSBTGK39O4oHI76GAOL92+NvDDrp60y6jZpG2ItBM9LKvx0hJvknc7F+SUT4Cm2r4kSEbzyxfkniOiGmSFr7dxTX8TcG09q/g3iWzGTwJd6/PYEmmTVnDpT/cR9v+R9F3aiMacN1QkJC8PGRbT5WUFDQYrJLjq7CzdUGGtKV11nHlUm8xWLf+qVrV3tQGhICb74Ja9bAmWee/L0FBQUEBgbi5+e570nnjrwOPGUDdWVjnZGyNWfdkpISdF1XGdMGUlBQgJ+fX20TJCmaVWCqULiKERsWZb4KhUIhjnTG1NsTOG/oeCO75A0dXde9otPcbcCx1MyVrrzOOq4EC5s22deSlpfDmDGwcyc88AC48jxI4t44d+T1tE5d3XidkbI1Z92WFjB6269JLx1Qj58VpyRG3YZV+MOhUCgUCggJkS0/P+ecc5gzZw4dO8pWYlx99dV06NChdksKKR5++GFuvPFGUQ2AKVOmiGdldV3n66+/JilJthonLi6OefPm0bt3b1Gds88+mzlz5jS4NLm+jOnxXWZHjx5NSkrKCT87ug6OKczZZ8Ozz9r/vuyyBg2LCRMmcN111zXsTW4wefJkj1ROHH+dnNF1nVmzZnm86/PxujExMcybN49evXp5XMeZs846izlz5tClSxdRnSuuuIKkpCSxTuMOxo0bx9VXXy2qAaBJbWDrDmE+sXq/yKuaehiKU4Anin8m2VLIPVEyHcgUCsWpz4+5723Qdb1PU4/jVKdPnz665IbqCkVzJ70onSMVR0gKTyI6MLpRx9q9G269Ff7zHxgwwCPD8xiL9i+qDeCcM6YKhSfRNO2E382qFlJxSmLSbVi90MVZoVAoFArF6U1Dmx/Vhc0Gb70FvXvD6tXwzDMeGpwHqa/UVqGQpt7AVNO0BzRNk18soVA0ACM6VuEtKhQKhaK5or6bFQrv0dDmR8eTkQFDh9q77prNcNNN8N13YsN1m7oaH3mC+q6PFE2lq3AfV2b2rYB1mqbN0jTtEk161atC4QIG1fxIoVCc3qjvZoXCS9QXmJ4o06jr8Mkn0L07LFoE0dHw9dfw6ad170va1NTV+MgTNFUmVmWATz3qndnruv400AH4CLgV2KNp2n80TZPfI0ChOAEm1fxIoVCcxqjvZoXCe7jS/KiuTGNxMTz+OJSUwKhRsG0bjB4tPtxmh1QmtrnqKtzHpa68uq7rmqblADmABYgA5mia9ouu649LDlChqAsjNqwqY6pQKE5j1HezQuEd6gtMB6cO/kuW0dF1NzwcPvoI8vPh5puPdeI93Tj++rR0XYX7uLLGdJymaRuAl4GVQA9d1+8DzgJUC11Fk6ACU4VCcTqjvpsVCu/hqJSvr/lRUZE9AP3Xv4797vLL4ZZbmn9QqtZjKpoDrmRMo4HRuq6nO/9S13WbpmmXn+hNmqb5A8sAv6M6c3Rdf7Yxg1UoHBh1HYtBBaYKheK0xa3vZoVC0XBc6cr7669w222QmQkhITB+PERGemuEjcd5PabKMiqaClfWmE48/ovP6f92nuStVcAgXdd7Ab2BSzRNO9etUSoUx2HEhk1lTBUKxWlKI76bFQpFA3EEprqu/+3/KirgiocXMWRGfzJ9FtG3L6xbd2oFpSCzHrMpsrAq83tqIzaz1+2UHf3R5+ifv3+iFQo3UPuYKhQKRcPRNM1f07TfNU3bomnadk3TnmvqMSkUzZ0TZUzXrLHvSzq/eCK0XUXbWyayciV06tQEg2wkEh15m6IrrurEe2ojmnLSNM2oadpmIBf4Rdf1tXW85m5N09Zrmra+2maWHI5CoVAoFKc7qppJoWggJwpMJ02CPXsg+cAkekb0Y9pNkzC51Fb09KApuuKqTrynNqKBqa7rVl3XewMJQF9N07rX8Zr3dV3vo+t6H19DgNhYLLYaimtyxY7vTH71IaXjBoU1OVh1i0uvLTX4EaJXuaVTYS2hwlri1nsbgq7rLe4eeVOnrpIpT1NSc4RqW6W4jvI/zV/ndEFVMykUDcc5MLU5xabvvw9PPw27vh/MlnGe3//TG0iWvkrti9rcNBWewyuL9HRdLwKWAJd4Q68uyq2FpFVsEdex6hZ2lq70yqT6z7I11NjcC84aQoZ5B8U1eeI6BdVZZFfudem1JQZ/QtwMKMoshaRX/OHWextCpa2cfeUbxHV0XWdH6QpsulVca1/5Rq8E9Yer0sirPiiuU2LJI8O8Q1xH+R/38Zb/OZ1wpZpJoVAcw6AZ0HX4ZGo4w4aB9ejXbUIC/Pvf4OfXtONrDKr0VdGcEAtMNU2L0TQt/Oi/A4CLgV1SevVRZinkcNV+zNZSUZ1ySxFl1gKOVGeI6th0K6WWI16ZVJdZCjnghUm1Q8eVSXWp5k+o7m5gWkBm5S7xSXWZpZCCmizxSXW1zUy5tZCsyj2iOgBllnyvBPXllkIOVGwV1ymzFHLQvE08qFf+x3285X9OJ1ypZnJeZpOXJ+fDKivlKxaUjnvYbDaqq6vFdU6Fa1ZpNvDMg8m89Ew8v/4Kv/321/93zjqeCufjTH2lr+7qNCQT6wlbc0XvVLs3p5sOyGZM44HFmqZtBdZhfyq7QFDvpJRZC9HRxSfVZdZCAPGJVLm12H4+5j9EJ9U23Ua5tYicqn2YrWX1v6ERlFsLKbMWcqQ6s97XFhv8CbVV2XexbiBl1kKseg2ZZtnGleXWAgDxAOuYzW0VzZRV28xU65XeCeqthRTUHKKk5oi4TpWtwuVMfWN0lP9pON70P6cjJ6tmcl5mExMTIzaGDz74gMLCQrHjO3jllVew2U6+B6UnePnll8U1bDYbr7zyirhOeno6X331lbjOr7/+ysaNG8V1PvzwQ/Lz8xv8vrQ0GHChDz/OiyIg0MqsWTBkyF9f45x1fOWVV7Ba5SuYPGVrJyt91XWd//3vf24dtyGZ2IyMDGbMmOGWTkP0Fi9ezLp16xql4wrTpk1D8oGeg8mTJ59StuYKkl15t+q6foau6z11Xe+u67oLq5DlJtVlFvsXX0blTiw2uSeADp184Ul1+VGdKlsFOVX7xHQqrCXo2GonoVLouq322rkyqS41+GPCRqBe02Atx7WTnlQ7zienah+VgpNqh06ZtYD8mvqD+sbqWPUaMivlgvoaWxVVtgoADpiFg3qHzZllg3rlf9zDW/7ndKK5VTP9/vvvTJ06VVxn3rx5LFgg+2zcZrPx8ssvs3v3blGd9PR0Jk+eTFmZ7MOaHTt28Oqrr4ovDdixYweTJ08W1QBYv3497733XoPe88sv0KcPbNmskZhcyScLdnP11X9/nXPW8dtvv+Xbb7/10KjrRtd1XnnlFXbtkv3oZmRkMHnyZEpLG17t05AmRA4baIytuaLnLVvbsGED7777rrjOggULmDdvnqiGruu8+uqrbN++XVTHQbPaCNLiRpDhKuXWY5PqDMFJtUMHZCfVZU46aS6Wv7qD8/lkmuUm1WZbGTbsQWJ+TSallpM/1SzR7As6GlrOq+t67bWrtJWTU7XfjdG6hkNHx0a6eZugTkHtvyWzs842l14hV/7qrJNduVcsqLfYqqm02Y9dasmnoEauyY7yP+7hLf9zmtGsqpl27NjBm2++KVoyarPZ2LlzJ6+++qqYBtgDxvLycl577TVRnR07dlBUVMT06dPFdTZv3szixYvFdWbNmkVGhuwShB07dvDWW29RVeVaxc/SpXDJJVBQAJdeqvPp97tI7VRR52sdWcdBKYNqA3pJMjIyKC0tZcqUKY06Tn3lrzt27KC4uJhp06Y1+NgNaUK0Y8cO/vjjDxYtcr8Bkyt6O3bsYM6cOaSn17kFtMfYsWMHb7/9tmgJrK7rXrG1rKwsiouLG21rrtKsAtNqW90f+MZi1S21DVuMmomDFdv/1vLbUzgyFhoGcqsOUGktF9UBMFtLKajJEtIp+MvPmZUyT+ecz8ek+dYbYJUc7eAc2sAGSJW2strOv0bNR6z8Vdf12nMyYOKQ+U+xSbXztSusyaH0uHsmoWPRq8WC+nInHaNmIt0s85Su3FpU+2+T5ivWnEj5n8boeMf/nE64V80kgyNgzMrKEi0ZTU9Px2w2s3TpUjZskGtIt2OHfc319OnT3SoZbajOa6+9JlrG59CRnvju2LEDi8XCm2++KabhmMTn5OS4XDLavz8MHgzPPAPffacRGm6rPdaJyMjIoLy8nBUrVvD77797ZOx14bg3n376aaNKRusrf/W2rUlnM3fs2IHVauWNN94Q03DYWm5uLl988YWYTlZWFiUlJaxevZrVq1eL6Tjuzeeff87hw4fFdBw0q92W/PwjqEmNR9M8Gy+Xm4/QKegyso9swaAZ6dHxH1QbTJhM/h7VselWYkw9CKkuIa9wF+ef9RhWazUW3xCP6gAEZrQlhbakZS6mb6/70QxGLH7hHtcxZGfQJW4UO/fPp2vHMQQHxGIJiPK4Tk1+Ib1aXc+WP7+kbcIFtIrqcVKdwlIrFENgXDCWiDYu61SUZtAt4ir2ZSwiNKgNHZMvodonCKPBxxOnUUt1TQVt/S+guDQDc2U+Z3e/m2p08AnyqA5A2MEOBFuTyMhZw/lnPYrVVoPFL8zjOr6HWtNBS2RP+g/07nYLvj7BWPwjPa5jzc2he6ur2bZnNh1ShhMRmiJic5VFZnrGXs+2PbNpFXsGbeP7UeMXrvyPC5wy/sc7O/S0eKTWZjoCRrBPSG+88UY0TfO4jmNi5dD58ssvPa7hrGM2m3n33Xd5+umnRXX27dvHt99+y5VXXimqs3DhQnbu3EmXLl08rqHrOjt32qtI3n//fZ555hlCQjzvsxwBI9gD7VtuuaVOW9u7F0JDITYWTCb4/ntq9yU1aAasuhWbbsOoGevUOd7WpB64OHQqKyt59913mTjRvY66kwZOYuLiiScsf3XoHDhwgHnz5jFmzBj3BlwPDp0ff/yR7du3061bN49rOAJGsK9tnzhxImFhnp8rOQJGsNva7bff7hW/NmfOHI9rOOtUVVXxzjvv8Nxzz4noOGhWGVODweTxSSFAUEA0ifHnEuAXgbmqED/fYI9PCgEMmpH2SUMJDozFaq1Ct1nxE5gUAqQmDiIsOAGAyuoSAgQmhQCJ8ecSFd7RrlNVRKBAgAAQF9WdmMgu+JgCqawsrFenxBQIQJilYRmhsJBE4mN619qCv1+4x4NSAF+fQFITBhAYEIW5qgiTyR9fgaAUoH3bIYQExQNQXVOGv0BQCpDc5gIiQpMBqKwqJlAgKAVoE3sWsZFdAQ1zVf224C5R4e2JjexCgF+43eb8I5X/cZGW5n8UJ+fIEZn1yo6ABGDLli1iJaPOOpIlo846DSkZbSjOE1KpbKbzJB4QK0/OzMysXSvrbsmoKzjfmz/++INff/31b6/5/ns4+2y49lqwHN1S3eSUvnHey/R4HCWx8/+YX/u7OXPmcODAAc+cwHE435vGlIzWV/7qjq01dF9U54cTQINKRhuilZ2dXRswlpaW8tFHH7ms0xCcz2XHjh389NNP4jrz5s1j/36ZKjZnG3jnnXdqHyZK0awCU2kC/COoqi7FZrOI6vj7RQBgrpLtNBjgb9epFNbx8w3GoJkwV8p3TnRM3uvDEZiGWtz7gAT4RYhfN4eOrlupqpZtUnHM5opEdbxlcwaDCT/fkGZlc43WUf7HLbzpfxR1YzabRbKmO3bsIDU1FYArrriC347fg0NA58Ybb2ThwoUiOrt27SI5ORmAMWPGNGq93InQdZ20tDTi4+OJiYkhNTX1LxNUT5GZmYmfnx+hoaF069aNkpISiouLPa7jfG8uuugi/vjjD6/Y2pIlS2r/z2aD55+Hyy+HoiIID4e6nilo2LNedQWmjpLYuYVz/2Jr33//vadPBbAHJSkpKQBcffXVYra2f/9+WrduTXR0NB07dnSpAU5D90XNzs7GaDQSFhZG165dKS8vp6ioyKX3NkTL2QYuvPBCtm3bJlKe7KwzatQoli5d6nGN43W8ZWvXXHNNnQ91PMnpFZj6RQC6/OTdSxND/6NZCnOlzJpCB5pmwN8vDHOVrA6Av3+4S9etzOSPFY3QGvfWJfv7R1BjMWOxyO7NdMwWZK+dI0iQtgUfUwAmo7+XAsZIrwSM/v4RmKuKxDtPKv/jHt70P4q6SUpKwmDw/HRh6NChLFu2DIALLriA559/3uMaAOPGjeODDz4A4LrrruPee+8V0Xn77bd55JFHAPjnP//JpZde6nGNyspKli1bxhVXXIHZbGb69OkiJbZGo5Ht27fTu3dvgoKCmDFjhkjZY0pKClu3biU6OpqUlBQ+/PBDEVsbPHgwK1euBKB///688MILAJSUwFVX2deRgj1A/fprCKqjwOlkGVPnjrCOTNy1117L/fff7/FzAXtG/rHHHgPg0Ucf5bLLLvO4RlVVFYsXL+bKK6+koqKCjz/+2KUS24Z04wXQNI3t27dz5plnEhAQwIwZMwgPD3fpvQ3Ratu2LVu3biUuLo7k5GSmTZuG0Vh3SXZjGDhwYO2az/POO48XX3zR4xoA9957b20DtDFjxvDAAw+I6Lz++uv885//BODhhx9mxIgRIjoOmlVgqgtvch9wtPRQ+gn/sSChSFTHaPDBzyfES9meSK8FI5VVxdhsJ7cFXTNQZgog1OJeYBro5aySeJDgG4qmGbyW+fOajpdszmarobpGNqut/I/7eMv/KLxLz549ad26NQEBAaSlpYnp9O7du/aJv6TOGWecIa4TEBBA586dSUlJoaysTKzJUuvWrYmLiyMlJUX0mnXs2JGgoCBxnZ49exIXF0dQUFCtzq5dcM458M03EBYGCxbAU0/BieLikwWmjpLYe4bcU5vFau62Vl8ZrL+/P126dCE1NZWKigpyc11btN+QbrwA8fHxtGrVyi0baIiWt2ytR48exMTEEBoaKu7XvGVr3tBx0KwC0/qCkcZSm0kQnuD4mAIxGny9UirqyPZIYy999UJWyd+eVaqsrr9kqNgU6HZg6u/vHVtw2FylsI6mGfD3dS3b3Fj8/bwVMIZTYynHYpVZp1Wr4x8OeOEhhfI/buMt/6PwPpqmkZycLD7hSUxMxGg0iut4IwD2tk5eXp74nqnSwQLYbc1ZZ9Yse3DavTusXw/1JbgdganOyf1QmzZt8PHxafY24GoZrDdtraCgQKRk/Hgdb9uaFPHx8fj5+TV7W2sIzSowNRg8n1J3xs8vlI7JwwkPTRLV0TSNjimX0iq6p6gOQFLr80lq3V9cp1V0TzqlXAb1OOTGEhGaQufUkfgY628OU+QTRGR1wzd9BggKiKFT8mUEB7Vy6/2uYjT60inlcqIjOonqALRrO5iEuL7iOglxZ9OurWtPQhtDdGRnuqReUbuuR4rQoAQ6p4wQa+DjQPkf9/GW/1HUjfQDgdTUVLHGHQ5MJhNt27YV13GsMZXWcWQwvKUjPSFNTU0lIyNDdD9bh47jmj31FLz0EqxeDe3b1/9eV5ofLdq/CKPRSFJSkvi9SUpKQtM0t3VcLYN1BCX16TS06dHxNMTWGqOVmprKoUOHxJqTOetI24DBYCA5OVlcp23bto2ytYbQrAJT7QTttz2FQTPSNr4fwYFxojpg7ywqPQEFiI3scrSDqSzhoUm0jj1TpGupM0EB0STEnY2PT2C9r80IiKGt2b39u3xMASTGnyvWWdaZxFbnEBrs+pY27tIquidR4S58uzaSqPD2Xgl6QoNa0ybuLIxGX1Edf79QElr1xc83VFRH+R/38Zb/UdSNdLCQkpLCgQMHxANgb2QwAgMDadWqVYvJYHhTR9d1Dh48KKZRVAR79jxJWlolNpsNoxEefxyCg117/8kC0+Ozj96wNX9/f1q3bu22jqtlsK7aQEObHrmr01gth62lp6c3+L0N1UlPTxfd/9WhI21rvr6+JCQknH4ZU4WiIaQHxhBuqSCspmFbxigUCoXCdWpqakSPn5KSQk1Njdi2NM462dnZohre0omIiCAsLExcxxEsZGVlietomsahQ4dEjp+ZaV9PunPnOdTUvEFeXsMfarva/Ahalq2FhYURERFBTk7OSV/X0KZHx+OwNVfOpzFa0rbmrKPrOocPHxbXyc7O9sqDPW/YtNac1uyEBrfRz+l5X1MPQ3GKcFbRXv678xMe6Xo7W8NSmno4CoWimfHr6mc26Lrep6nHcarTp08fff369WLHr6ysxMfHR6RDpjMVFRX4+/uLdH09XicgIABNk12GUF5eTlBd7WM9iK7rmM1mAgPrr2JqDDU1Nei6jq+v5ytkDh6EgQNh/37o0cPG3Lk22rc31f/G40gvSudIxRGSwpOIDow+6WvNZjN+fn7itlZeXk5gYGCDbW3R/kVMXDyRSQMnudQ4qKXZms1mw8/PT1SnqqoKo9GIydRwW2sIp6Jf0zTthN/NKmOqOGU5EBALQJLZtU5xCoVCoWh++Pv7iwelYC+zlZ68OXSkg1JAPFAA+5p16UABwMfHRyQoTU+HAQPsQWmfPrB0qcGtoBSovad1ZUyPJyAgwCu2FhQU5JatNbQUtqXZmnRQCuDn5ycelELL82sqMFWcsuT7hlBu9CO5QgWmCoVCoVAojpGWBhddZP+7b1/45ReIiHD/eCcr5T3VaGzZrUIhhQpMFacumkZ6QKzbDZAUCoVCoVC0TGbOtGdMzz0Xfv4ZwsMbdzxXu/KeCjR0r9GT4a1zP9WuscI9VGCqOKVJD4xVpbwKhUKhUCj+wv/9H7z1Fvz0E4SFNf54tfuY1tGbpbEdaU9lvHXup/M1Pp1QganilCY9IIaImnJCVWdehUKhUChOa/buBUfjUE2DsWMh1EM7gTWkK+/phLfO/XS+xqcT8qtyFQpB0msbIOXxh4/84nyFQqFQKBTNj9277d13Q0NhyRKI8/CW0ScLTAenDvZIWaw0De3G6wreOvdT5RorGkezCkxtfgZKUwKaehiKU4jtsW1hF7QKLGRVSpemHo5CoWhOrG7qASgUCm+waxcMGmTPlrZvDxJNZFtC8yPnclgV5CmaI6qUV3FKkxsYRrnJj5Ri2Q2MFQqFQqFQND927rRvCZOdbf/7++8hONjzOi2h+ZEny2FV0yOFBCowVZzaaBoHwmJJVoGpQqFQKBSnFTt22IPRw4ftGdOFC2WypQAaJ97H9FRpzOPJbryq6ZFCAhWYKk559oe1IlUFpgqFQqFQnDbk5NiD0txcuPhi+O47CAyU01PNj/6KanqkkKBZrTFVKNxhf1grRuxfR6S5hIIAD7XfUygUCoVC0WyJi4Nbb4UtW+CbbyBAuEXJqd78yNONj1TTI4UELT5jWpafgdVSJa5TVV5EZVm+uA5ASe4+pePElpgUAM7I3X/S15XmHUC3WRul5QoVRTnUVMpvX2OpqaS84JC4Dpw6ttAQnbr2ovM0yv80fx2FQnFq4XDdmgYvvWTPlEoHpXDqNz9SJbGKU4EWH5hWlReQsfkHcR2btYa0tbPQveCw0tbOwVJTKa6TufUnzCV54jpH0jZSeGiH2+//M7IN5SY/zqxnIltekEnWziVu67iKpbqcA+vnieug6+xfMxOb1SIulb7hW6rNJeI6ObuWU3okXVynOHsPefvXieso/+M+3vI/CoXi1CEzEy688K97lfr6ekfbEZjq/P2h5qnQoOdUanx0KlxPhQwtPjDV0Di8e4X403dN0yg5vI/De+T3J6iuKCJj0wJxHd1qZf+ameg22cmupmmk/T4HS3WFW++3GoxsjUnmzMMnv8eapnHoj5+pKMp2S8dVNAwUHNxMwcGtsjqaRkVRNlnbfxXVAbBWm0n7/WsvZBl19q/5Cpu1RlRF0zQObvyWqvIiWR3lf9zGW/5H0TSkpaW1GJ3q6moyMzPFdXJycjCbzeI6aWlpXqkoaei9sVjghhtgxQp49lk5nRNxsoypt7KRFouFgwcPuvXehjQ+Onz4MBUVJ56Teep8Dxw4UKetefp6tiR/4y0dm83GgQMHxHWOp8UHpmj2Lmr718zySkldxqYF8iV1mkbu3jUUZf8prANlR9LJ+XOZrA4aNeYS0jfMd/sIG+PakVKSS0Rl6UlkNHSb1R74SJb0HrW5tHVfU1NZJqdztEPgoe2/UV4gPCnSNIoObSf/wEZZHTQqS3LJ3PqTsA5YaypJ+3227ARM+Z9G6HjL/yiagokTJ3olmBs7dqx4MKfrOnfddZd4MJednc3TTz8tqgGwcuVKpk2bJq7z0UcfsWLFCpdf/+9/w7JlEB8Pzz/vus6//vUvt4M5Z+prfhReGs6T/Z5stE593HnnneK2dvjwYZ588sTn4qns6+rVq/nggw/Eju9g+vTpLFsm/13y3HPPkZ4uX/X14IMPUl4uu2RM0zSv2NrxnDaBaVVZPhmbvxfXsVlr2L/mK+GSuqOBz9rZWKoFv3CPnlPG1h8xF+eK6xxJ20Bh5na3DrExth1Q3zpTu055QSbZOxa7peMSR8/HUlXOgfVzxXXQbexb85VwSa9d68CGb6iuKBaUsetk71xKad4BcZ3i7D/J2/e7uI7yP+7IeMn/KJqEkpISrwRze/bsEQ/mNE3jxx9/5OOPPxbXmTJlCitXrhTVMRgMPPzwwx4J5urjtttuO2lmzsHixfbAVNPg888hNtZ1jdLSUo9MsOtrfhT7XSy/vi9bwaRpGr/88gsffvihuM4bb7xxwmDOU9vOGAwGHnnkkb8Fc57c1sbBbbfdJh7MlZWVcccdd4j7tf379/PEE0+IamiaxqJFi5g6daqozvG0+MDUse8UwOHdKyk5vFdGRzumU5q7n8O7V4noOGtVVxRxULCkznHtdKvFPtkVKqlzvnZpv8/BUtXwkt5dkQlUmHw54yTlvM46h7b9QkVhVoN1XMHZ5goObiU/fbOMjtP5mIuyObTtFxEdZy17Se8cMad77JyOlvRaZEp6Ne2Y60vf+C1V5YUyOsr/uK/jJf+jaBoMBgM//vijeGbOYDAwZcqUBmXm3NEAeOihh8jIyBDV0XWdW2+91aVgrjE6JSUl4tkSg8HA3r17T5qZA8jLs5fw6jo8/bR9v9KG6vzyyy91ZuYagsP36bpe53UxGAy8/vrrLF++vFE6J8Nhaw8//HCDMnMNXbPpsDXpYM5gMHglmDMYDOzfv5//+7//E9Nw6HgjmDMYDLz55pssWbJEVEfTNB599FGvlShDM9suxuoDZW08GytXVh47XmBCKnlle9DOaP+XiaknqCkx1v7bNzKWUlseATE1GH39PKoDoBvsztHoH4gl2EhBUCG+4VEe17H6H7tGPoltyNUPENSmvcd1anYdm1QHpnQgx7yL8NQ+DTyKgY0JKfQu3H9CG6rKP/b7oLbtOVy2i5juCe4M+aSYDcd0/OMSKKg8iG+rXmhG40ne1XBs1mPH8wkJx2yqoCiiAlNgsEd1AGw+9nukGU1osZEc8ckmIM7z184S4HTtklPIqd5DaFJ3j+tUZzjZQnIHcsp2ENXxAo/rKP/jPt7yP4qmwXmCPXToUBITE8V0HBPsLVu2ECiw0aXjXBzB3I8//viXh0We1tm7dy9PPfUUU6ZM8biGs44jM3fXXXeJ6rzxxhtcddVVXHDB332wzQa33GJvdnTBBTDRjSWHDp1HHnmEYcOGkZSU5P6YNQM23YZNt2HU/vqdfrytBQUFua1zIhx25QjmfvnlF5dszXnNpitZSMc1c2Tm3njjjcYNvB4dRzB37733iuq89dZbXHXVVQwYMEBU59FHH2XYsGGkpKSI6tx+++1s3bqV4GDPz/scOuXl5dxxxx38+uuvtbqStPyMqcFEm0uvxyc0AoPJh7gLL/P4pNAupBF97sWEtOuGraqSVoOvFJkUAoR26klU34FYK83E9h8mMikECIhLIP7iq+yaHXoS1FZmUmgKDiPxitsAeyAX3q2hQamddW3b0+FIDhEVda/rNPj4knjF7Rh8/TAGhRBz7sVuj/mkGAy0GjiKgPi2oOvED7rC40Ep2DNKET3PJbxHXyyVFbQaOEokKAUIatuB2AsvQ7daiOzdTyQoBfCNjKHNZTfUaoZ28HxQCvagqu3oO0Ez4BsZQ9SZng9KQfmfxuAt/6NoGhyTaenMnEPHEcxJagD8/PPPYmWWzpNCycyc8/k0NDPnjk59mbmLLrLvWfrll2ByI51yfDDXGFs7UWfeRfsXkTYoDVJg3759omWWxwdzrtDQNZvOtuacmfN0t1xnW3v00Uf5fNXnIt14nXVuv/12yspk+n84rpsjmLMJVfo4dNLS0vjnP/8pouGss3jxYt59910xnb9oekWlCQlK7kB4tz6EtO9O+cG9WKtktjkwBYcSd8GlhLTvhqW8hMocuaYOrYdeTVin3oBO6T731mS6QtyAEYR1OwvNaKR07zYxnei+Awnt0MOe6WmEzvoE+zrTszLqLucN7dyb0A7dCU7pQtm+HWJ7mvrHtiaqz0WEtO9OZe4hqosLRHQwGIgfejWhHXqg11RTnr5HRgeIv/hKwrqcCSBqC7H9hxHW+QyMAUGiOhG9ziWkXVcCE1Io3Sv3GVL+x3285X8UTYPzxDcvL4/Zs2eL6vj4+LB8+XLWr1/vcQ1N02onvuHh4UybNo2sLM8vFXG+ZvHx8bzwwgsijZ2cdeLi4njuuedEHhw46/j7+9eZATYY4J//hL17IcHN56HOOgUFBcycOdO9A3HidaYTF0/EHG2GgWAymVi1ahW//y7Tv8BxPmFhYUyfPp1Dh+rfz7yhazaPt7UXX3yRiooKj3fLPd7WHv7uYZHuxs46AQEBTJ482aPHr0unqKiIGTNmiOoYjUbWrl3LmjVrRHVCQ0P57LPPRJcq1GqKKzQxjuxESPvu6DYrZWm7ZHXadQM0SgQnUppmwD8uAVNwqLiO0defoLYdKN27TfCJ9lHDb9+dikNpWE6Q8ayP7a0SqfDx5ewTBKbHbKEb1soKKg7J1Mw72xwgNnl3TIaC2nZA8/EVtwXf0Aj8Y9uIBgmaZkAzGAhJ7UrZ/l3YLDINnZzvUXVBLlUFMs11lP9pnI43/I+iaQgNDeWhhx4C4IUXXuCaa64R0UlMTOS2226jpqaGr7/+mj593KvIqY8+ffpw2WWXAbBs2TJat27tcQ2DwcDIkSPp2bMnbdq04ccffyQgIEBEZ9y4cYSEhHD++eczbdo0kdJkk8lUu7705ptv/kuTquJi+56lDhpTqRgSEsLDDz8MwL///W+uu+46t491osDU0ZX3Er9LsFgszJ49m759+7o/6JNw5plncvnll6PrOsuWLaNNmzYe1zAYDFx22WX07t2b+Ph4fvrpJwIDAz3eLddgMPDggw8SGhpKv379mHHXDI8e34HRaKytmLjxxht5tiH7DTWA4OBgHnnkEcDeDfqGG24Q0WnTpg133nknVquVmTNncu6554ro9O7dm5EjR2Kz2Vi6dKnYkgtnWnxg6iAoIRWDX4D4k3dTUAgBrZPEdTRNI6Rdd8rTd2Orlt2GIqRdN2pKi6jMlWkWVKvTvhvoOmX7d7r1fovRyKY2KZydcfIGMyGpXUAziGbKAPyi4vAJixLXMfj4EpzUkdJ924W7sdrvkTkng5oywc68R3VsNVVU1HMvG0tou26AbBYYlP9pDN7yPwrvMnnyZP7973/j7+/P/PnubxVWHzNnzqydKH777bdiOr/88gu33HILRUVFYttSJCQkMGfOHEaPHs26detEsrIAgwYN4rXXXuOSSy5hwYIFWIQeEN5///288MILdOvW7S82oOtw113Qq5e9G29j+d///sfzzz9PQEBAo23tRIHp4NTBHHjmAFPG2bO+kjb9888/c9ttt1FSUuJS8xt3ym9bt27N3LlzGT16NBs3bqzNlHm6W+6AAQN4/fXXufTSS1m4cCEXJl7o8W68APfeey/PP/88PXv2FPUDL730Es8//zxBQUGiNvD555/z+OOPA7K29tNPP3HbbbdRVlbGb7/9JqbjzGkTmGpGIyGpXSjdvxPdKriHJfZJddWRHKqLZPcTDOnQDd1ioSx9t6xOe+9M3gPikzAGBjcqC7MusR0dj+QQfpKsq9E/kKDEduJZGE3TCG3fnfKMvVgrZffRC+nQHWtFGeYs2fb+tVlg4WA7KLkTmtEkmpED8I2Ixi+6lfj5KP/TCB0v+R+FdwkLCyMoKIiLL76Yb7/9VmwtVlhYGF27diU1NVV0AhcWFsawYcPw8fER0wkMDMTHx4eRI0cCcoF2WFgYmqYxatQo8vPzWbVKpst3WFgYACNHjmT16tUcPnwYgA8+gNmzoaYGPJGgCQsLIyAggKFDh/Ldd981ytZOtmVMWFgYnTp1okOHDuK2NnToUPz8/FzScaf8NiAgAF9fX0aNGgXI2VpoaCiapjFy5EgKCwvFumc729ratWvJyckR0/H392fYsGF89913WIW+78PCwujQoQOdO3cWt7UhQ4aIP0B0plkFptLbAYS0746tykx55sn2umw8obWTd+EsTGIHDL5+4jo+IeH4t0qUz8IYDIS060b5gT/d3iZkfaJ9nWmfeu5xSPtuVBflU5V/2C0dVwnp0A1sNsrS3MsCu6yT2hU0Tfwe+ce2wSc0QlzH6OtHUFJHSvduFy/hDGnfnYpDB7CUl4rrKP/TcLzlfxRNw6hRo8jOzmbDhg1iGo4ga+nSpRQVFYnphIaGMmjQIL799ltRv9W7d2/atm0rmvkBuPTSSzEajeI6o0aNQtd1Fi5cyB9/wPjx9t9PnQrtPdjzbNSoUeTk5LBu3Tq3j+EoaT4+MHVkJX9L+41Ro0axfPlyCgqE+ktgLxkdPHiwS7bWmPLbHj16kJyczMdLPxZpSgT2a/da6WsY2hu8ZmvfffeduE5eXh5r164V11m5ciVHjhwR0wgKCmLIkCGNfqjjKs0qMJUmOKUzUWcPxCc0XFTHLyqO6HMvJqB1sqiOwWQi9vzhhHToIaoDEH32QCJ69xMPEiK69yWm3zC3GxNtO7rO9LwDJ8/ihHToQfR5QzD6+bul4yqBbVKIOnsAflGtRHVMgcHEnj+coOROojqaphFz3hC3Oyc3hMgz+hN9ziCxJlUOwjr3Jvb8S+w7twui/I/7eMv/KLzPiBEj0DRN/Gn8qFGjsFgs/PDDD+I66enpbN26VUzDkWFatGgRpaVyD9QiIiK46KKLmD9/vuhn7+yzzyY+Pp6vv/6Ra6+Fykq4/XZoxFLQOrn88ssxGAyNsrWTNT9yZCVHjRqF1Wrl+++/b9R462PUqFFkZmayadOmk76uMeW3joc6G0M3ijQlAvu1+z37d0JGhojb2llnnUWbNm3EA+DLLrsMo9HoFb9ms9lYuHChuE5WVpboA0QHzSow1YT3xzH6+dNqwAj8ImJEdQDiLriUwNbu75XlKlFnXVibIZEkrHNvInudJ9IAwZnAhBSi+w7E6OtewGgxmlie0oVBe/9AO8l6S9/QCOLOH45PSLibI3UNzWCk1YCR+Md6vhHG8cScezHBSR3EdSJ6nlvboVeSkNQuRJ15AQaj7HbL/jGtiTlviNhWOw6U/3Efb/kfRd1IPiWPi4vj3HPPFZ/A9e/fn8jISHEdR5mtNyak1dXV/PTTT6I6I0eOZO/evezcKVf1YzAYGDFiBD/9dBk7d0KXLiCxbWZMTAz9+vXzSGB6fPDknJU877zziImJEbeBESNGAPK2NnLkSPTfdDr6d/R4UyI4du1uSriJtLQ0tm2TbKpnf6jz66+/nnB7Ik8QFRXF+eefL35vzjnnHOLi4sR1Lr/8cq88QASQnfEpFE3Arx17Mmz3FnofSmdTgszmxgqFQnG6INX8xsENN9zAihUrqKqqws9PZv9dk8nEbbfdJp51b9OmDVdffTXh4eGiOhdddBEXXHCB+Ib3o0aNYs6cOaKZWYCePW/Faj0PPz8bs2YZCAqS0bn++utZunQplZWV+Ps3/AH4yZofOWckb731Vmpq3FuS5Crx8fFce+21REREiOpccMEFXJh4IePaj/N4UyI4du0OHjzI5rmbxfYYdXDVVVdx4MAB8vLyCJIyNOy2tmjRIsxms0j3bLA/1LntttuoqKgQOb6DuLg4rr32WiIjI0V1ALTmVBrl1zZRb/PohKYehuIUJ7iyknVPPstnF/TnP1eObOrhKBSKJiJt/KMbdF2Xrztv4fTp00eX2P9ToXBm/Xo4eBBGj27qkZyYg8UHySvPo21YW2KC5KtfGsui/YuYuHgikwZOEgkqFQp30DTthN/NzaqUV6HwBGX+/qzs1JFLtv5h7zuvUCgUCoWiWdOnT/MOSuHkXXmbI+505FUomhIVmCpaJD/26kFCQSHdMg819VAUCoVCoVCcgKNbZJ4SnCgwdWevUG/QmI68IHtezfWaKZoWFZgqWiS/9uiGxWDgki1/NPVQFAqFQqFQ1EF2tn1LmCFD7PuWNnc06t4uprlmJhvTkRdkz6u5XjNF06ICU0WLpCgoiLXt2zFsqwpMFQqFQqFojrz5JlRXQ1gY+Pg09Wjq50QZ08ZmJpsrkufVUq+ZonGowFTRYvmpZ3faH86lfU5OUw9FoVAoFAqFE2Vl8O679n8/+mjTjsVVTtaVtzGZSU/jqTJZyfNqbtdM0TxQgamixfJTzx7YNI1hW+T2xFIoFAqFQtFwpk2DoiLo3x/OPbepR+MatfuY0rwbK6oyWcWpigpMFS2WvLBQNiYnccmWrU09FIVCoVAoFEexWGDKFPu/T5VsKZw6zY+aa9Oj5nadFM0PFZgqWjQ/9exOt0NZJB7Jb+qhKBQKhUKhAObOhQMHoEMHGDGiqUfjOicKTJtbhrK5Nj1qbtdJ0fwwNfUAnNF8bJhaVzT1MBQtiEVDOvDUfBievpFpPfs39XAUCoVCoTjtyc6GwEB4+GEwGpt6NK5zsuZHExdPbDGNfKTOp6VdJ4XnaVaBqULhaTLjItieEs/QNTuYNkIFpgqFQqFQNDXjx8NNN0FAQFOPpGGcrPlRc2nis2j/otrgz90xSZ1Pc7pOiuaJKuVVtHh+OqcrZ+7OoHVeUVMPRaFQKBQKBRAZeeoFpppW9z6mzQlVLqs4lWmxgalutWLeneEVLfOu9BalU7knA91qFdepysjFWipfuj3vzI7YNLhyySZxrZZmC+Zd6ei6fPfByv1Z2KqqxXVq8oqoOVIsrqP8j/t4y/8oFArvs3s3fPKJfe/SU5ETZUybE2p/UMWpTIsNTDWjkdyp31JzuFBcq/Cb5VRsTxPXKft9F8W/rBPXqc4uIG/a9/IBic1G9uSZ6DUWUZmctrH85uPD6N82otlkv0yOfP4LVeny+6YW/7qBsrU7xHUqd2dQMGeJuI61tILDb85FF74/mq+JrP9+gc1cJauj/I/beM3/KBQKrzN9Otx6KzzxRFOPxD1Oha68jW185OlzaU7XRtH8abGBKTgmoZ9jLa8U1TGGh5D9ykyqs2U7v/rEhJP74ULKt+wV1gmj+Od1FH2/RlTHFB2OefsBcj9YIDoJ1YxGpvv5kHikmLOFr50xOICsF7/AUlgqquMTHUbOG19Tue+QqI4pJpyCWYspXfmHqI5PTDhla3eQP1P2i8sYGkRNdj45r89Gt3ojCFb+p+E63vE/iqZh+fLl5OXliessWLCAqirZB1AA8+bN88pDlHnz5olrVFVVsWDBAlGNzZvtf7dpI1+BsWLFCnJzcz16zNp9TJ3u+cKFC3n6t6fFy2e9ZWtjvx7r0XOpq7S4pqaG7777ziPHPxn79u1jy5Yt4jorV67k8OHD4jrff/89lZWycwrwnq3VRYsOTH1iwqnOzCNnyleipWE+MeHYysxkvfi5aGmqKSYMbDZyXp1FdabcF7spOhyAI5/8SPmGP8V0jEH+GAL9KVm8kcJvV4jpAHzfOopCYIRwEGyKCceSX0zWS1+KlqaaYsLRq2vIeulLavLlSlN9jtrC4bfnYf7zoJiOKToMgMJ5yylZLFdyrWkapugwyjfs5shnP4npgPI/but4yf8omgaLxcKVV14pHjSmp6dz9913i0+ufv31V/73v/+JagC89dZbzJ8/X1TDz8+P8ePHi07k/zj6jPOVV24hJ0e2ushms3HFFVd4dCJfV8Y0IyODoN+DOC/hPNHy2cWLF/Pf//5X7PgOgtYG0Smwk8fOpa7SYh8fHx5++GE2bZJdYhUZGcnll19Odna2qA7AqFGjMJvNohqHDh3i9ttvF/drS5cu5YUXXhDVOBEtOjB1THAqtuwj7+MfxG6kKcauU5OdL1qa6nNUx1ZRyaEXP8dSXC6iY4oMAYMBdJ3s12aLlqaaYuwBSf4Xv4qWplriIpkBjMwrwvLlL2I6PkfPp2rfIQ6/NU+sNNURyFkLS8kWLE112LZeYyH75RlipakGXx+MYcEAHJ76rWhpquMeFS1cLVqaqvyPe3jT/yi8T1JSEitXruTOO+8UnVwlJSXx6aef8uKLL4ppOHT++c9/MnfuXFGdxMRErr/+ejZu3CiqIzmRLyyEzEwICNApKtrAFVdcITqRT0pKYvXq1R6dyNcVmCYlJbHog0UMzxou2nE2KSmJJ598ktmzZ5/wNZ4om+0V2ouDzx4kvDDc7WM4c6LS4qioKEaMGMGhQ3KVX+Hh4RQXFzNy5EgqKuQe3CYlJbF27VpuvfVWbIJLkpKSkpgxYwbPPfecmIZD55lnnmHWrFmiOnXRogNTx0QKoPin3yn+Ya2QTljtvyVLUx0TXQBLbiHZ//sSW3WNx3U0oxFTVCgAemW1aGmqIyOHrouWpvrEhDMNCACGfrNCrDTV5GRzZWu2i5WmOtt21YEccl6fI1KaagwLQvOx7yplLSkXLU11PKTAahUtTXX+HEmWpir/4x7e9D8K75OQkICmaXz++ec8//zzYjpJSUkAPPXUUyedyHtK58Ybb2T9+vWiOhUVFeIT+aSkJDIzM0Um8o5sabduGsnJieIT+TZt2mA0Gj0+kT++M6/DBiZOnMhXX33lMZ3jcejcfPPN/P7773W+xhMdeZOSkjCbzYwYMYLMzEy3j+OKzqFDhxg5ciTl5TIPOjVNIykpifXr13PzzTeL2Vp8fDwmk4lZs2bx7LPPimjAMRt47rnn+PLLL8V1brnlFtaulZm7nIhmtY+pv08NXVp5rkY7p6POEaMB3WqjzcUdSOkbQERcTq1T8RQVmoVMwOBjILRdNN2vSSE04hAmfx+P6gBkBPthrarB6O9Dn/FnExSSiV9EoMd1CloHUlhUgq3GxpmP9Sc0PIfAVp5/2mRJ9iV9qwFbjY2u95xDTOtiQlt53izT2xnYZNLYatG5LyKAnV11Ijxoaw4KO9vIATSjgegz29Dx4hgiorMwmDy7g7g1wkI6dpvzjw7mjDu7ExKaiU+In0d1AHLig6nILgGgz2P9CAo9REBMsMd1yhP9yUm320Kv8f2JiDpCcCvPZ/+MqSbKltl1Ot58JvGplYQJ2ILyP+7jKf+zx+MjUzQWX19fWrduzaFDh5g4cSIdO3bk2muv9biOY2IF9ol8UlISffv2FdMxm82MHDmS33//nYSEBDGdrKwsRowYwfLlywkKChLTcUzkZ82ahcHgmRyGIzDt2ROyspLYuXMns2bNomPHjvz73//2iIYzJpOJNm3acPDgQZ577jk6duzI9ddf3+jjGjQDVt2KTbdh0Az2a5YCDISbJt5EUlIS5557buNP4Dgc96aysrLW1tq2bfuX10waOKl2D9OG4tj/tH+sfc/37OzsWlsLDm74d359+6k6zmfjxo3ceOONfP311x6zteN1tm3bxtdff83TTz/Nf/7zH49rGI1GEhMTSUtL4/nnn6djx47cdNNNHtdxvt+33XYbycnJ9OvXz+M6ddmas0+VpEVnTAPiQuj56EXEnptE3roMQttHeXxSCOAfFUTqNb1od21vinbl4hvqLzIpBGh7eRd6/98gakqrqMyvEJkUAkSflcB5U0YBULQrl8D4UBGd0NQo+r95JT7BfuRvOkRoSpSITmB8CH3+PZwZMUH0LjTT0yRj+oGtQuh81zkkXtKJ/C1ZBCeGeTwoBTD6mUi9uidd7u1HRXYJuk0XCUoB4i9M5ewXhmOrsVGaXigSlAKEd42j/1uj0UwGCrZlE9w2XEQnODGccyePJKBVCHnrMgjrECOio/yP+3jL/yiaBucJzi233MKaNZ5vdBUaGkp4eDhwbHJ18KDn18k7n4tjIl9WViaqs2nTJm688UaR7I+zjmMi7ykOHQJNgx49/qrz/PPP89lnn3lMxxlnndtuu41Vq1Y1+pjHl/MGBQVhGmqCtlBzfg2jRo3iwIEDjdY5HudzOXz4MJdffjmlpX+tJmlMR15HtvX7yu9rf7d582ZuuOEGrG70Sagve+t8Pt988w1PCLVqdtZ58cUXmT59urjOnXfeyYoVnu+dEhAQQGxsLADV1dVcccUVpKV5fumT87nk5uZy+eWXU1JS4nGdumjRgWloahRJl3cl9ZpeVBdXcujn3SI6BpOBbmP7k3xlDzSjgf1fbxXRAeh6Xz9aD2qPf2ww++fINSjoeEsfonq1JubsRA58sx1rlcy6tbaXdyWiWyvajuhKzso0yrNkGvlEn5lAq/NTWHvjWVQD502TWVvoGx5Ah5vOImVMT2zVVg7M3y6iA9DtgfNpe1kXTIE+7J8tZwud7zqX2HOTCG0fxf7ZW9FtMuvC2l3Tm4iucbQZ3IHMH/+kukSmZDj+onZEn9GGlKt6ULj9MIXbZdYwKv/jPt7yP4qmISkpiago+0PI+fPn07FjR1EdHx8flixZUhuoepK4uDh8fX2JioqiTZs2/Pjjj2JZH6PRSFhYGBdddBFTp051K1hwRScsLAyDwcC9997LuHHjPLY04D//gdJSuOOOv9rAlClTuOSSSzyicTzOOvPmzaNz586NPmZd60yT05IxZZswLDOwZMkSIiMjG61zPDExMQQEBBAVFUV8fDw///wzRqPnHnw7mhT9s+8/a23tggsu4IMPPnDL1urbTzUpKYnQ0FCMRiN33XUXDz30kMgyFGcbeOWVV7j00ks9rnG8zpw5c+jSpYuojtFoZPHixSK2FhUVRWBgIFFRUcTFxfHLL7941NZORosOTDWDPTsR0yeBkOQI9s/ZKtZsQTNoBMQG03pgOzJ+2ElNqUwzGs2gYTAZSRndg4It2RT96dlW6M46gH1SXWTm0CKZojiHTspVPdAMGmlzZNZ+OnSCRnRlgY+RoWvSMdV4/ktd0zQ0TSOsfTTRZ7bhwLxt2AR0wH5OPkG+tL2sK9nL9lORI/M0SzPYzyn16l6UZxSR+7tMd95am7u6J9YqC+nfyTTDcugkXdYVY4CJ/XNkAjnlfxqnA/L+R9E0DBs2jA0bNhAcHMz06dNFJlYAd911F7/88gs1NTXMnj2b0FDPZ94NBgMvv/wy77zzDocOHWLFihUEBnq+kiAxMZG33nqLCRMmsHTpUvLy8vDx8XxlRPv27ZkzZw6jR4/miy++IDAw0KOVHkFBEBICvXv3ZuXKlXTt2pUPP/yQ6Ohoj2k4M2TIEDZs2EBISIjHbK2uLWMeGvUQ6+9bj22vja+++krE1jRN48UXX+S9994jOzubZcuW/cXWGtv4yJFtvfbsa3nzzTd5+OGHWb58Obm5ufj6+rp9vBNlb9u1a8fs2bMZM2YMM2bMICAgQKSqqFevXixfvpwePXqI2trFF1/Mhg0bCAsLY/r06bVBqqe59dZbWbx4MVarlZkzZxIWFlb/mxqIw9bef/99Dh8+zJIlS0SWDtSFWGCqaVqipmmLNU3bqWnadk3TxktpuTAWUq/uRWlaAUc2yC3kBki9uhdWs4X0hXIdZgGSRnTF6Gdi/2y57AhAbN+2BLcNZ//sLaIdFAPjQmh1QSoHF+6gplxumxWDj5GfBrUnxmKjy1zZvTlTr+lFVUEFh36T3fcxZUwP0HXS5m4T1WkzuAO+EQHsnyW7J1h4p1gie8WTNvcPbBbBbVZC/Gg7vAtZi/dhzvV86Z0D5X/cx1v+R+FdbrnlFpKSkrjtttuYPXu2WIOVsWPHcsYZZzB48GDeeecdsS1qxo8fz+jRo0lMTOS1114T0fDz8+Pee+/l3nvvxdfXlzfeeENEp1u3blx88cVMmDCB0tJSj5U9Hv/xHT58OJ06dWLChAls376dRYtkGgU6WzoBnQAAg39JREFU1hffcccdfP3116SnN37/1Loypvfffz+9evVi6NChvPvuu2J7TY4fP54rrriCpKSkv9maJxofgX0d+H333Vdra6+//nqjjnciunTpwtChQ5kwYQJlZWVMmzZNRGfYsGF06dKFCRMmsGvXLn75RWZnhhtvvJGkpCTuvPNOvvnmG5ESW7DbWo8ePRg+fDjvvfeeWGfrcePGMWrUKJKTk8X8Wl1IZkwtwCO6rncBzgXGaprWVVDvpCQM64RvmL/4pDqiaxwR3VuR9vUf2CxyLaN9Q/1JuKQThxbtoTJfppsZ2DMXKWN6UbI3n/zNWWI6YJ9UWypqyPhhp6hOxr3ncQgYIGwLceclE9gmlP2zZCfVQa3DaHV+Cge/24GlQi6oN/qZSL6iO3nrMihJk+mY6yD16l5U5paRvXS/qE7KmJ7oVhsH5sk+pFD+xz286X8U3ufBBx/EZrPx9ttvi+pMmDCBnJwc0a0PTCYTY8eOZcWKFWzYsEFMp1WrVvzjH//g008/JT9fzg/369ePPn368MYbb3ikZPi776BNG3jqqb/+/sYbbyQqKkp84vvggw+i67pHbK2uwNSRrRxw2wByc3OZOXNmo3VOhMlk4oEHHmD16tV/6c5bX+nsiThRpjU2NpYbbriBzz77jLw81/audidre+6553LOOed4zNZOxPXXX090dLS4rT3wwAOAfe9hScaPH8+RI0dEu/MajUbGjRvH2rVrRXoB1IVYYKrrerau6xuP/rsU2Am0Oel7hNaugX1SnTSyG4dXp1N2sEhMB+yliOacUnJWyO3FCJB6VU90i40D38hmyhIv6YRPsJ/4pDqyRyvCO8faSx4Ftj5x4BMdxLx2UQzMLSNo7xExHc2gkTqmF8W78yj4Q3Zz59Sre1FTVkXGT3+K6iSP6obBx0CaUPmrg/jzUwiMDxFdOwv2Rkhx/ZI58O12LJWe3/rEgfI/7uMt/3O60JyqmTp06MDll1/O1KlTRfcYvPTSS2nfvj1TpkwRfUh41113ERAQIJZhcjB+/HgqKyv54IMPxDQ0TWPChAns27ePhQsXNvp4W7dCVhYcn0gMCAjgnnvuYeHChezeLbMOHyA1NZVRo0bxwQcfNLo5VV2BqSNb+V35d3Tq1InXXntN1NbuuOMOgoKC/mJr7jY+Olmmdfz48VRVVfH+++83+lgnY8KECRw4cIBvv/22Qe9rCP7+/tx33338+OOP7NwplwBJTk7myiuv5MMPP/xbcypPMnToULp06cLrr78uamu33347wcHBXsuaemWNqaZpycAZwMk3wxGu1Eq+sjuJl3RGM3m+ht2Z+AvbkXBJJwJiZOuxQ1IiSb22F2EdZbqKOjAF+NDxtrOJOTtRVEfTNDrcdBYJF3cUzfYArLnrXIzA0F/kvggB2l7amYShHfEJlumY6yCqd2uSRnYlODFcVMc/KogON51FZI/Wojqa0UDHW86m1fkpog8pANr9ozdtL+0ithbYgfI/7uEt/3Ma0ayqmSZMmEBhYaFYV1awrwMdP348mzZtEumU6SAyMpJbbrmFmTNnkp0t9zDyzDPP5MILL+Stt96ipkbugdrVV19NfHy8RyakzlvFHM/999+PyWQSK092MGHCBIqKivj0008bdRyNv+5jCseylf8e+G/Gjx/Pli1bWLp0aaN0TkZERAS33nors2bNavS+tifLtPbq1YuBAwfy9ttvU11df0WWu1nbq666ijZt2ogHP/fddx8+Pj5esbWSkhKxDsBgnzOPHz+eP/74g8WLF4vphIWFcfvttzNnzhwyMjLEdBxo0ut2NE0LBpYCL+i6PreO/78buBsgIC74rCFzbhEdj0Lh4LmH5pNwsIi7v7oRq8CWLgqFomn59oK3N+i63qepx9Gc0TRtPvCWrusnXHh1xhln6Js2bRLR13Wdnj17YrFY2L59u0hHW4DS0lISEhK4+OKL+frrr0U0AHbu3EnXrl155plnmDSp4XtJusq8efMYPXo0M2bM4B//+IeYzvPPP88zzzzD5s2b6dWrl9vH6doVdu6EDRvgzDP//v/XX3898+fPJzMzk4iIiEaM+MTous4ZZ5yB2Wxm586dbttaWmEaBeYCksOTiQr8e4Ob8vJyEhISuOiii/jmm28aOeoTs3v3bjp16sSTTz7JCy+8IKYzf/58rrjiCj7//HNuuOEGMZ0XX3yRJ598kg0bNnBmXUbiIW666Sa+/vprMjMzxRqv6bpOnz59KC4uZvfu3WJ+raKigoSEBM4//3zRbPPevXvp2LEjjz/+OP/9738bfTxN00743Wxq9NFPLuwDfA18UVdQCqDr+vvA+wDhnWNVdwuF11gwpidP/9/3nLM8jVUD2zf1cBQKhcKrnKyayfmhcWKiXLZa0zReeukl0VJegJCQEF5//XXxTeK7dOnC5MmTufjii0V1Ro4cyb/+9S/69esnqnPPPfdgMBgabQOOnkOpqXX//+OPP85FF12Ev79/o3ROhqPTaFlZWaNKH+sq5XXGUWKbkJDgtoYrdOzYkVdffZVBgwaxaP8iJi6eyKSBk9zaw/RkXH755Tz33HOcf/75Hj3u8dx9993YbDbxz+hjjz1Gv379xG3tP//5D8XFxbKNQwMDef3112ndWraKrX379rz66qsMGDBAVAcEM6aavefzJ0CBrusTXHlPeOdY/aIPrxEZj0JxPAarjXev+4L82CCefGt0Uw9HoVB4GJUxPTH1VTM506dPH339+vXeGZiiRdK6NWRnw8GDIPicwytkFGeQW55LQmgCccFxTT0cAPp/1J9Vmavol9CPlXesbOrhKBQnpakypv2Bm4A/NE3bfPR3T+q6/v2J3hBqqmRQ9C7BISkUf2X3zXFc+NIerslbx5EuIU09HIVC4UHkCptObVypZlIoPEl0tD0wzc8/9QPT2n1MnRqjSGYsXWHSwEm1+q7iyTE39fkrWg6SXXlX6Lqu6breU9f13kf/nDAoVSiagu2j46kJMND7c/kF3QqFQtHUHK1m+gjYqev6q009HsXpwdix8NJLEBvb1CNpPCfrytvYPUTdxZ2OvJ4cc1Ofv6Ll4JWuvApFc6U61IddI+PptPAw/oVye4AqFApFM8FRzTRI07TNR/9c2tSDUrRs7rkHHn/cXtJ7qlNXYOpuN9qmxJNjPhXPX9E8EW1+pFCcCmy+IYEeXx2i+5ws1t+V3NTDUSgUCjF0XV8ByO5ZpFC0YOoKTAenDm6SEtbGlNB6csxNdf6KlofKmCpOewo6BJNxbgQ9Z2SiCe+fqlAoFArF6ca+fTB7tn27mFMdezX8ibvyehNVQqtoaajAVKEANt+YSEh2Fe1+O9LUQ1EoFAqFokXx7bdwzTXw2WdNPZLGU1fGdNH+RfT/qD+L9i/y6ljcLaH1xHib6pwVLRsVmCoUQNqAaIrb+NNLNUFSKBQKhcKjREXZ/87Pb9pxeILm1PzInaZH4JnxqmytQgIVmCoUgG7U2Hp9Agnrioj+s7Sph6NQKBQKRYvBEZgeaQFFSS2h+ZEnxnuqnbPi1EA1P1IojrJ9dGvOfXM/vT7PZNG/uzT1cBQKhUKhaBG0xIyprh/bx/RUa/7jifGeauesODVQGVOF4ihV4T7sGtmKzt/l4F9Y09TDUSgUCoWiRRAdbf+7JQWmTd38SK3xVLREVGCqUDix5YZETFU2us8+1NRDUSgUCoWiRdASM6ZNHZiqNZ6KlkiLDUzTtxZ7Tce5nEOKzB2lWKrlneCRDDNlhdXiOlUVVrL3lInrQMNsIb9jMOn9Iun9WQbGBl5vb9ncwW0l2GzyNpe9p4yqcou4TkleFYVZleI6NpvOwT9KxHVA+R938Zb/USgU3iUsDAwGKC6GmlO8IKm5dOV1Z42n6saraO602MB0+eeZbP0lV1xnz9pCfpl6QFyn5EgVX/zfdmxW2Umoj5+BqXdvprJMNiDxDTDw6aPbOZJhFtUB+OmdNPb+Xujy6zfe3pagI9V0WpDTIJ2NCw+zepZ8pjV7TxnzXtwtHpBYqm1MG/eHeEASEGpi6t2bKT1SJapjMGjMe3E3h3bJN7dS/sc9vOV/FE1DVVWVVx6kVFXJ+hKl03AMBsjOBrPZBshHppK25hyYOq6ZdPayrnvjTkfe+sbpig144ly9YdO6rlNd7YVEi/JrHqXFBqZx7YL45JFt/LmqQFQnvn0w37++n+VfyG4zEt8hmE0/5DJ70i7RD0BojC9HDpr54P4tVFdaxXQ0TSMwzMS7d2yiOFf2QxDdNoAP7t/CwW2uZcsO9oskr3MwZ047CA3ITMZ3CGbWv3ax8fvD7g7VZZ3ln2fyw5v7RXXi2gWxe3UBnz66DatFLjj18TNi03XevWszFSWyE5awOD/evXMTeQcqRHWU/3EPb/kfRdNQUFDAiy++KK6zevVq5syZI64zY8YM1q9fL64zZcoUMjMzxXWeffZZysrkKpliY8HPT+ORRx7BapX9fBcXF/P888+LHFtDA+yB6Zo1a5g1a5Z4h9qvvvqK33//vdHHqW+cr732GgcPHmzUMVzh2WefpbRU9iGxpmk89thj4rZWUlLCpEnynYnXrVvHzJkzxXVmz57NmjVrxHVORLPqyhtmqOTS4B0eOZZfj0oW1uh88uBmps+IpPeZvh457vH07G3hA+Dr53dzTvRhrrgqUERHb68zOURj9awsukUW89iTIWiaJqL1eSeNDeuK+P7R1bz9QQQ+PjI667pW88U6M5/ftYbP50QRESHznKS0ewXLPrMy7e71fDknivYdfep9j/U+IzHjixmzbhMVg/1d0mnTq5qZOnz5z22cH32IAYNce19DqehpY4oGP797gDOj87n97mARHYLhnWQjW3/JY+WkNfznlTAMBhlb+LGLjR8XVjBn7GqmfRFJYKCMLaR1q2DzjzV8fOfvzJgbRXxro4iO8j/u40n/M8Fzw1J4gFatWjF58mTCwsIYO3asmE6XLl1ITEwkJCSEYcOGiem0bduWSy65hGXLltG1a1cxneDgYIYMGcKyZcuIiYkR0ykpKeHKK69kwYIF+Pn5iWhomsamTbt54IEHeOedd8T8SGxsLG+++SZhYWGMGzfOo8d2zph27dqVIUOGMH/+fFbesdKjOs4kJSUxfPhwli5dSvfu3Vm0fxETF09k0sBJDcqY1tdJNzQ0lCFDhrB8+XJiY2PdOoYrlJeXc8UVV7Bw4UL8/WXmSgDbtm3jvvvuY+rUqWK2FhMTw7vvvktYWBgTJkwQ0QC7Xxs4cCAhISFcdtllYjrJycm1ttazZ08xnRPRYjOmHTrZY+6KCp07by5g106ZTEzrNkaCguzG/sQjxfz6k8xaOU3T6Hj0nD58r5ypb5eL6AB07GQP3JYsquKfDxVhFSrfc5zPnt0W7rypgLIymaycQ6eoUOfW6wvIOFh/mWDpiABqWhuIeM/169yug13HYoEH7y5k3RqZTHBgoIHEtvaA6r//LmX2TLnsn+NzNHe2mf88VyKWLXPobFxfwwN3FVJdJaVjt+2sQ1ZuvT6f/CMyT1KV/3Efb/kfhffRNI3u3bvzwAMP8Pnnn4vpxMbGEhYWxpVXXsmKFSvEdLp3705+fj5DhgwhLS1NVGfXrl1ccsklFBfLrV/v3r07v/76K9dddx0Wi+fL6XUdhg2DVau+4733ZvPkk096XMOZ7t27M378eD755BOPHlfTtNogJzo6moiICK666iqWL1/uUR1nunXrRkFBAUOHDmXfvn1ipcPdu3dn9+7dDBs2jKKiIo8e+3id3377jX/84x/UCC467t69Ox988AGPP/64aLVP9+7deeihh/j444/FNKKiooiJiWHMmDEsXbpUTKdbt24UFRUxdOhQ9u7dK6ZzIlpsYJqQaCQgwO44Sop1br+hgPQ0zztag0GjfUf7hM1qhfH3F7JqhUxA4phUA7z6UilffCIzOXRMqgEWzK9k0tMyAYnz+fyxpYb7bi+k0iyg0/HY+eQetnHb9QXkHq4nIPHRKLojiMA11fhtdm2NQnCwgYREe8BYVQV331bItq0yDtf5Hj3zz2J+WCCzVrej0z36dFoFb06RKfPq6HQ+K5ZV88i4IiwWz9tCx87HdNL2Wbn9xgJKij3/QET5n8boeMf/KJqG7t27A3Drrbcyf/58EQ1HAGw2m7nsssvYtGmTiE5sbCwxMTFkZWVx8cUXk52dLaLTrVs3ADZu3MiIESOoqJB5GOm4N/PmzePOO+/EZvOsb9Q0sNnAZvMBhvLf//6X//73vx7VcMZxPrfffjtz58716LGds6bdu3fH3MrMwM8G8t5P73lUx0F0dDStWrUiOzubIUOGMK7HuAaV07rasMhha5s3b+byyy+nvLy8Qe93Fce9mT9/PrfffrvHbe14nVdeeUV0GYFD58477+Trr78W1amsrGTEiBFiywgiIiJo06YNhw8f5uKLL/bKMgJnWmxgajBotOtgIiBAw2iEj7+IJK6VTNleh06m2kno5DfC6XVG/aWibul0PKbzwEPBjLwyQESnYycTBgP4+MIll/nz6BMhSMwLHQFjQIBGansjb70fgVGguDw4xEB8awMBARqBgRqfzIwkPLx+0y+5LhBriEbEVNcn4O2d7tHUaRG1WVRP42wLz0wK5YIBMmVX7Tua8POzTyiuvymQ2+4MEgkSHOXV/v7Qp68v//lfGBJVN4ltjfj52W0uJtbAtM8j8Q/wvJDyP+7jLf+jaBocEzir1co111zDb7/9JqpTUlLCsGHD+PPPP0V19u/fz5AhQ8gX2A8lJiaGuLg4AJYvX86YMWNEmro4ghKATz75hIceesjj/v5YBaL9H0888QTvvScTzDnujc1m47rrruPXX3/12LGPD0wZCNY2Vh6c9yC7du3ymI4zjvNJS0tj0m2TmD9qvsslta5mWCMjI2ndujUAK1eu5KqrrqK6utrjGVpnW/v8888ZN26cyNzCcc0AnnrqKd5++22PazjrOGztp59+EtUpLS3lkksuYccOzyx/PJFOeno6Q4YMIS8vT0SnLlpsYAowaIgfX35t3zxrxmcVIhNQgF5n+DJjbhSxsQamf1ROYKCMTsfOJqa8HU7fc32Z8VmFSBAH0L6TD+MfDeG6GwP5+YdK8vNtImsLw8IN3HZXEE89F8r+vVZ+X1Mttp515JUBfPhZJBUVOnNnm/H1q1/HFmKg+MZAgr+vxJTuWrbrnPN8+Wp+FEFBGp9+XFE7kfc0Xbv78NHnkbTvaOLTaeX4+wvZXCcTzz4fxiWX+TNvjpnqal1knUZSspE77w3ivnEhrP+9mj27LRiNntcxGjVuvDWIyW+Gk5dr45cfK/H1lbl2yv+4h7f8j6JpcJ4odujQgeXLl4sHWV26dOHnn38Wn/h26tTJo8HPiXQSEhJYtWqVxzWioqKIj48HwGQyYTKZPB5kXXqp41+XAAZiY2NJS0vjyJEjHtWBv9pA+/btWbFihcc6jv4tMF0MHITO2Z356aefxG2tY8eO/PLLLy6/tyENi5x1EhMTWblypcebO4WHh5OQkADYbc3Pz4+dO3d65NjOOK/9jomJIT09ndxcz3fMd75m7du3Z9WqVVRWen5pjbOON/1aQ2ytsbTowPT+ccF06+HDFVcFMHtmBdlZMuvJrv5HAF27+3DX/cFsXFfDqhUy7an7nuvLoCH+PPBQMPlHbMz4TKacJzLSwD1jg7jrvmBMPvDOG3Jd+v75dAhXjgkgIdHIW6+VipXsPfR4CGef48tFg/yY/mG5y+WbRbcFgREiPnIta3rbXUF07uLDDbfaJ9VSawuHDvenT19f7h8XTNp+Kwu/lSnlbdfBxFXXBjB2fDBms85HDcgeNwSTSePRJ0K46dZAwsI03poi163vsSdDGDzUj+49fHjvrXKqq2VsTvkf9/Cm/1F4n27dupGcnMyFF15IVlYWDz30EL6+nm8O1r17dy688EKSk5MpLi5m7NixIg/VunfvzjXXXENAQAC+vr5ce+21Htdw6Nxyyy2APVgYMGCAiE6PHj24+eabsVgs9OvXjy5dunj0+B07Qvv2AFEMGPB/5OXlcfPNNxMdHe1RHbDbWlJSEgMGDKi1NU81dXLuzNu9e3f6t+5Pu6XtYD88+OCDYrY2ZswY/Dr7sbzjcmLPqbs5UV00ZGsZZ1tr06YNAwcOdGtrmvpwtrVzzjlHpIFYWFgYnTt3ZsyYMeTl5XHTTTedsKlTY+jatStt27Zl4MCBHDp0iAkTJog0derevTvnnXceHTp0oKCggHHjxonZ2lVXXUVQUBBGo5Hrr7/e4xonokUHpo6n7Pc9GIzNBlPflpngOHSuvT6QmFgDb02RCbAcOuec50ufvr58+F45ZoE1mQ6tuFZGrrkukO/mmUXWxzl0fHw07nkgmJ3bLSz6WWZ9nOPaPTAhmNISnU8/di3AssYbKR0VQOhMM4bC+oNZh87tdwcTGKjx9muyNjf8cn9S2xt5540ykSYxBoO9yUPHzj5ccpk/X3xSQUG+TIBlMGgEh9iz6CuWVbN5o0yA5TinsROCyTpkZe5smaBe+Z/GaXnD/yi8T2RkJD/88AMvvvgihYWFvPnmmyI6PXr0YMaMGTz11FNs2bKFb7/9VkRn6NChTJ8+nXvvvZevvvpKJOsDcO+99/Lxxx8zbNgwpkyZQkmJa9ufNZTXX3+dDz/8kJSUFCZNmiSy9s+RNe3d+wn8/f3597//7XENsGflfvzxR/773/9SVFTEG2+84bFjH58xnTlzJk899RTbtm1j3rx5HtNx5uKLL+aTTz4h6uoo8gPzefT7R0V07r77bj7++GMuvfRSXnvtNbEmSK+++iofffQR7dq1E7M1sK+ZfueddwgMDBSztdDQUH766SdefvllSkpKeP3110V0unXrxldffcXTTz/Njh07xLbFGjRoEJ988gkPPPAAc+fOZevWrSI6ddGiA1MHbZNNjLzSnrXIyZbbz8g/QOPOe4PYsK6G1SvlNvXVNK02azHzc7numAB33x+MwSiftbhyTACt28hmTcFe9njBAHvWtLTENSdYeE8QBrNO2KeuX+vISAM33BrIT99X8qdQ1hTspaljx4WQts/K99/KdGR1IJ01dXDTbUGEhmlijZYcDBriR9fuJt57s0wsawrK/zQGb/kfhXfp3Lkz/fr1Y8iQIbz66qsi+xmGhYXRunVrbr75ZpKSknjuuedEvluSk5MJCAjg8ccfx8/PT2zvzM6dO6NpGs8++6xoQN+5c2d8fHx46qmn2Lp1q0iDKsc606VLg7nvvvuYNWuW2Fq5zp07c84553DJJZcwZcoUj3U1dg5MQ0JCSEhI4MYbbxQN6JOSkggMDOT1Ua+jZWqEbwz3uAbYSzcdtlZcXOzRgN6Zzp07YzKZePrpp9m+fbvHG1Q568TExDB27FjmzJnDtm3bxHT69OkjGtAHBQWRmJjI9ddfT/v27cVsrW3btgQFBfHII4+IBvR1cVoEpgD3jQvGaoH335Gd4PzjxiCiYwy8NaVMNMA6r78vZ57tw4fvlYt0snXQKt7I1f8I5Nt5Zg4ekMta+Ppq3PtAEDu2WVj8q0zW1MGDDwVTUqzzmYtZ0+rOPpQP9CN8egVapevX+o67gwgI0MQn1ZeO9CelnZG33ygV3VqjUxcfhl16NGtaIPNkEyAk1MCtdwaxfEkVWzYJB1gTQsg6ZGXeHJmsqQPlf9zDW/5H0TQ8++yzFBQU8NZbb4lp+Pr68tRTT7F582axrCnY92i99957mTlzpljzG4DzzjuvNqCXypoC3HzzzSQnJzNp0iSP+5ILL4Rp0+D77+Gxxx4TDegdeDqgdwSmOvZrs2j/IgZ8OoDRj44WC+gdjDlrDA+FPsTS6UvrDegb0023b9++nH3N2Uw6NIlv/5D77Nx4442kpqaKZk0BHn30UQICAsSDLOmAHuzrcp966inRgB7wSkB/PM0qMLUJTqSSU0yMHB3ArBmyWYuAo1mL9b9Xs3a17KT6wYdCyMu18dWXcvtYAtwz1p61ePdN2Un16GsCiW8tP6nufaYvF1zkx8cflFNW6nrW1HTERshc1wOYyCgjN94ayI8LK9m9SzhrOj6E/Xut/LBAOGs6IZiKCp1p78vaws1Hs6ZvCZVCOxg81I8u3UxMfUs2a6r8j/t4y/8ovE///v0ZPHgwr7zyikjW1MEtt9xC27ZtxbKmDh5//HF8fX29EmRJB/Q+Pj48+eSTbN682eNBlr8/3HYbtGr114Beqgwa4Nxzz2Xo0KEeC+idM6ZwrOvtSt+VpKSk8Nxzz4kGWY6Avr4gq7HddCvPq8Ta2soDcx9w6/2u4Aiy/vjjD7EyaLBv73Tfffcxe/Zstm/fLqbTt29fhg8f7tEMfV04AnppW3v00UcJDAxk0iTPNL6qj2YVmOpy1xWwNyO54EI/qqtk9x647qYgLhrkJ9bt00G/830ZeaU/sXGytzG+tZE77wkW2/rEga+vxriHQzirrw/VsklTHngomP4X+lFR4ZotmPv5UtnDRMTUMmhAVvKOe4K4YIAfNuHtLi4b6c/Fw/wIDZW1uc5dfLjhlkAS28raQmiYgfseDKZLVxM2wYunaRrjHwnh3P6+mF20BXdR/sc9vOV/FE2DI8iS2sYB7FnTJ598kk2bNvHdd9+J6cTHx3P33XczY8YMdu/eLabTv39/Lr74YiZPniwe0CclJYlkTZ2RLoN24Mms6fGBqaNr7fODnufJJ58UXdcM9oD+vvvuq3ddc2O76U4ZOYWwkjAK5xaKZuhvuukm0TJoB4899pjoumYHzz77rMfXNR+Powxacl0z2AP6+++/nzlz5ogG9A605rRxeY+evvrc7z3fmU2h8ATB35qJH1tE1vvhlA+X2cNRoVB4jo6J2Rt0Xe/T1OM41endu7e+efNmseMPHjyY9PR0du/ejcEg86Cjurqa9u3b07NnTxYsWCCiAZCVlUVqairjx4/npZdeEtNZsWIFF1xwAdOnT6/toCrB+++/zz333MPatWvp27evx45rscC4cbBsGaxbB088MYGpU6eSkZEh0qHXwdChQ9m7dy979uzBaHR/b+n0onSOVBwhKTyJ6MC/jre6uppOnTrRpUsXvv/++8YOuZZF+xcxcfFEJg2cxODUweTk5JCSksLYsWN55ZVXPKZzPKtXr6Zfv3589NFH3H777WI6H330EXfeeSerVq3ivPPOE9N55JFHePvttzl48KBIh14Hw4cPZ+fOnezbt69RtnYyampq6NSpEx06dBDbOxXg8OHDpKSkcM899zBlypRGH0/TtBN+N6vAVKFwFYtO0oA8bBEGMr6NAoEW3QqFwnOowNQz9OnTR1+/fr3Y8fft20dkZCQRERFiGgDbtm2jffv2Its4OLNp0yZ69uwpNhl1sGHDBs4880yR7SIcVFdXs2vXLnr27OnxY/ftaw9Kp06FK6/Mw2w207ZtW4/rOLN//37Cw8OJjIxs1HEyijPILc8lMSyR2KC/Bzfbt2+nXbt2HrW1/h/1Z1XmKvol9GPlHSuBlmVrNTU17Pj/9s47PKpq68Pvnpn0Sgo9pNA7SEQhigIqCGJBsF9RUMGGlStFUUAF9ar32vUTLFdFvYJcuSKKdOkd6b0kkN57MnO+P4aJIyYQktkzkKz3eXgI5Mz57XPOmr33OmvttXftomvXrto0ANLT0ykoKCA6OlqrzuHDhwkODiY8PFyrzs6dO4mLi8PPT2/AxJW2dibH9LxK5RWE8xqLInt0AL5by/DTuH5PEAShPtGyZUvtTinY9+bT7ZQCdO/eXbujANCjRw+tjgLY06B1OKUATzxh//v11yEsLFK7UwoQFxdXa6cUqLjvjlTe04sMdezY0eW2VllablW2VpuiR5V91h225uXlpd0pBYiIiNDulALExsZqd0rBbmu6nVJwX78mjqkgnAO5w/wpjzDR4D2922QIgiAIQl1m+HCIjoZ9+0DjckwtVFX8qKZFhqpD/7j+rBq1iv5x/c96bG3a445rEYSqEMdUEM4Bw0+RPTKAgOUleO/UV2lXEARBEOoyFgs8+aT951dfhfNoZdlZqdgu5lSja1tkyNXUpj3n27UI9QtZYyoI54gpx0bMpakU9vch+R396WeCINQMWWPqGnSvMRXqL/n50KIFZGXBypVw2WWeblH1SC1I5XjOcRoGNCQqJEq73umFjwThQkbWmAqCC7GFmMi905/A+cVYjpZ7ujmCIAiCcEESGAgPP2z/+UJK5z09lVc3kl4r1BfEMRWEGpA1KgDM0OAjWWsqCIIgCDVl7Fh7tFTj7joux92OqaTXCvUFcUwFoQZYm5jJHepH8DeFmNOtnm6OIAiCIFyQREbaU3gvpB3YTndMa1MFtzqcS+GjmrZF9zUIQnUQx1QQakjWmEBUKYR8UujppgiCIAjCBc/OnZCa6ulWnB3Fn7eLOZ9SbWvalvPpGoT6izimglBDylpZKBjgQ+hnBah896TzCIIgCEJdZPp06NQJ/vlPT7fk7JweMT2fUm1r2pbz6RqE+os4poJQCzIfCsScYxDylURNBUEQBKGm9Otn//u99yAvz7NtORunO6bnkmp7rpxrim1N26LzGgShuohjKgi1oKS7N4WXehP6fwVQev5svSQIgiAIFxKXXAKXXw45OfDxx55uzZlxZ/EjSbEV6hPimApCLcl6KACvZBtB84o83RRBEARBuGAZN87+95tvQlmZZ9tyJhyOqYH9hbTOwkHVTbGtSRuk4JFwvlFnHdO9u93Tox08UE5Zmf5IWUqylaws/W/myssNDuxzz71z1zPSrVN4pQ8l7S0EvJ2Pzar/GR07Uk5hoX6d3BwbJ5LcU3G4rtiCu3Wk/xEEoS4xeDC0bw/Hj8MXX3i6NVVzesRUZ1Szuim2NWmDRGOF840665iuXV3Kxx/ka9dJT7My4ekcbDa9k0NvH8XoezK1OyQWi2LS33M4eUK/Q/LeW/ls3liqXefHH4qY+x+Na0CVImt0AEFHrPw0JlufzilKywzGjsnW7pAEBCoeui/TLQ7JjGm57N+r3yH54rNCli4u1q4j/U/NcGf/I3iGo0ePatfIz88nPT1du86JEycoLdU/hh09ehTD0P8Cyh3P5mw6JhNMnGj/+dlnIb8W3ajO63E4pgWFBaSlpWkvHHTy5ElKSkrOeExN2nD6Z+qTrV1oOoWFhaS6oWR1cnIyxcX650lVUWcd07iWFl59KU+vQ3JK54e5Rbz6kt6V+g0amDh21OoWh8TPX3HvnRnaHZImTc2MvidTu0MS29LCpHE5Wh2SvOv9KIow0XVhiXaHpEW0hVUrSrQ7JGazwloOD4zQ75CER5gYeVem9ghtdIyZx8ZkaX8hIv1PzXFX/yN4hkceeYTExEStGn5+ftx8880UFBRo1SkoKGDEiBHYbHptdcuWLUybNk2rBsDs2bP59ttvtetMnz6d9evXV/n7O+6ASy+F66+H8vKa64wdO5bjx4/X/ARnwOGYenl7MWzYMC5peImWwkGOVNtfD/3K3/72N6zWqsfImhQvOv0z27dv54UXXqhts8/KN998w+zZs7XrvPLKK6xdu1a7zmOPPabdOfX19eWWW24hT3NlsOLiYu66664z2ppO6q5j2soMoN0hiYg0ERSsmPVRgXaHJK6lhRVL9TskcS0tHDpg1e6QxLWykJNjaHdI4lpasFrR65B4KbJGBdAXWKzZIfH2VrSINrvFIYlrZWHbljLtDklcSwspyTZG3qXXIYlraaG4GO0vRKT/qZ2OO/ofwTP4+/szYMAAMjMztWmYzWYyMzMZNmwYZRoXKsbGxjJnzhwef/xxrVGmdu3a8fzzz/PBBx9o0wBo06YNd911F7/++qtWnebNmzNo0CD27NlT6e9NJlixAt5/H0JDa64TEBDANddcQ0ZGRs1PUgVKqYq/s3OyGTp0qJbouSPV9v097/PDDz8wduxY7bY2depU3nvvPW0aAG3btmXEiBH88ssvWnWioqIYPHgwu3fv1qoTFBTEgAEDtGZqmEwm8vLyuOmmm84aPa8NLVq04Mcff+SRRx5xS/T8dOqsY9qkqRlfX7Q7JEop4lpaALRHSByTXd0OieN6dDskDh3dDolDx+GQ6FrDVjTCn1wF49DvkDiuSbdD4tDR7ZDEtbLr6HZIHDo5OQaj/papLWVU+p9a6Lip/xE8Q7t27di1axdDhgyhsFCfvbZr146FCxcycuRIbRFNi8VC69atefvtt5k+fboWDYCWLVtisVh46KGHmDNnjjaddu3aUVZWxk033cTGjRu16mRkZDBgwACSkpIqPcbL64+faxq4adeuHXv27GHw4MFaoueOqGnbdm1ZdGARzSY3Y9HBRS7VcKTaTus7jTZt2vDee+/x4osv/ukYVxY9io2NxcvLi0ceeURr9Nxha0OHDmXDhg1adTIzM7nmmmu0Rc8dOnv37mXw4MHk1yb/vBo6ixcv5u6779bWr5lMJtq2bcsHH3zAlClTtGicUd/tim7CZFLEnuaQ6IqQOCZSoNchcdbR6ZA4Ju9gd0gmjtPjkDjr6HRIgoJNNGxoN3VHhFaHQ2ILMvG/5maGAS00OyTO906nQ+JsczodEmcdnQ5J8yhzxYQn+aRNW8qo9D+10HFT/yN4hnbt2gGwevVqbr31Vm0RTYfOF198wbhx47S9+XfoTJo0iY817XHi5eVFq1atMAyDO+64g6VLl2rRadmyJWazmfz8fAYNGsT+/fu16Dju2bFjxxg4cCBZWVlVHrtgAXToAKtX11xn3bp1DB8+3OW25nBM27VrB30h3S+dEZ+OcKmtOafaOq5n8uTJfPjhhxXHuLLokeNli2EY3HXXXSxerKdab1xcHBaLhYKCAgYNGsTevXu16DjuWWJiIgMHDtSWqeHQWb9+PcOGDdO29tyh8+233/LYY49p69fat28PwJQpU3j//fe1aFRFnXVMwT6RMttf8jNpSjB+/kqPTqs/dB54KJAW0ZYzf6AWOkqBUnDtdb4k9PHR4zCemoCazdCug4WRDwRQqiFrICzMRGgDhdkMgUGK56YGa9EB+72znHosU14OQekxBTYkeGMFngCe+HsQ4eF6vmLOtn37Xf506uylpYNyOAlmM1ya4M31Q/20OIzRMRZMJrBYoElTE08+E0RJset1LBZFdKz93nl5wbTpIVjL9WUESP9TAx039T+CZ3BMrAD+97//8cADD2jpu5x13njjDV577TWXa5yuM3r0aObNm6dVp7S0lBtuuIEtW7a4XMPHx4e4uDgA0tLSuOaaazhx4oTLdVq1aoXJZB8bd+zYccbo+dq1sG8fPP44nGuAyPnZ/PTTT4waNcqlUSaHY9qmbRtYChyDk1+eZMaMGS7TcMb5eh566CHmzp0LuKboUWU6ZWVl3HjjjWzatKmWLf8rjpctAOnp6QwYMECLrTletgDs2rWL6667TkumhvOz+fnnn7n33nu1RDSddd555x1eeukll2ucrvPwww/zn//8R4tOZdRpx7RTZy8+mx2Gv79i6a8lNI/SM2Fr2crCP98LpWVrCz//VERsnFmbziNPBDJwsC/LFpfQuIkZk8n1k91GjU3cfIsfjz4RyJ5d5ZSWGPj66ZlUD7rOj9ffDiU/z2DP7nJCG+gxyR4Xe/PpV2GYzbByuf3e6SCyhzdH+3gzEtjwv2KiY/U5Cc+/GEzPS71Z9HMxLaItFWteXElMnJk77vbnjrv9Wb+mlMAAhZeX63V8fBVDb/Fj8rRgTp6wkXzCSmCQHlu4/AofPvykAWVlsGFdKRGRemxB+p+a4c7+R3A/bdq0qfg5KiqKoUOHnjFiVlOcJ1a9e/emQ4cOWqIYzjq33norAQEB2h3tBx98UFvVTGedp59+Wsv6TF9fX2JjYwG7g/L444+TlpZW6bF//zs0bQobNpz79jGtW7euGBebNWvG8OHDXWprDse0dZvWcBiYBZc2upROnTppWQPo/GyGDx9OYGAghmG4pOhRVTpjxozRtp7RWeepp57SYmve3t60bNkSsEeDn3jiCS2VbZ1ftjRp0oTbbrtNS3TW+Z5dcskldOvWTbutDRs2jJCQELetN63TjumI+wLo2cuH2//mz8Ifizl4oBbl3c7Alf19GDDIj9EPB3DogJVfftIzYDRrbubhxwIZ82ggRUUGn8/UU3FQKcW0V0K4654AAoMUH7ytL1/+2anBXHudL23bW/jo3XzKNUWvHn48kJ69fLjuRj/+M7uQ9DQ9awtvGuaH9+RgAoBLN5excb2edI7OXb249U5/Hnw0kPQ0G999oyeVNyDAxLNTgrlvTCAmE3z0vj5bmDo9hKG3+NO4iYn3387X1gmOmxhEn76+JFzuzaczCygo0LNOQ/qfmuHO/kdwPwEBAQwZMoRp06Zx/PhxgoODCQsLc7lO27ZtufHGGxk5ciQbNmygW7dueHt7u1ynXbt2jB8/nl69erFixQr69Omj5SVhu3bt+Oijj2jUqBHr1q2jV69eLtcA6NKlC7Nnz8ZisbBz5046d+6sRefyyy9n5syZlJWVkZycTHR0dKXHBQaCY/nuhAnntn2Mn58fQ4YM4aWXXiIpKYmAgADCw8Nd0Ho7Dse0ZauWXH/99dx3331s3LiRrl274uPjU+vzn74OtF27dowbN47LLrtMu6198MEHNGnShLVr19K7d2+XawB07ty5wtZ27NihzdYSEhKYNWsW5eXlnDhxgpiYGJdr+Pj4MGTIEKZPn87Jkyfx9fUlIiLC5TqtW7dmyJAhjB49mk2bNtG5c2eX2NrptGvXjieffJIrrriCFStWcPnll2uxtcpQnqi4VBWdu3gbcxe4/kGmpljpl5DKddf7MeONUJef30FZmcGAK9IIDlF8vyBC60N84J5MNm8sZdmahtoiSwCvz8jlw3cLmP9LBG3be539AzXkxx+KeOLhbF5/K5QhN/lp0zmwr4xB/dO5/6EAxk0I1qbT8M4MSleWcvtl3rz/lesGwtMxDIObr8sgM8PGopWRWqKZDiY+nc1/5xaxeFVDbRFngM9nFfDi87l89nUYvRJc3+E6WLemhL/dksmEyUHce3+gNh3pf2pObfufNlEnNxmGEa+hafWK+Ph4w5XFcAoLC7HZbERHRxMfH8/PP//ssnOfrpOUlES7du0YO3Ysb775pss1SkpKMJvNLFy4kCFDhvDRRx9x//33u1ynsLAQf39/Xn31VZ555hl+++03EhIStOncc889fP311xw+fJgmTZpo0fHz8+OSSy4hOTmZAwcOVPniwGazbx+zYQM89xxMPYetQgsLCzEMg5iYGLp27erSisN70/eSX5pP24i2mMpNnDx5kjZt2vDwww/z1ltv1fr8CTMTWJ24mt7Ne7Nq1CpKS0sxmUwsWrSIQYMG8f777zNmzBgXXMmfcdjA66+/ztNPP13hmOjSGTVqFF988QWHDh2iWbNmWnT8/Pzo1asXiYmJHDp0SMtLqsLCQpRSxMTE0KFDB21rwQsLC0lJSaF169aMHj2ad9991+UapaWlKKVYunQpAwYM4N133+Whhx5y2fmVUlWOzXU6YuqgYSMzw27x54fvi0hK1BO1APDyUtz/YAC7dpSzYpneRVEPPhpIbo7BV//Wu0/ivfcH4OsLH76rN2oxcLAvMbFmPnw3X2uhk1ZtvLjmWl+++ryQnGx9W1HkPRJIpAEtV5ay83d92xUopXjw0UBOJFmZ/32RNh2ABx4OxGqFWR/q3Rtw+O3+hIXbo6Y66XmpNxfFezHzwwJKS/TZnPQ/Ncdd/Y/gXvz9/QkMDOTxxx/nl19+0VaV09/fn9atW3PLLbfw4YcfVpkuWht8fHywWCwMHjyYLl268Morr1Bem803q8Df3x+wp/GGhoby8ssvu1zDWWf8+PGUlpbyxhtvaNNRSjFp0iSOHz/Ol19+WeWxJhP885/2n197DY4dOzedgIAAnnjiCRYvXsy6detq13AnHC//bIaNNclruHvZ3fQd2Zf/+7//IyUlpdbnP30dqLe3NxaLhYEDB9K9e3de+PwFen3cq9rVeKtbvddhA6NHjyYsLEzbOkZnWysvL+f111/XpuOwtaSkJD7//HNtOn5+fjz55JMsW7aM1TWp2FVNndjYWO68805mzpxJcnKyyzW8vb3x8vLi6quvJj4+nldffVXr1lvOnFcR0xadgo2nvuup5dwZiUW8NHANvW9txrDn2mrRACgrsTLt6tVEtPBj7Bd6X9S/M2ITyQcLmPxrAt6++iJYc1/ex8ovjzNxQS8io/216aydc4Kvn93NqHe60Ll/pDad4ztzeX3YBq59NI4BD8XqETEMht+8noI9+dx6VQQj3uqqRwew2QxevWEdNqvB+PmXYjLri5R99uTv7FyWzuRfEwgMc/0bRweLPjrCj28e5PHZ8cR0C9Gms2t5Oh+N2cYtU9rR+xbXv6l1IP1PzalN//N4+8USMXUBro6YOsjKyiI6Opr+/fvz/fffu/z8DrZv307Xrl2ZOHGitkk2wDfffMNtt93Gl19+yR133KFN5/nnn2fq1Kls3ryZ7t27a9MZPnw4P/30E0ePHnVpCqwzNpuNLl26UFpayu7duysK1VTG7bfD8uUwezZcccW56eTk5NCiRQuuuOIKfvjhh1q22s6BzAPkFOfQMqwlg78czOrE1XQN68q2sdt45plntBVBAvjuu+8Y/tNwaEFFRPVsnB6BrQ5Tp07l+eefZ8OGDcTH6+tKb7vtNubPn8/Ro0e1pMCCPcOsW7duFBQUsGfPHiwWPXUfcnNziY6Opnfv3vz4449aNAB2795Nx44defrpp3n11Ve16Xz//fcMHTqUTz75hHvuuccl57xgIqY6feTw5n70uK4Ra787QW6avmiCl4+Zvve24NCmHA5ucH1BB2euHh1LfkYZa79zfSUzZ/qNbIHJrFj88VGtOvFDGhPaxIdFHx7Rusg6qmMw7S4LY/nnxygp0BTBUoqt98fQ2oDYRekkH9QXZTSZFFc9EEPq4UK2L3L9on5nrh4dQ2mRjeWf69sPDOCy25vjG2Rh0UdHtOq07xNOs/aBLP74KNZyfRF06X9qjrv6H8H9NGjQgIceeoh58+axc+dObTpdunRhyJAhvPPOO+Tk5GjTGTZsGK1bt+bll1/WtscgwNixYwkICNC6dyrAxIkTKSgo4O2339amYTKZmDhxIvv37z/rHq1vvWWv0HuuTilASEgIjzzyCPPnz2f79u01bO2fcawxtRm2iujm64Nf58Ybb+S9997TUtTLwdChQ4k6GIVfuh8vXPlCtT5Tk+q9jz76KIGBgW6xtcLCQv71r39p01BKMWHCBA4ePKi1ymxwcDCPPvooCxYsYOvWrdp02rdvz9ChQ3n//fe1bYMDcMMNN9ChQwdmzJiBtaabCp8D55Vjqnuvuv73xxDTLZjCXH3pdAC9b2lGXI9QbdtQOGjTqwGd+kfg468vWgEQ2tiXy+5oTnCEvggZgMXbxNUPxNC4VQBlxfoGdYCrH4ghpmsIhTn6bOHA1ZFkNvVlYoBZnwN8iu7XNqRNrzCt0VKApm2DuPjGJgSE6ltvDOAXZKHfyBaENfXV2i8opbhmTCxRHYMoztPb4Ur/UzPc1f8InuGJJ57A19fXLRPf3NxcLeuxHJjNZsaPH8/OnTtdFpWrjPDwcMaMGcN3333Hnj17tOl0796da6+9lrfeeou8PD17WAPccsstxMXF8fLLL5/xpXRkpL0YUk15/PHH8ff3d5mtORzT0yvjTpw4kby8PN55550anbc6Kbcmk4lp906j6J0icrfmVuu8Nane63h5NHfuXHbt2lXtz50rXbp04brrruPtt9/W+vJo+PDhbnt55O/vry3l3sGECRPIz893yZrmqjCZTEyYMIG9e/dWbFGkk/PKMTVrnlQ3bhnAI5/1oHHLAK06PgEWxn7Rgza9XF9p0BmlFPe905VLhjbVqgNw0/g2DHqspXadhNuac8fLHfD20zvZbXlxAx74sBsNmvpq0zAsJn4fEUWPAisXa9hWwxmzxcRDs7rT5eqGWnUA7pzegSvvaaFd55oxsdz8bFstW5I40/WahtzzZmcCGuh1tqX/qTnu6n+EytGxZtJBo0aNeOCBBygqKtI6Ubz00ksZMGAA2dnZ2jQA7rrrLjp27Khl3ZczTz31FNHR0Rw5ckSrzqRJk4iMjNSqY7FYGD9+PH5+fqSnp5/1+Lw8mDQJznWpYGRkJKNHj6aoqMglkR/niKkzF198MYMGDaqxgzV56WRWJ65m8tLJZzzujjvuoFOnTi5Zz3omnnzySWJiYjh8+LBWnUmTJtGwYUOttuZ4eRQQEFAtW6spERERjBkzhuLiYq39Z48ePbjuuuu0OvNgT7Xu0qWLdluDerTGVBA8gXdeOaOu/I0DV0eyaEZHTzdHEOoVssbUNehaY+rAZrNV7AGoE9E5f3VsNhtKqWpVE//mG7jtNggLgz177JHUc9Fx1bUk5iaSkp9C8+Dm7EjdweSlk5nadyr94/rXSmfxocV/OteZft83pu9Zdc52vupQX22ttjp15Z65WueCWWMqCHWN0iALu25qQpsFKfin662UKgiCcCHijkmV6JzfOiaTqdqOwi23wFVXQWYmPP30ueu4CueI6elRztronC3l1lmrOjrVjcCeifpqa7XVcQd1TsctKoJQj9l2Z3MsZQadvknydFMEQRAE4YJGKXj/ffDxsafzLlnimXZUVvzoXAoL1ZRz1XJn2wShtuiplSwIQgXZsQEcuTycLl8nsfH+GGze8j5IEARBEGpKq1bw3HPw7LMwZgxs3w6++kpGVIrij31M+8f1r3Ga7LlyrlrubJsg1BaZIQuCG9j6tygC0ktp/Yve7VwEQRAEoT4wbhx06AD794Pmos6VUlXxo9pQnYq8glCXEcdUENzA0YQwsmL86fpvvft/CoIgCEJ9wNsbPvzQ/vPOneDuWp46HFNXrAcVhAsZcUwFwR2YFFvvak6T7bk02qa3rLcgCIIg1Acuuww2bYL//Me+9tSdVOxjiuGySOfZ1oNWV0cir8KFijimguAmdt/YhJIAM92+TPR0UwRBEAShTnDRRe53SuHMVXlryrlU5D0TEnkVLlTEMRUEN1EWYGHX0Ka0XpiCf6psHSMIgiAIruL332HwYEhLc4+eJ6ryVldHKvEKFyraHFOl1CylVKpSaocuDUG40Nh2Z3NM5QZdZOsYQRAEQXAZzzwDCxac+96mNcXZMT1bpLM6VCf9tro6rmiPIHgCnRHTT4GBGs8vCBccOdH+HOkTTudvEjGXuq5ggiAIQnWQl8ZCXeWtt9y7t6mrix9J+q0gaNzH1DCMFUqpmHP5TG65L0vS22lqkSCcH2TcEMDU5T9Q9q2ZZQPbero5glCHkcIflfAp8A7wuYfbIQguxd17myr1xz6miw8tZvLSyUztO7XGUcqpfadWnON0qnN+V7RBEDyNrDEVBDezLb45x6MbMHjudk83RRCEeoZhGCuATE+3QxB0MG4ctG/vnr1NXV386Ezpt9U5v0RchbqAxx1TpdQDSqmNSqmNpdlFLj13wYlcDKv+dMmS7CLK8vUXszEMg4Ik92w1Uhd1DDdsclaUmo+1pPzMBynFz9d3pM3uVKIPZtRIp7y4jOL0ghp99lypi7bgFh3pf2qMu3QEQahbOO9tOn067NmjT8udxY+qc34peCTUBTzumBqG8ZFhGPGGYcR7h/q59Nz5x7LY+9lGl56zMoxyG1teXqzd8VFKsfWVpZQXlWnVAdj94RoKT+Zq1zkybwfpW/QXAsrYdoIj83Zq1ynNLmLH27+d9bhl17ShzGLiqh931UjHZDGz6YVfsJVba/T5c+H3f66kxMUvjSpj/783kXMgXbvOiWUHObH0gHYd6X9qjrv6H6FqnF8ap7m4zOmiRYtcej5P6pSWlrJs2TLtOgcOHODQoUPaddauXUturv7v3uLFi7Fa9Yxfl18Oo0aBlxd8+eU2LRrgtI+pYWA7aKtVsaGzFT7qH9ef5SOWo45UvS+OqwoeHTp0iAMH9I+R69atIzs7W7vO4sWLKS8/S8DABdSlfs1qtbJ4sWeWwnjcMdWJd4gv+z7dQMrao1p1vIJ9SV55mIOzt2jVASjJKGD7P5a5Jfq34bmFZ4/+1RKvIB82vfCz9uifd4gvO95aSdauFK06XiG+HP3vTo79dObXtHmhfqy7PJYrf96LpfTcB2eTxUTOwXR2f7i2pk2tNtaiMjZPXaQ9+mf2tbDxuYXao3/ewb5snbGE/GNZenWk/6kV7uh/hKpxfmkcGRnp0nN/8cUXfPPNNy49Z2VMnTqVjRv1vhzy9vZm1KhRnDhxQquOxWLh5ptvpqhI70vCzMxM7r33Xu3f8S1btvDCCy9oO/+rr8Lu3ZCU9C+++uorLRrOEdMXX3yR9evX1/hc1UnDtVgsPPDAAyQl6X2Z7+Xlxc0330xhYaFWnezsbO655x7ttrZ9+3YmT9af3vztt9/y73//W7vOSy+9xNq1eud+ZrOZMWPGcPz4ca06laFzu5jZwBqgrVIqUSk1SpdWVXiH+IIBm6ct0vr23extxuznxa4P12qP/nkF+5L4yz7t0T/vED9y9qZVK/pXK51gX0oyi9j4/M9ao3/eIX4Y5TY2PrdQa/TPO8ReaWH7P5adNfr36+AOBOeWcMlvNXsL7h3iy8Gvt2qP/nmH+pK24Th7P92gVyfEl4LEHO3RP+8QX8oLy9jw7EKt0T/pf2qOu/ofwTOEh4czatQodu/erVUnICCAYcOGkZFRsyUT1aWsrIxbbrmFsjJ9/UlERARbt27lkUce0abh0Jk7dy5vvPGGVp3w8HBefPFFfvzxRy3nDwuDFi3sOvfffz87d+rpsxzOaUCg3dbS02uW9VPdNFyr1crw4cMpLS2tkU51CA8PZ/v27Tz44INax+Lw8HD++9//8tprr2nTcOhMnz6dH374QbvO6NGj+f3337XqBAcHM3z4cFydyXI6hmFot7XK0OaYGoZxu2EYTQzD8DIMo7lhGDN1aVWFd4g9Nbgst0T723fvEF+wGdqjfz6hdsdHd/TP4WBVJ/rnCp3M7SfZ9cEafTrBdp2i1Hyt0T+LrxcmbzO2Uisbnv2Jsryqo3/b4puT1jCQq/9Xs8mZ45p0R/8cOvs+3UjKmiP6dE59X3VH/xw2l3c4k22vLdU28Er/U3Pc1f/UR86Hl8YREREUFBQwdOhQ8vLytOocPXqUu+66C5tNX8ZHREQEq1at4plnntGmERAQgLe3N7NmzWLmTH3TqfDwcACeeeYZVqxYoU0nIiICgLvuuovDhw9r0wkLi6Cw8G9cfrmeFGWHY1ravJTjVx9n4EMDa5SiXFUa7ukpvuHh4axZs4Zx48ZVeUxt8ff3x8/Pj88//5z/+7//c8k5K8NhAxMmTNCaDu/Qufvuuzl48KBWnaKiIm6++WZycvTVSQgPDycxMZHbb79dWzq8Q2fdunU89dRT2jQqo06n8lr8vVAW+yXm7E1jx1srtWk5JlIlmUVsnKwv+ueY7OqO/jmuB6oX/auxjtO64kPfbNMW/fMO/eN60jYcZ+8n+qJ/jmsqTMq1R/9slTs+NrOJxYPa0XXjcSKTz33AdNiC7uifsy1snvYrBSf0RP+cdXRG/5x1khbt58j3erZzlP6nNjru6X/qI+fDS2OH87Nnzx7uu+8+bS+HHDoLFy5k2rRpWjScdd58802+/fZbLRpKqYoJ9sMPP8ymTZu06Dg0rFYrt956KydPntSi47hn2dnZWlOUDSMWeIusrFFcf/2rLrc1x5YxOxvuhBawKWgTU6ZMcdn5T0/xdTyft956i6+//rrSY1yBQ+fRRx9lwwY98yWHDdhsNm699VZtKcoOnZycHK0pyg6d/fv3a02HdzybxYsX8/zzz2vRcNZ55513+PLLL7XpnE6ddkyVUhXRHrOfBbOPhfxj2Vq0HDoAwS3DydimpzP3ctJp0LERqWuPadcJ69SY1HXHtHzJnO9bUFwYWbtTtUSWvAJ9wGQfQLwb+FFWUKotsuQd7GP/waTwbxJE9t7UKo9dPKg9AP1qEBVynryHtm1I2gY9awG8Qk6zBU1rJp2vp0G7hqRvTtQS2XbW8W8STEFizhkj2zVF+h/X6OjsfwTP4JjwgH1d1ltvvaVdZ8qUKSxcuFC7js4UZYdOSUkJw4YNIzPT9bv+BAcHY7HYt7hPTk7WlqLsfM+2bNnCo48+6nINgA4dvIFXAFi+/Db+8Y9/ufT8jojpNd7XwDFgKUybNs1lKcqnp/g637f77ruPXbt2aanG69ApLS3Vlg4fGBiIt7c3AKmpqW6xtW3btvHQQw9pGU+cdb7//nv+8Y9/uFzjdJ2XXnqJ+fPna9d54IEH2LFDz0v806nTjilAaPuGtLy9O9aicqIGtiOwRagWHf+mwXR4sJdds0MjIns016Lj08CPTmMvQ5kVvpGBRA1sq0cn1JfWf+uBb8NAUIrWd15U8WbQlXiH+NK4TxyRF0dRml1M+wcuxexjcbmOMikiLmpG9A0dKc0uotVt3fCNCHC5DkBQTBhtR/YEm0HDS1rQoH2jKo9NbRLM9h7N6b9gD6qKyGpV+EYE0GnsZQAExjSgSZ+4WrW7KrxD/Gg/phcWfy8sgd7EDu2sSceX6CEdCG4dQXlRGW1H9kSZXd9FeQX5Et69Gc36t6Ykq5C2o3riFeTjch2Q/qfGOm7qfwTPEB4ejtlsxmQycd111xEVFaUlJS08PLxi4jtmzBitkVmHzsSJE7U4jKfrTJkyRUuESSlVoRMcHMyTTz6pJWrqiC55e3vTsWNHrr32Wi3pj+Hh4Sg1AzgAdOL33/u7tEKrwzGNj4zH+wtvOAyjR4/GZKre2FWdarzOKb7ONjBhwgQyMzNdVo3XGWedqVOnare1wMBAnn76aS1FxJxtrX379gwZMkSbrZlMJsxmMwMHDiQuLk5LNWDnZ3P//fdjNptdrnG6zvjx48nK0lsw0oHrPYBaUFzmxe7kqifxNSFw9J3YSsvh221s/c9RGo7q5NLzO7DcfCOlPl5YvtvN3u8PUND9Ci06tkv7YvLzwX9VGkd/2o/pxhtQXq5/jLZGDVBDLsa/cAnpc5azfbs3Xg0buFzHsFoJGH0nBZv2UrLhWzYtzCEwvp3LdQBCxo6gPDMP/ruTzd8lEnbzlVp0fO++hXKTCdM329kx5zBNonue8fjPLuvFm//8D6GL8lndtVW1dYwB11Li54PPgsMc+O8+yvoN1DJ5t7ULtdvc/lJOLNuGzx3BmANdu7UTgM07DK87O+DzywbSZv3I1t/K8W2tx8EKfeIeSo6cxLp4P5vmpRLSv4cWHel/aqjjpv5H8AyRkZHMnDmTb7/9lvXr1zN37lwtk6uoqCgWLVrEPffcw44dO3jvvfdcrgHQqVMnVq1axWWXXcbRo0dJSEjQonPVVVcxadIkrrrqKrKzs+ncWc9LwpEjR9KqVStGjRpFUFAQLVq0cLlGaGhoxZrcV199lZ49exISEuJynYiICD7++G0++uhz1q2bynffdWLqVEVMjGvO73BMmzZtys8//8z999/P77//zgcffFCtzzun4VbHsezYsSOrVq3i8ssv58iRI0yaNKlW7a+Kfv36MXHiRPr160dmZiZdunTRonPPPffQpk0b7r33Xvz9/YmOjna5RkhICH//+98xm83MmDGD+Ph4QkNDXa4TERHBhx9+yI8//sjKlSuZN29eRfaBK2nWrBkLFy5k9OjRbN++nY8++sjlGgAdOnRg1apV9OnTh8OHD/Pcc89p0TmdOh8xNfn5YAkJICC+HXkrt2Mr1bMOz+TngzKZCO7bnaLdRyk9qacKoMnPHtkJ7ncR1rxC8jft1aPj641SiuC+3QHIXaqnGI0ymzF5exEQ3w5TkD+5SzZr0QH7vfNuFoFv2xbkLt2CoakYhsnPB5OPF0GXdSF//R6suWdOGV50cTuyA/wYfo7X7rCFkH4XUXYyg+K9etIqnW3OKCsnb5WeinMmHy+U2UTQZZ1RXhZyluq1Bd920Xg1CSd3sZ61Wg4d6X9qoOOm/kfwDB06dGDEiBGMHDmS1NRUFixYoEXnuuuuo0+fPtx7772sXLmSffv2adEZPXo08fHx3HTTTcyePVvbGrYJEybQr18/OnfuzMyZM7VFgF966SVuvfVWgoKCmDVrlhYNs9nM9OnTK9biffbZZ1p02rVrx8iRIxk//iJgNkVFikceAVfdOodj6tXGi0kHJ9FnRB9Wr15d7XTuqtJwq4qk3n///cTHx9P7zt7MUrP4387/ueZCTmP8+PH07duXbt26ucXWQkJCtNmaUooZM2YwcuRIDMPg008/1aLTunVr7rvvPkaOHElGRoa2KsADBw6kb9++jBw5knXr1mmrOD1q1Cji4+MZNmwY3377rdZCdc7UecfUQUi/i7AVFFGwXm95+uAru4NSWh0sgICL2mAOCdSu49UoDL+OsXZHTuM+liYvC8GXd6Fg0z7Ks/Qaf3D/iyhLyaJo1xG9Ov0uAquV3JVn3uC71NuLH/p04er1uwnNO/cJTWDvzihvL+224Nu6Od7NI7U6cgDmIH8CerYn/7ffsZXoK1PucHyK9ydScrzqdcCuQPqfmuGu/kdwL47MjiFDhhAREaGtyqxD55577kEpxSeffKJVZ9SoUeTm5jJnzhxtOkopRo0axfbt29m8Wc/3TylFQEAAt99+O3PnztWWwqeUom3btlx22WXMmjVLS+Vkx7MZPHgw4eEvY7EUkJQErsrkdDimL618idWJq9kWvg2TyVRtW6sqDbeqgkaO60nukIytmY0n5j/hgqv4K842vXPnTm0FkJRS+Pn5cccddzBv3jxtWzsppWjVqhVXXHEFn3zyiVZbu/baa2ncuLFWRxtgxIgRmM1m7TqjRo2ioKBAW2G306k3jql/11ZYwoLJ0T2RigzFv0scucu3Ymgs46wsZoKv6Erh1gOUZegrSw12R648I4fCHTXbb7PaOv16gM1G3oozO3K1JejSjihfb3KX6I3C+MQ2wTu6MblLtpz1beN3/XrgXW5lyMrt56xjDvAlsFdH8lbvxFbk+iI+DpRSBPe7iJLDJyk5rKe4joOQfhdhKyohf+0urTrBV3SzO3Iao7Mg/U9tcFf/I7gfb29v/va3v7FgwQJt1V/BntJ7zTXX8Nlnn2lZ8+WgX79+tGjRQut2LgB33nknXl5e2nVGjhxJSUkJX331lXadw4cPs3z5cm0aXl5e3HvvQKzWy5g3LwlXZXI6HNMJl0+gd/PevDLgFQYOHMhnn31Wq0I+Zyto9M8b/olPqg++q30r/b2ruOOOO/Dx8dHm/DgYOXIkpaWl2qu/jhw5kqNHj7JkyRJtGhaLhREjRvDzzz9z/LieopQATZo04dprr+Xzzz/Xutdonz59aNmypXYbcHB+OaYaqy4qs4mgK7pR9PshylL1LuAN7nsR1qw8Crbq2fqkQqffRWAY5C3bqlUnsGcHTP6+5C7WO6n2iW6ET8um5CzZrLUCp8nPh6DenchfuxNrgZ4S9WB35EL6XUTpsRRKDp55Qf+emMb8HteU4Us21eh7ENy3O0ZJKXmr9VZNC+rTFcwmrWm2AH6dYrFEhmqPyFnCgvHv3pq85dswyvRNWKX/qTnu6n8EzzBq1CisViuff/65Vp2RI0dy8uRJfvrpJ20aJpOJe++9l+XLl3PggL7vX0REBDfeeCNfffWVtm1WAHr27EnHjh21O8DDhw8nMDDQLY62YWzlyy9dlzbscEwvb3F5ReTTkaJ+tsq8Zyp8dLaCRle3vJpJjSexY/4O9u7Vs6QCICwsTHuKOkCPHj3o0qWL1rRhgJtvvpmgoCDttuZIUdeVNuxg1KhRpKena6vMC/a57MiRI88pRb02nFeOqe5UreB+F+HTqhnWGqRLngsBPdvbi7Zo2kvQgXezSAJ6tkd5661hZfLxIuSqHpiD/bVv2RBy9cV4N4/EVqgv8gd2W/Bt3Rxrtp4tYxwEXd4Fn7im2IqKz3rsd/0uot3RFNofST5nHb8OMfh1iq3YEkcXlpBAgvt0w+yv9y2tMpkIueZiLOHBWiN/ACFX9cAnron2fkH6n5rhzv5HqBydm7h37NiRSy65hFmzZml9vjfccANhYWHa3/rfe++9WtOGHYwaNYqcnBzmzp2rTcORNrxlyxa2bNGXYRQYGMhtt93GnDlzyM7O1qbTvn17evXqxaxZszhxwuCOO6C22dAK+5hrM/6YvzpS1M9ma7Xdf1R3iroD3SnqgFtS1IGKFPXvv/9eW/VsoCJFXVfasIPBgwfTsGFD7f3aiBEjzilFvTacV1V5lUVPyWMH3o3DaDF9tFYNsK+XjHr5Ae06AE3H3e4WnYi/DXCLTkj/HtoqpDrj17YFzaeM1K5jDvKnxStjqnXsT7078dysBVy7Zge7Y5uck45SiubP31uTJp4zjR660S06YTde7hadwIvbE3hxe+060v/UHHf1P0Ll6N6qZ9KkSaSmpmK1WrVUsQTw8fFhxowZREZGajm/g+joaF566SUuv1xv/3XVVVfxzDPP0L17d606d911F+np6TRq5NodE07noYceok2bNtXeZqWmTJw4keTkZN5802D2bMXx47BiBdTUxB0R0+VHlvPm2jeZ2ncq/eP6M2PGDMLCws742al9pzJ56eQ/pesuPrS44v8qi5ae/vuXX35ZWxVoB/369WP8+PH06KF3bnbnnXeSnJxM48aNteo8+OCDtGrVSts2Kw4mTJhAUlISVqtVm117eXkxY8YMgoODtZzfQbNmzZg+fTqXXnqpVh0AdT69gfZt2cyo7iReEOoin0z9lKbpOQz419iaj5SCIACwf/jkTYZhxHu6HRc68fHxxsaNGz3dDEFwGTk50KoVpKfDnDkwdGjNzpOUm0RyfjJjfhzDxhMb6d28N6tGrapxuxJmJrA6cXWV5znb7wXhQkApVeXYfF6l8gpCfWdhr47EnsygzTG9VWIFQRAEob4SEgIvvGD/+ZlnoKa1YxwR06d7P33GYkXV5WxFj872e0G40BHHVBDOI369uD1WpRi4Vs++VIIgCIIgwAMPQNu2cOAAvPdezc7hcEwTohLOWKyoupyt6NHZfi8IFzrn1RpTo8xE+Ql/TzdDEDxGCv5saBnLNb/t5o3Lr/N0cwRBEAShTuLlBa+9BtdfD1Onwt13w1mWhf4Fh2PqXPyoOpxtLakg1FckYioI5xk/de1Cm+QUWianeLopgiAIglBnue466NsXsrPhl1/O/fM1dUxrW5FXEOoq4pgKwnnGz107AzBw2+8ebokgCIIg1F2UgnffhS1b4LbbavJ5e5HClcdWVrknaWVUtla0qn1Nz7TfqSDUNcQxFYTzjNSQEDbGxnDttu2eboogCIIg1Gnat4euXWv2WUfE9M01b55TBLSytaJVRVEluirUJ8QxFYTzkIVdu9Ah6QTRaemeboogCIIg1AsWLoRz2RnJ4Zg+dsljta6WW1XFXanEK9QnxDEVhPOQhRXpvBI1FQRBEATdfPIJXHstPPIIGEb1PuNwTC9tfmm1q+VWlZpbVcVdqcQr1CfEMRWE85ATYQ3YGh3FtVvFMRUEQRAE3QwbBo0awbp18M031ftMTYofSWquIFSNOKaCcJ6ysGsXuhxPpFlGpqebIgiCIAh1mqAgmDbN/vP48VBcfPbPOBzT1cdXV7tA0empuVL0SBD+QBxTQThPkXReQRAEQXAfI0dCp05w9Ci89dbZj3c4pm+vf7vaUdDTU3Ol6JEg/IHF0w1wxlQK/oniKwsCQDoN2dWwGYM27GB2m36ebo4gCIIg1GnMZvjHP2DgQHjpJbujGhFR9fEOx/Sh+If4bNtnNSpQNLXvVCYvnVxp0aPK/l8Q6jL1wgssy8vGqO5K9lpQXlSAraxUuw7Yr0l0zmOd/FwM27ltuF0Zv8W1p/PJY/iXVp5TZCsvo7yooNY61aHOPSM36kj/c37rCJ6hvLy8zugYhoHVatWuU5fu2fmqM2AAXHMN5ObCO++c+ViFfR/Ti5tdzKpRq7iixRXn3LZzLXpkGIZb7tv5+GxEp+7qOKgXjmn+kb3kH9qlXacsJ5OMjcu16xhWK8lLf9CuA5C89L8YNv2DbdrqXygvyNOuk71rE4UnjmrXKU5NJHvH+lqfZ31UKyyGjYsSD1f6e2tRAWmrf661TnU4ufh7tzhYKSt+xFZaol0nY9NKSrLStOtI/1Nz3NX/CJ7hrbfeckuf8lZ1cjJrSX5+PrNmzdKus2nTJlatWqVdZ+7cuSQmJmrX+eijjyiuzmLOWnKutvbCC/b1po88cubjTi9+dDZbc8W60aKiImbOnFnjz1eXrVu3smLFCu0633//PceOHdOu83//938UFRVp13FXv/b2229r1yguLuajjz7SruNMvXBMrcVFJC/9AZtVr9dvLS4ifd1iyvJz9OqUFJG7dysFiYe06gAUJh4ia9ta7TpluVmkrlqoXcdaXEjyknnaOw1rcREpKxdgLandgLu1WQxlJjM9jx2oUidzy2pKMlJqpXM2DMNG3oEd5O3Tv961JD2Z9PVLteuUF+aRsmy+dh3pf2qOu/ofwTN88803LFiwQLvOiy++yN69e7VqZGdn8+yzz5Kbm6tVJysri8cffxybCzJyzkRiYiITJ07UqgGwefNm/vnPf2rX+e6775g/v/r9fa9e8OyzZ07jBVBKoZQ9amoYBi+//DK7d++u8nhXrBvNysri2WefJSdHb1/vsDXdmQAnTpxgwoQJWjXA7mi/8cYb2nW+//575s2bp11n+vTp7Ny5U6tGdnY2kydPJisrS6uOM/XDMS0pojQrjawtet8yWkuKsJWVkrpS70BrLS4EOOVg6R2crCVFpK5aWKGpUydr+1qKU09o1bEVF1F08ii5e7Zo1bEWF2EtzCd97a+1Ok+xlzfbmkbT83gVjmlJERg2kpf+t1Y6Z8NWWgqGQfLy+djKy7RqWYsLSd+whNJcvR2hraSIvAM7yD+6X6uO9D+10HJT/yN4hqysLJ566inKyvT1KWVlZWRlZTFu3DhtGmC/ltTUVF5++WXtOhs3buSLL77QrvPvf/+b9etrn/lzNp2XX36Z5ORk7TpPP/00paXnvtyhrAzO9B7ApEysT1pP75m9yQjO4Omnn67yWOeKvJVFT6sTUc3KyiI9PZ0XX3zxnK/lXMjKymLLli18/vnn2nW++uor1qxZo11n+vTpnDx5UrvOuHHjKCnRl/lls9lIT0/nySef1BpoycrKIiMjg2mOctVuoF44prZTk5rU1b9QXpivTccxecresZGi5OMadeypCMUpieTs3KRNx1ZehlFebk8XXbNImw6cuibDsKfuafySOe5dyvL/aV2PZyux62RsWk5pdkatzrW+RSvapyQSVPzXFBSHzeUf3kPeoarf0tYWh05ZTiaZm1Zq07FrFWGUl5O64kftOgDJS+e5ZD1wVUj/UzPc2f8IniErK4u9e/fy/vvva9PIzs4GYP78+SxapM+OHBGFN998k0OH9GUTOK5nwoQJ5Ofr608cOo8//rjWMTk7O5u8vDyee+45bRpgfz779+/n3XffPafPzZwJsbFwpsC+SZn4YOMHrE1aC31hwYIFLFxYeQaY87rRyqKn1YmoOp7Nv/71Lw4cqPyltStw6EycOJG8PH1LrRw6TzzxhNZMgKysLAoKCpg0aZI2DYfOwYMHtaba5uXlYRgGv/zyCz/99JM2Hcezefvtt9m3b582HWfqhWPqmEjZSoq0rsezVTgOeh0sh9MD9vV4Vk3r8axOjlDG5pWUZKZq0YFTkT+g4Nh+8g7qS01w6JTlZZO+YZk+nVNOgmG1krL8f7U61/oWrTAbBj0SD/7ldzanZ5Sy7AcMTSk3zraQtnaRtvXAhs2G7VShp5zdmylMOqJFB/54RiVpJ8n6fZ1GHel/aoI7+x/B/RiGUeHMvfDCC2Rk1O4FXlU4p6A9+eST2gp5OHRKS0v5+9//rkXDWefEiRO8+uqr2nXWrFnDN998o11n5syZbN26VYuGs61NmTKF9PT0an82OxuSkuD116s+xqRMjIkfQ7eIbnBqFUp1bO30/Uyr+r/TcVxLWVmZ1kwAh05ycjIzZszQrrNu3Tpmz56tXefTTz9l0yZ9L1UdOtOmTSM1Vc+4dXq/pivrxKFTXl5+xkwAV3J+Oaaa0sKsThOpzG1rKE7XkzJiLfkj3aww8RC5mtbjOU/YygtySV+/RJOOU/qczUbKcj3r8QzD+JNWisb1eM46GeuXaKv66fyMcvdtp+D4X53K6rKtSQzFFkul60ydbbskI4XMbatrrHMmbE62bSstIfU3PW/onK8HTkUzdfULTs8o9bef/qLtMh3pf2qo457+R/AMBQUFFWvXsrKymDJlihYdxxt/gB07dvDxxx9r15kzZw7Ll+spROY8IX3ttde0FY1x1nnmmWe0FY1x6BiGwRNPPKHlhVpxcXFFCm9OTg7PP/98tT97330QFATLlsHmzZUfo1D0bNaTdy5+B07VKdy9ezcffvhhxTGVpehWVnW3qkq8zjg/m3nz5rF0qZ6aDM46r7/+OkeP6ikc6awzfvx4Cgv1LN1wfEd12lpJSUnFdyU3N5fJk/XsQet8z/bu3csHH3ygXWf+/Pn8+mvtlqdVh/PKMdWWLmIYBLXqBEDLEU9jsnhpkbGVlhLS/iIAoq4fgW9EYy061uJCQjteDEDDy64lpE0XLTq2kiIC49pj9gsgpH13Gl42SIvDaCsrxSesEb4Nm+ET0Zjo4aO1VWU1WbwIjGmLMplpee/fQZPNGdZygtt2AyDmtgexBATV+FxlFgtbmsZW7pgWFxHSMR6AJtcMJyCqVY11zoS1uIiQ9t1RJjNhF11Og24JWhxGW3ERfk1j8A4NJ6BFa5oNugObpjeBZl9//JvFYvYPpOXfntCmI/1PzXBX/yOcHR1rpbKysvD19SUgIICLLrqI0NBQLemCWVlZRJyqYDNo0CAyMjK0pAtmZWURGRkJwL333suuXXoqcWdnZ1fojB07VtsaUGedhx56iI0bN2rRycnJISIigoYNG3LVVVdx8GDNX+JWhcPWAgMD6datGxEREdUuHBQSAvffb/+5qqipozJvZlZmha0NHDiQ7Ozsipcvrih65MD52YwYMeKMxZZcpTN27FjWrdOTWeSs8/DDD7NhwwZtOhEREURERDBw4ED273d9fYns7Gx8fHwICgqiS5cuNGrU6E8vrVypEx4eDsCAAQPIycnRUqTK+dncfffd7Nmzx+Uap6PcUdK4ugSGRxmdBj7u8vOWFRdQnJvKrl/fpdVlfyO8RVeXawCUlRSglIlN302macf+RHUdqEenuAAv3wC2/vcl/EKb0PaKkVp0yksLMVt82bfyMwqzT9D9Bj15+TZrGYbNxsndS0na8Ss9hk3F4u2vRausuIC81IPs/+1z2l/1EMEN4/TolBRgLSlk2/9eIbrHjTRue1mtznfPjl8Zs30h19w8hVyfgD90iguwePuy8bvJhEd3I+6S4bVteqWUlRRg8fZn5y9vAwadBjymRcdaVowyWTi6aR7pRzYTP2waymR2uY5hGJSXFpJxdCtHN35Pl+uewS840uU6IP1PTXFF/7Puq6c3GYYRr6F59Yr4+HjD1Y5JYmIiycnJvPjii2zZskVbNGbLli2Eh4dz1VVX0bJlS23rsZYuXUr79u2Jiopi7NixvH6m3M9a8OOPP9KkSRN69OjBxx9/zKhRo7To/Pe//6WoqIjbb7+dNWvWcOmll7pcwzAMfvjhBzZu3MhLL71EZmYmoaGhLtc5ceIESUlJzJgxg3Xr1nH8+PGKSrrV4dgxiDs1VTh8GKKi/vz7vel7WXJ4Ce+tfo/xPcfz4sgXiYqK4pdffqk4ZvGhxUxeOrkiRdfxsyMy6vz7M0VLAZYtW0b79u1p0aIFDz74oLaqxgsWLKBp06Z0796djz76iPsdHrqL+e9//0tpaSm33HILv/32GwkJCS7XcNjali1bmDJlChkZGYSFhblc5+TJkxw7dozXX3+dlStXcuLEiXOyteqybds2goODGTJkCI0aNWLx4ppvP3Qmli9fTrt27YiOjuaBBx5w2dZbSqkqx+bzKmKqCy/fAALCm6NMZvLTjujT8QnA4u2HX0gj8tMr33fSJTq+dsckMDKW/PQj2iLNFm9/lMlEUGQMpQVZlBbqKU1uMnth9vIhMCIWgPw0ffuMevkGEBgZc0rniD4dnwB8giKw+ASQn157nU2N7JHQHil/fpvs5RuAMpkJjGjhEp2q8PIJQClFUGQMhZlJWMv1FI4ye/liMlsIjIjBVl5KYbae6nlKKbx8AgiqsAW931fpf84dd/U/gmdo3rw58fHxJCQkcOzYMW17Znbv3p0WLVqQkJDAmjVrtBVX6du3L40bN+aiiy7Sus/o4MGD6dq1K8HBwVp1brjhhgoHQZeOUqpCxzAMbVVZmzZtysUXX0xCQgJJSUnnnP7cogUMHw5WK1Q2L3cUP9qRvYP3dr1HQkICa9eu/VMEyxVFjxxceeWVNGrUiB49emi1gUGDBtGlSxdCQ0PrlK0BrF6tZ9lTkyZNuOSSS0hISCA5OZnDh/WMxV27diU2NpaEhATWrVunbe38FVdcQaNGjbj44ovdsn8y1BPHFOzOT0BYc/I0TgwdBEXGkJ9+DJvmjeGDImMoLymkODdNuw5AnsbJO0BgRAtAkafRwQLw9gvGJzBc+/XYHblYl9jcrvAoCi3eXJRSeQW+oIgYinJSKC/Ru61GUGQshmGjIENf1Ve7TgyA9u+rf0gTTBYf7TYn/U/tdEB//yN4Bt0TUmednJwc7fv+JSQksHnzZm1rMgHMZjO9evXSfs+ioqKIiorSrtOrVy+UUm6xAaiZrT31lP3vZcv+ugLIUfyoZ9OeTO07lYSEBPLy8vj9998rPVdNix6dTkJCAlu2bKGgoOBcL6famEwmevfurf3ZNG3alJiYGO06l156KSaT6by2tXPVKSgoYNu2bdp1tm3bprUSuIN645iCfYJTmJWEtVzf3kJgjyTYrGUUZundkzMoIgaAPI3REYCAMHu0R/ek2uLth39oY7dMQIMiYshPP6p9H8agyBhKC7MpKciu1XmsJjPbImPpkVr5+pugSHu0WbeD9YfN6dXxCQzHyzdIu80pk4nAiGi3OYzS/5w77up/BM/Qo0cPfHx86tREsaysTNs6OWedffv2kZam98VQQkICq1at0rplTEhICJ07d9b+bLp3746vr2+NdOLj7U7punVwemamSZno2awnP931E/3j+v/F1k4vfFTTokenk5CQgNVq1b7XbEJCAgcOHCAlJUW7zurVq7XammPtp25b69q1K/7+/nWqX7NardrWGTtzXjmmOvcSBAiMsEd78t0U7dGZtgfgF9IYs5evdh2T2YuA8CitqaIOAiNjKMg4rj3aExgZQ3mp/mhP4KnJuytSRTc1akVcTgphRX8tEBIY0QKU0m4LXn5B+ASGa019BXu0OTAyRmtKqoOgyBiKc1MpK9H31hmk/6kp7ux/hMrROVH08fFxS5pY27ZtCQsLq1MTRdCXkuisk5qaqqUo0ek669at07btBYC3tzc9e/as8bO54gowVTJrdhQ/sp160d26dWsiIyMrdFxZ+MiZ3r17A3XL1tLT07Xvl5mQkMCGDRsqKjXrwMvLi0suuUT7s4mLi6NRo0baddxla3C+OaaG7tSzaPwbNNO216MDn4AwgiJjUWbXF21xRplMNIjqhMVHT6EgZ0KbtsfbP1R7hDGkUWsCI6IpL9abLhDUMJaA8BZYy4q16gSENce/QbO/vmKtAZsatQSgeyVRU7OXL6FNO2Dy8qm1ztlo0LwjXr7B2nVCGrfBL6Sx9ghjcMM4giJjKS/W65hK/1Nz3NX/CJWjMy0V/kgTc0dKoq51jA4aN25MXFycdp1LLrkEs9msXcfhlLhDp6ioiO3b9Wxz5azz+++/16oCdGIiOGdOnu6YKqX+ZGs1SdOtDg0bNqR169ban83FF1+MxWKpU7ZWXFysbd9cZ52dO3dWuwJ0TVBKVayf10l4eDjt2rXTrgP1pCqvINQFLNZyln07kS869OWDrtd6ujmCcN4jVXldg46qvM6cPHkSpRSNG+vZ4sjB4cOHadCggZbKr87s3buXqKgo/P31vrTZuXMnbdq0wctLzxZUAFarlT179tC+fXtMlYULXUROTg6ZmZnExMRoqWLqIDnZvo90TW3tp5/g+uthyBCYO9f+f4m5iczfO59ZW2cxo/8M+sf158iRI4SGhv7J1k6vvHsulXirYt++fTRv3rzO2Nru3bvp0KGDVlvLzc0lPT2d2NhY7bZmGAZNmjTRpgFw5MgRQkJCaNCggVYdV9ramaryimMqCBcQX/74GkmBEfz9ins93RRBOO8Rx9Q16HZMBeFC4dgxiI6GgABITwdfXziRd4Jrv7iW7anb6d28N6tGVZ7umDAzgdWJqyuOOf3fglBfqPfbxQhCXeFQSBPicpI93QxBEARBqHe0aAFdu0JBgb0YEvxRlbdHkx5nTNc9PaVXV4qvIFzIiGMqCBcQh0Ib0zw/A1/N6y4FQRAEQfgrQ4bY/54/3/63oyrv3Fvn/iUl17ki7+mVd2tSiVcQ6jrimArCBcTBEPu6mNgcvWXbBUEQBEH4K86OqWH8UfyosqVxuiryCkJdxeLpBjhjKrERdFhv9T9BuJBJKQoFoOOB4yTmRnq2MYIgCIJQz4iPh8aN4fhxe3XeFm1NrE9az8ebP+bVq1/9UwR0at+pTF46mRvb3UjCzISKtN3aFj0ShLqKREwF4QIi2bcBxSYvYgolYioIgiAI7sZkguuuA7MZtm61R0w/2PgBm5M3/yUy6kjXnbdnXkXkVKKoglA14pgKwgWETZk45hdJTGGqp5siCIIgCPWS55+H1FS4554/ih91b9y9ykJGzoWOpOiRIFTNeZXKKwjC2Tni34iLsg94uhmCIAiCUC9p3vyPnx3Fj/rF9qNtRNuK/z99n1LntF1J4RWEypGIqSBcYBz2b0hEWR5BZYWeboogCIIg1FtsNsjKVPafDdufficpu4Jw7ohjKggXGEf8GgEQUyTpvIIgCILgCVasgKZN4cH7fVmftJ475tzB4kOLK34/te9UOkR2ILs4m9dWvVaxbYwgCFUjjqkgXGAc8W8IIAWQBEEQBMFDtGoFKSmwZLGJ99Z/wNaUrX+KjvaP60+oTyi70ncxbcU0iZ4KQjUQx1QQLjDSvYPJN/tKASRBEARB8BBNm0KPHlBUpLjc/BRdG3X9S0EjR6Gj5/o8JwWPBKEaSPEjQbjQUIoj/g3FMRUEQRAEDzJkCGzaBCmrruXT17rQrXG3P/3euejRuIRxHmihIFxY1LuIaWlZgeicxzrl5cXYbOVu0bqQ712adwjhZbnadSrDnTqGYWjXsRlWysqLtOtA3XxGdUlH8Azp6elu+a6np6dr1xCdmlFeXk5WVpZ2nYyMDGw229kPrCZ9+tj/PrDHr6L40eJDi+n5YU+3rCetSzbgLh2r1UpmZqZ2HVfbWlXUpWcD9cwxLbeWcDhpuVu0Dhxb5Badg8cXY7NZteskpWygqFj/oJGVe4SM7P3adYpKsklMWa9dxzBsHDz2q8vPm+0VQOhpk/UDxxa5ZXJ3JGmlWxy5tMzd5OYnatfJKzhJSsYO7TrS/9Qcd/U/gmeYN28e69fr749fe+01MjIytOtMnDhR+4TUMAwmTJigVQMgKyuLV155RbvOpk2bmDNnjnadH374gbVr17rsfLGx9r9PHPfGMAwMw2Dy0slsSN7AhEX6n4+7bG38+PFaNQBycnJ4+eWXtets2bKF//znP9p1/ve//7F69WrtOm+88Qapqfoz6CZNmoTVqn+8r1eOaXbuUVLSt2Mz9N7Y4pJcTqRuorgkR6uOYdhIzdhJZs5BrToAmTmHScn4Xb9O7iGS0/XrZOUcIiX9d+2OXF5BMifTtlJuLXHpebO9AgiwluB1KrpstZZyMm0reQUnXapTGRnZ+0jL3K1dJzPnEMlusDmHLehG+p+a467+R/AMS5Ys4euvv9au8/PPPzN37lytGqWlpXzxxRcudX4q48CBA3zyySekpaVp1VmxYgVfffWVdufHXTbgap3mzcFshnT/ldwzbySLDi1iat+p+Ob6kpiWqLUab1lZGV999RWrVq1y+bmdOXz4MJ988gkpKXoLLq5cuZLZs2drd34uVFurikWLFvHdd99p1SgvL2f27NmsXLlSqw6cZ46poXnClpVziNKyArJyjujVyT0EoD0Kk1+YSll5ofYJm9VWRk7eMbc5jGlZe7BaS7XqZOYcoqAojQLNlW2zcg9hM8pJy9zj0vPmeAUAEHxqL9PsvGMYhlW7LZSU5lFQlKbdkTMMg6zcw6Sk78Aw9E6IMnMOk5V7hJLSPK060v/UDHf2P0LllJfrW15hGAZLlizhm2++0TohTU9PZ9u2bdoniuvWraOoqEi7zpIlS7BardqjjEuWLOHEiRP89ttv2nWWLl1KcnKyNg2HrX377bcuszWLBb75Blo+OI4dadt5ftnzdAvpRnF2MSetJ7VW492wYQMFBQVusTWbzabd+VmyZAnJycmsWLFCu87y5cs5ceKENg2Hrf3nP//R2n9mZWWxefNm7TawadMm8vLy3OJon1eOaVl5sdbzZ+YeBtA+kcrMOaWjeSLlmICmZu7GaivTppOTdxybUU5+YTIFGgvulJYVkF+Ygs1WRnrWXm06DqcH0B6Ry8xxOAmu1cmx+AMQWm5P581y6KT/rtWRc9y3zFNOli4KitIoLcuntCyP7Nyj2nRstnKy844ChnZHTvqfmuGu/keoGp1r/3bv3k1KSgonT57U6vwsW7YMgKVLl3LypL7MkiVLlgC41Pk5k447nBLdOiUlJfz222/anZ99+/Zx4sQJUlJSWL7cdcsqbr4Znun3IF0aduH5K563n3spcAzGdhurrRqv49nodn7qkq2VlpaycuVKDMPQms574MABEhMTSU1Nreh7dLBixQpsNhsrV64kMVHf0ifHs/nuu+8oK9M33sN55piWa1y3VlZWWJHmmJqxU1uBHcMwyDqV2pZbkERhkb71LA6nx2otISNL37pMh9MDkKxx8u5weuw6+ibVhcUZlJTaCwfpTOe12awVTlVG9gHKTkU3XUH2qYhpyCnn0OH0FJfmkKNxXabD5gzsaZy6+LPN6bOFnPxEbKecKp2OnPQ/Ncdd/Y9QNToLhTgmPKB3QurQMQxDq/Pj0HG18+OMzWZj6dKlgH1iqivyk5KSwo4d9u/cd999p835Wbt2LcXF9sCEO2xAh07vqN7MumEWhmHw8KaH7f85CyL3RbJq1KqKyryuxHE9aWlpFfbgahyRP4DffvuN48ePa9FxZDSAXudn/fr1FBba52IXqq1VpfPtt99q18nIyGDxYr1Fvc4rx9RqK6WoJFvLubNyjwB2B6TcWqxtXVRRSRbFpX+s7dIVhbEZ1lPX5NDRN6nOdHIYUzL0OXKZThPQjKz9lGuKoDtPdItKssgr0DOo5xYkYbXZU5INw0qqC9dlOlJ5Q8sKKC8vJjc/qeJ3Oh0sdzmMmbl/6KRm7NS2LtP5enLyj0v/U03qYv8jVE1+fj5JSUlnP7AGOE+sdDo/zjrffPONFo3CwkLWrFlT8W9dE9KdO3dWrC3VGflxjvTodH6cn82qVau0OT/OOnPmzHGZ87NpE7w+pTEL5oQxZfkUkr2Toa/9d7psoLi4+E+FdXTZtCOjwYE7bC0zM1Ob8+NsA2vXruXIkSPadebMmUNpqZ7lae7o1xwZDbp1HJxX+5h6Kz9y928myK+ty8+dn7+HRj5xpJQcoplvW/KP76FxZqDLdXKL9tDEpzUnS/YT6R1NSVoSlhLXD+g5ZamEmRuTbUvG3xyCyi9CHTiCWXm5VKfcVooqKiHQ3IByo5QGRjgl+3YSaGngUh2AkuxkGng1IavsJNF+ncjdt4mGPjEu1ynIPUikdzRppUeJ8utA7uHthPm7XIa8wt9p7NOS5JKDNPZpSdHJQ1jyG7vm3Da70x6WfILctAKanNIJ82pKeVYGZutxlHLte6ciax5+Nj8MUxkW5YVfiQXr/v34mFx78wzDRnleFsGWSAqtOTTxiqNgzxYaeDdxqQ5AYc4xwr2bk1GaSLRfZ+l/qkld7H+EqmnYsCHLli3jzjvvdOl5rVYraWlpxMfHs2/fPm677TbWrVtHQkKCS3WSkpJo1KgRJSUl+Pr6Eh0dzYkTJ2jatKlLdVavXs2NN97I/Pnz6dmzJ/n5+ZSVleHl5drvxW+//cYdd9zBV199xdChQ9m/X0/GwoYNGxg6dChz585l5MiRrF+/nquvvtrlOnv27OHqq69m0aJFPP744yxdupS7777bpRo2m42UlBR69uzJrl27uPPOO1mzZg19HPu91II9e+CTn7YS4jeBgfFxrLeux9TARJPLmxAXFUdiYiLNmzd3wVX8wZo1a7juuuv46aef6NGjBwUFBZSWluLt7e1SnZUrV1bY2k033cSBAwdcen4Hp9vaxo0bGThwoMt1du3axTXXXMMvv/zCY489xrJly7jnnntcqmEYBsnJyfTs2ZMdO3Zw9913s3r1aq688kqX6qSmphIaGkrLli1RStG6dWuOHz9OVFSUS3XWrl3LoEGD+OWXX+jWrRtFRUWUlJTg4+PjUh0H6nx6+xxkCTcSwoajlHL5uW2GldzydNZmfU/3kAE09I7RpmNgsCjtY1oFxNPSv4c2HZMysyJjNkGWcLqHXINhGC7XshlWFCa25i4irzydPuF3aNExDAMDG4cKt3KgYANXR47ChEXbvUsvPc7mnIVc2uAmQiwNtekU2wpYkfEVHYL6EOXb3mU6yjCYn/YR//HvxicB8ZiUmV/TZtHUtzUdgi7Xagvrs3/AwODSBjdq0rGvkd2Tv4qk4n1cHTlKi45dy0pS8V525q2gT/gd+JmCpP+pps6F0P8sTP1gk2EY8S5tVD2kS5cuxrZt21z+fB3R0ccff5zPP/+c3NxcLXZUUlKCt7c3/fv3p7CwkLVr12rT8fHxoVGjRgwePJhZs2Zp08nPzyciIoJ//OMfPPnkk1q+5yUlJaxfv54+ffqwYMECBg4cqE3n008/ZcyYMRw5coQWLVq4XMdqtWIYBk899RQff/wxBQUFLns2q1dDwswEaLGaQK9A8svyAQjIDCD/X/laba1p06Zcc801fPrpp9p0ioqKaNCgAa+88grjxo3TZgObNm0iISGB+fPnM3jwYG06//73v7n//vs5ePAgsbGxWmzNZrPx97//nffff5/i4mKt/drAgQNJS0tj8+bNWm0tKiqKK6+8kn//+9+11lFKVTk2n1epvAZ6Jp8AJmXGrOwBYqtRrlXHhNktOgBmZcFq2NNRdGiZlBml1Cmdcm06Sin3PiM36TgiSDajzKU6hlLkmHwJsRWfZgv6npGzLdi06pgwKVOFji6n1K7lPpuT/qdmOu7of4QzY7PZtNx3i8WCxWLB39+fwsJCbd91Hx8flFIVOqDHjhwRBHfo+PvbM1UKCwu1fSfqko7ZbNZma7GxwNKpmE9cyriEcXSI6EBgUSDh28MBsbX6pmM2m/Hy8sLf35+SkhKsVqv0a+eAVsdUKTVQKbVXKXVAKVWN3Xn1Rm/NpzKXHZNqXZw+kdKJGTfpuPF6AO1azk6CVh2N15Oj/Aix/VEwzFTHbMGEBQN7JF0nf7w8cI8tSP9TAx03XU994VzHZt17WPr7+2O1WrVXe3SeWF3oOr6+vgDadZwn8XVJx1FsyRU0bgw+J/ti/WgNI9o/ws6HdzL4yGBMR/THftxha15eXpjN5jpnA+7SKSrSV9jVoVNX+jXQ6JgqpczAu8C1QAfgdqVUhzN9xtDsmJrc5IyAfcKmewIK/Cl6pVXHjRNQcKfDqHciZFZ/RK9cTY7JlxDjjw7PfQ6juU7ZgslNL0Ok/6mFjpv6n/pATcZmdzim4J6JYl2ZwJ0eKdFFXXUWXKmjFDSLskLsYgbPvpbFhxaLrdWAC9kGPK1TV2wN9EZMewIHDMM4ZBhGKfA1cMOZP6I5YurGiaHJXU6CuyIjyoKBrWL9n04dqDsRU6VM2hy5HJMfIbY/3vq6LUrmNh17JLOu2IL0PzXHXf1PPeGcx2ZxTOuvTl2cxOvQiYouh76T2Zm9nslLJ9cpG3CXzoVuA57UqSs2AHqr8jYDnGt+JwKXnPkjetcOmZWFIEs4XiZfrToAIV6R+JpdX3XzdAItoZhcXH21MnzNQYRYIjGwovN9hrfJj2BLpPZrsihvgi0RWJRrK9hVRohXQ5dXrgWHY/pHxDTIEuZyjcrwN4e4pSqqrzmAYEskul9YeZl8CLZEVKyb1IX0PzXHXf1PPeGcx2aTSe89b9asGfHx8dod4JYtW9KxY0etGgAdO3YkLy9Pu058fLzLKwufTkBAAN27dycsTO/4EhYWxkUXXVSRoqyLpk2bEh8f7/Jtpw73vBG8VuNvCmFq36lsy9lGp06dXKpRGR06dCArK0u7To8ePWjWrJlWDX9/f7famp+fn1Ydh63pJi4ujs6dO2utxwF2W0tNTdV2fgfaqvIqpYYDAwzDuO/Uv/8G9DQM49HTjnsAeODUP9sCe89y6ggg3cXNvdCQe2BH7oPcAwdyH+QeOHC+D9GGYUR6sjHnGzI2a6O+Xz/U53vQhB4VP59kkwdb4mnqrw38QX2/B9W5/irHZp0R00TAeTOd5sCJ0w8yDOMj4KPqnlQptbG+l/+Xe2BH7oPcAwdyH+QeOJD7cFZkbNZAfb9+kHtQ368f5B6A3IPaXr/O/JwNQGulVKxSyhu4DfhBo54gCIIgCGdGxmZBEAThvERbxNQwjHKl1CPAz4AZmGUYxk5deoIgCIIgnBkZmwVBEITzFZ2pvBiGsQBY4OLTVju1qA4j98CO3Ae5Bw7kPsg9cCD34SzI2KyF+n79IPegvl8/yD0AuQe1un5txY8EQRAEQRAEQRAEoTpI3X1BEARBEARBEATBo1yQjqlSappSartSaqtS6hellN6NvM5DlFKvKaX2nLoP3yulQj3dJnejlBqulNqplLIppepdBTSl1ECl1F6l1AGl1HhPt8cTKKVmKaVSlVI7PN0WT6GUilJKLVVK7T71fXjM021yN0opX6XUeqXUtlP3YIqn21TfkHFZxmWov+NyfR+P6/tYLOOw68bhCzKVVykVbBhG7qmfxwIdDMMY4+FmuRWl1DXAklOFLF4BMAzjGQ83y60opdoDNuBD4GnDMDZ6uEluQyllBvYBV2Pf/mEDcLthGLs82jA3o5TqA+QDnxuGoX838/MQpVQToIlhGJuVUkHAJuDG+mQLyr6reIBhGPlKKS/gN+AxwzDWerhp9QYZl2Vchvo5Lst4LGOxjMOuG4cvyIipY/A7RQBw4XnXtcQwjF8Mwyg/9c+12Peiq1cYhrHbMIyzbfpeV+kJHDAM45BhGKXA18ANHm6T2zEMYwWQ6el2eBLDME4ahrH51M95wG6gmWdb5V4MO/mn/ul16k+9Gxc8iYzLMi5DvR2X6/14XN/HYhmHXTcOX5COKYBS6iWl1HHgTmCyp9vjYUYCP3m6EYJbaQYcd/p3IvWsExT+ilIqBugOrPNwU9yOUsqslNoKpAKLDMOod/fA08i4/CdkXK4/yHgsVCDjcO3G4fPWMVVK/aqU2lHJnxsADMOYZBhGFPAl8IhnW6uHs92DU8dMAsqx34c6R3XuQT1FVfJ/9S5CIfyBUioQmAM8flr0ql5gGIbVMIxu2KNUPZVS9S6dTDcyLsu4DDIuV4KMxwIg47ArxmGt+5jWBsMwrqrmoV8BPwLPa2yORzjbPVBKjQCuA/obF+Ji4WpwDnZQ30gEopz+3Rw44aG2CB7m1HqOOcCXhmHM9XR7PIlhGNlKqWXAQKBeFuLQhYzLMi6DjMuVIOOxIOOwE7UZh8/biOmZUEq1dvrn9cAeT7XFUyilBgLPANcbhlHo6fYIbmcD0FopFauU8gZuA37wcJsED3Cq4MBMYLdhGG94uj2eQCkV6aiAqpTyA66iHo4LnkTGZRmX6zEyHtdzZBx23Th8oVblnQO0xV757SgwxjCMJM+2yr0opQ4APkDGqf9aWw8rIN4EvA1EAtnAVsMwBni0UW5EKTUI+CdgBmYZhvGSZ1vkfpRSs4ErgQggBXjeMIyZHm2Um1FKXQasBH7H3icCTDQMY4HnWuVelFJdgM+wfxdMwLeGYUz1bKvqFzIuy7gM9Xdcru/jcX0fi2Ucdt04fEE6poIgCIIgCIIgCELd4YJM5RUEQRAEQRAEQRDqDuKYCoIgCIIgCIIgCB5FHFNBEARBEARBEATBo4hjKgiCIAiCIAiCIHgUcUwFQRAEQRAEQRAEjyKOqSAIgiAIgiAIguBRxDEVBEEQBEEQBEEQPIo4poJwgaCUulgptV0p5auUClBK7VRKdfJ0uwRBEAShviJjsyC4DmUYhqfbIAhCNVFKvQj4An5AomEY0z3cJEEQBEGo18jYLAiuQRxTQbiAUEp5AxuAYqC3YRhWDzdJEARBEOo1MjYLgmuQVF5BuLAIAwKBIOxvZwVBEARB8CwyNguCC5CIqSBcQCilfgC+BmKBJoZhPOLhJgmCIAhCvUbGZkFwDRZPN0AQhOqhlLobKDcM4yullBlYrZTqZxjGEk+3TRAEQRDqIzI2C4LrkIipIAiCIAiCIAiC4FFkjakgCIIgCIIgCILgUcQxFQRBEARBEARBEDyKOKaCIAiCIAiCIAiCRxHHVBAEQRAEQRAEQfAo4pgKgiAIgiAIgiAIHkUcU0EQBEEQBEEQBMGjiGMqCIIgCIIgCIIgeBRxTAVBEARBEARBEASP8v+irVEmxzaYjwAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "import numpy as np # Librería para poder trabajar con matrices y vectores\n", "import matplotlib.pyplot as plt # Librería para poder dibujar gráficas\n", "from matplotlib import animation\n", "from IPython.display import HTML\n", "\n", "delta = 0.2 #malla espacial\n", "nq=2 #separacion entre vectores en quiver plot\n", "\n", "u0 =1.0\n", "v0 =2.0\n", "w =2.0\n", "\n", "lmb = 2.0*math.pi*v0/w #longitud de onda\n", "Tp = 2.0*math.pi/w #periodo\n", "\n", "L=0.50*lmb\n", "\n", "xp = np.arange(-L, L, delta)\n", "yp = np.arange(0, 2*L, delta)\n", "X, Y = np.meshgrid(xp, yp)\n", "\n", "\n", "t=0.0\n", "U = u0*np.sin(w*(t-Y/v0))\n", "V = v0*np.ones((len(yp),len(xp)))\n", "\n", "\n", "fig, (ax,ax2) = plt.subplots(1,2,figsize=(16, 8))\n", "Q = ax2.quiver(X[::nq,::nq], Y[::nq,::nq], U[::nq,::nq], V[::nq,::nq])\n", "line2, = ax2.plot([], [], 'g-', lw=2, alpha=.2)\n", "line1, = ax2.plot([], [], 'b--', lw=2)\n", "pt1, = ax2.plot([], [], 'g.', ms=20)\n", "pt2, = ax2.plot([], [], 'g.', ms=20)\n", "pt3, = ax2.plot([], [], 'g.', ms=20)\n", "pt4, = ax2.plot([], [], 'g.', ms=20)\n", "ax2.set_xlabel(\"x\")\n", "ax2.set_ylabel(\"y\")\n", "ax2.set_ylim([0, 2*L])\n", "ax2.set_xlim([-L, L])\n", "\n", "nframes=80 #frames de la animacion\n", "tf=Tp #tiempo total\n", "dt=Tp/nframes #paso de tiempo\n", "\n", "def update_plot(num):\n", "\n", " t = dt*num\n", "\n", " U = u0*np.sin(w*(t-Y/v0))\n", "\n", " ax.clear()\n", " ax.contourf(X,Y,np.sqrt(U**2+V**2))\n", " ax.quiver(X[::nq,::nq], Y[::nq,::nq], U[::nq,::nq], V[::nq,::nq])\n", " xx=u0/w*(np.cos(w*(t-yp/v0))-cos(w*t))\n", " ax.plot(xx,yp,'r-')\n", "\n", " ax.set_xlabel(\"x\")\n", " ax.set_ylabel(\"y\")\n", "\n", " Q.set_UVC(U[::nq,::nq],V[::nq,::nq])\n", "\n", " xx=u0/v0*yp*np.sin(w*(t-yp/v0))\n", " line1.set_data(xx, yp)\n", "\n", " xx=u0/v0*yp*np.sin(w*t)\n", " line2.set_data(xx, yp)\n", "\n", " t0 =0.0*Tp/4\n", " yy1 =v0*(t-t0)\n", " yy0= 0.0\n", " xx1=u0/v0*yy1*(np.sin(w*t0-w/v0*yy0))\n", " pt1.set_data(xx1,yy1)\n", " ax2.plot(xx1,yy1, 'g.', ms=3)\n", "\n", " t0 =0.125*Tp\n", " yy1 =v0*(t-t0)\n", " yy0= 0.0\n", " xx1=u0/v0*yy1*(np.sin(w*t0-w/v0*yy0))\n", " pt2.set_data(xx1,yy1)\n", " ax2.plot(xx1,yy1, 'g.', ms=3)\n", "\n", " t0 =0.25*Tp\n", " yy1 =v0*(t-t0)\n", " yy0= 0.0\n", " xx1=u0/v0*yy1*(np.sin(w*t0-w/v0*yy0))\n", " pt3.set_data(xx1,yy1)\n", " ax2.plot(xx1,yy1, 'g.', ms=3)\n", "\n", " t0 =0.42*Tp\n", " yy1 =v0*(t-t0)\n", " yy0= 0.0\n", " xx1=u0/v0*yy1*(np.sin(w*t0-w/v0*yy0))\n", " pt4.set_data(xx1,yy1)\n", " ax2.plot(xx1,yy1, 'g.', ms=3)\n", "\n", " return\n", "\n", "anim = animation.FuncAnimation(fig, update_plot, frames=nframes, interval=80, blit=False)\n", "\n", "HTML(anim.to_html5_video())\n", "\n" ] } ], "metadata": { "colab": { "provenance": [] }, "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.7" } }, "nbformat": 4, "nbformat_minor": 1 }