

Previamente... Módulo 3 - Tarea 2

Conversión del tipo de datos

Para poder hacer cualquier tipo de procesado, debes convertir las columnas a valores numéricos.

La conversion puede poner NaN a todos los valores no numéricos para que el paso anterior no sea necesario.

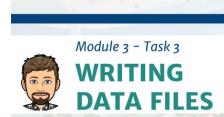
Input [22]:

data = data[data.columns].apply(pd.to_numeric, errors='coerce')
data.info()

Output [22]:

```
<class 'pandas.core.frame.DataFrame'>
Index: 537 entries, European Union to Bosnia and Herzegovina
Data columns (total 29 columns):
1991
     232 non-null float64
1992
       258 non-null float64
1993
       232 non-null float64
1994
       258 non-null float64
1995
       361 non-null float64
1996
       382 non-null float64
1997
       355 non-null float64
1998
       354 non-null float64
1999
       384 non-null float64
2000
       354 non-null float64
2001
       396 non-null float64
2002
       364 non-null float64
2003
       402 non-null float64
2004
       311 non-null float64
2005
       151 non-null float64
2006
       61 non-null float64
       328 non-null float64
2007
2008
       352 non-null float64
2009
       347 non-null float64
2010
       357 non-null float64
2011
       352 non-null float64
2012
       354 non-null float64
2013
       355 non-null float64
       347 non-null float64
2014
       355 non-null float64
2015
       356 non-null float64
2016
       361 non-null float64
2017
       361 non-null float64
2018
2019
       20 non-null float64
dtypes: float64(29)
```


memory usage: 125.9+ KB



Input [23]:

data.describe(include = 'all')

Output [23]:

	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	
count	232.000000	258.000000	232.000000	258.000000	361.000000	382.000000	355.000000	354.000000	384.000000	354.000000	
mean	1017.951293	927.348450	956.366810	906.918217	853.977285	831.963874	853.710423	840.977684	798.689583	813.195706	
std	2198.705273	2031.018765	2104.695487	2035.171217	1813.874991	1750.314308	1788.685585	1769.476449	1701.587877	1731.501156	
min	-1.000000	-1.000000	-1.000000	-1.000000	0.000000	0.000000	0.100000	0.100000	0.100000	0.100000	
25%	64.900000	80.100000	63.400000	77.375000	104.500000	125.500000	112.500000	113.250000	117.900000	111.725000	
50%	413.400000	366.450000	399.300000	375.850000	372.100000	359.300000	379.400000	363.350000	337.450000	340.500000	
75%	1103.025000	962.925000	944.725000	911.700000	882.100000	794.850000	855.950000	828.250000	763.325000	781.775000	
max	20804.000000	20264.500000	19906.400000	20507.100000	20836.500000	20540.700000	20334.200000	20055.300000	20196.300000	20324.500000	
8 rows	× 29 columns										
<											>

Estandarización de los contenidos.

Después de analizar los datos vemos que la columna NUTS tiene los nombres de los NUTS pero no los códigos.

El siguiente paso es estandarizar los contenidos de esa columna reemplazando las etiquetas con los códigos.

Para este propósito, tenemos un archivo que contiene las etiquetas.

Input [24]:

file = 'datos/nuts.xlsx'
nuts = pd.read_excel(file, index_col=0)
nuts.head(5)

Output [24]:

NUTS

EU European Union (EU6-1958, EU9-1973, EU10-1981,...

BE Belgium

BE1 Région de Bruxelles-Capitale / Brussels Hoofds...

BE2 Vlaams Gewest

Ya que la información se organiza de manera similar, podemos cambiar un índice por otro.

Input [25]:

data.index = nuts.index
data.head(5)

Output [25]:

	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	 2010	2011	2012	2013	2014	2015	2016	
NUTS																		
EU	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	 NaN	86785.24	NaN	NaN	NaN	NaN	NaN	
BE	3105.5	3099.6	3084.2	3161.1	3158.7	3070.8	2978.4	2984.4	2970.4	3041.6	 2592.63	2560.32	2484.27	2432.53	2477.24	2503.26	2501.35	23
BE1	0.3	0.5	0.5	0.5	0.4	0.4	0.4	0.3	0.4	0.4	 0.24	0.25	0.56	0.59	0.79	0.87	0.50	
BE10	0.3	0.5	0.5	0.5	0.4	0.4	0.4	0.3	0.4	0.4	 0.24	0.25	0.56	0.59	0.79	0.87	0.50	
BE2	1655.2	1661.4	1637.2	1685.5	1678.5	1613.1	1556.8	1554.4	1536.2	1558.1	 1303.87	1302.25	1269.41	1255.40	1299.98	1321.01	1326.77	12
5 rows	× 29 co	lumns																
<																		>

Eliminando valores inválidos.

Dependiendo del problema puedes saber que los valores de las celdas deben estar entre un determinado rango. Por tanto, cualquier valor fuera de este rango no es válido y tiene que ser ajustado (min, max o NaN).

En el ejemplo discutido, los valores pueden ser solo positivos. Sin embargo, hay algunos valores negativos en la tabla.

• dataframe.lt() muestral el número de valores más bajos que los indicados

Input [26]:

data.lt(0).sum()

Output [26]:

1991	3
1992	3
1993	3
1994	3
1995	0

1996	0
1997	0
1998	0
1999	0
2000	0
2001	0
2002	0
2003	0
2004	0
2005	0
2006	0
2007	0
2008	0
2009	0
2010	0
2011	0
2012	0
2013	0
2014	0
2015	0
2016	0
2017	0
2018	0
2019	0
dtype:	int6

Estos valores se pueden poner como 0 o cambiarlos a NaN

Input [27]:

data[data < 0] = np.nan

Visualización de datos nulos

Podemos ver cuantos de los 537 valores no numéricos tiene cada columna.

Dependiendo del problema a resolver puede ser necesario eliminar filas o columnas con NaN para tener datos completos.

• dataframe.isna() muestral los valores nulos del conjunto de datos

Input [28]:

data.isna().sum()

Output [28]:

1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013	308 282 308 282 176 155 182 183 153 141 173 135 226 386 476 209 185 190 180 185 183
2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018	209 185 190 180 185 183 182 190 182 181 176
2019 dtype:	517 int64

Eliminar datos nulos

En caso de que necesitemos limpiar más datos y eliminar columnas que contengan algunos datos nulos, en este caso tendríamos que eliminar 2019, ya que los datos no están terminados. Así, tenemos que eliminar las columnas que no nos son útiles.

• dataframe.dropna() te permite eliminar columnas con datos nulos.

Input [29]:

data2 = data.dropna()
data2.describe()

Output [29]:

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 count NaN NaN

8 rows × 29 columns

Se puede ver que en la colección de datos, hay columnas no completas.

Inteporlación de datos nulos.

Si los análisis a realizar no permiten hacer nulos los datos o eliminarlos ya que muchas filas se eliminarían, una alternativa es interpolar los valores.

Input [30]:

data = data.interpolate(axis=1, limit_direction='both')
data.head()

Output [30]:

	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	 2010	2011	2012	2013	
NUTS															
EU	86785.24	86785.24	86785.24	86785.24	86785.24	86785.24	86785.24	86785.24	86785.24	86785.24	 86785.24	86785.24	86785.24	86785.24	8678
BE	3105.50	3099.60	3084.20	3161.10	3158.70	3070.80	2978.40	2984.40	2970.40	3041.60	 2592.63	2560.32	2484.27	2432.53	247
BE1	0.30	0.50	0.50	0.50	0.40	0.40	0.40	0.30	0.40	0.40	 0.24	0.25	0.56	0.59	
BE10	0.30	0.50	0.50	0.50	0.40	0.40	0.40	0.30	0.40	0.40	 0.24	0.25	0.56	0.59	
BE2	1655.20	1661.40	1637.20	1685.50	1678.50	1613.10	1556.80	1554.40	1536.20	1558.10	 1303.87	1302.25	1269.41	1255.40	129
5 rows	× 29 colur	mns													
<	20 00.0.														>

Rellenar columnas vacias

La interpolación es imprecise con columnas con pocos datos, ya que apenas hay datos e información para deducir los valores que faltan. Un ejemplo es la primera fila de la tabla, donde solo hay 1 dato para la Unión Europea, por lo que la interpolación rellena todas las casillas con ese valor.

Otro problema son las filas completamente vacías. Aquí la interpolación no puede hacer nada. Una solución si necesitan tener valores es poner todas esas filas con valores 0.

dataframe.fillna() te permite cambiar un valor NaN a otro valor.

Escribiir arhivos de datos

PARA APRENDER MÁS....

The formats supported in the Pandas library and how to write in them is described in: https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html

Format	Rear	Write
CSV	pd.read_csv()	pac.to_csv()
json	pd.read_json()	pac.to_json()
excel	pd.read_excel()	pac.to_excel()
hdf	pd.read_hdf()	pac.to_hdf()
sql	pd.read_sql()	pac.to_sql()
	•••	

Each write operation in a format has different parameters to adjust the settings.

Writing to an Excel file

Pandas allows us to save the data in Excel format with dataframe.to_excel().

The most relevant parameters are:

- io = The location of the file
- sheet_name = The sheet to be written
- index = If we want you to put an index column or not in the file

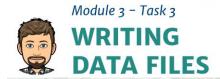
Input [32]:

data.to_excel('datos/animalEurostatNuts2_DataSheet_corrected.xlsx', sheet_name='D ata')

Procesado de multiples hojas

El archivo usado como ejemplo contiene múltiples hojas que pueden ser procesadas de la misma manera ya que tienen la misma estructura.

Para automatizar el proceso, puedes leer todas las hojas y aplicar el proceso a cada una de ellas y guardar el resultado en un ahoja diferente del archivo de salida.



Primero, tenemos que definir una función que, dado un marco de datos, aplica el proceso de limpieza de datos entero.

Después, la función llama al proceso para cada hoja.

```
Input [33]:
import pandas as pd
import numpy as np
nuts = pd.read excel('datos/nuts.xlsx', index col=0)
#function for Data cleaning
def cleanData(data):
  #we eliminate leftover columns
  indices = [i for i, s in enumerate(data.columns) if 'Flags' in s]
  colToDelete=data.columns[np.array(indices)]
  data = data.drop(columns=colToDelete)
  #we change the header and first column
  data.index = nuts.index
  #we change data type and remove no numbers
  data = data[data.columns].apply(pd.to_numeric, errors='coerce')
  #we eliminate duplicate rows
  data = data.loc[~data.index.duplicated(keep='first')]
  #we delete negative values
  data[data < 0] = np.nan
  #we interpolate null values
  data = data.interpolate(axis=1, limit_direction='both')
  #we add zeros to the empty rows
  data = data.fillna(0)
  return data
```

```
Input [34]:
reader = pd.ExcelFile('datos/animalEurostatNuts2.xlsx')
writer = pd.ExcelWriter('datos/animalEurostatNuts2_corrected.xlsx')
for sheet in reader.sheet_names:
    data = pd.read_excel(reader, sheet_name=sheet, skiprows=9, skipfooter=13, index_col=0)
    data = cleanData(data)
    data.to_excel(writer, sheet_name=sheet)
writer.save()
print('Done')
```

Output [34]:

Done

Continua... Módulo 3 – Tarea 4

