

Syllabus

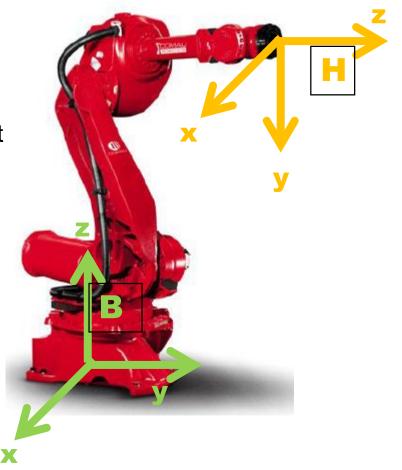
Robotic Manipulators

- Applications in assistive robotics: medical robotics, prostheses, companion, monitorization, assistance
- Structure of the robot manipulators
- Drives and sensors
- Spatial location: transformations
- Geometric model
- Motion control

Visual Servoing

- Position-Based Visual Servoing. 3D scene model, two-view geometry, stereo cameras. Control laws.
- Image-Based Visual Servoing. Definition of targets. Interaction matrix. Image-based visual control loop.
- Stability analysis. Lyapunov.
- Hybrid Visual Servoing.

- Forward Geometric Model: Where is G given q_i?
 - Forward model (geometric, forward kinematic model)
 - Denavit-Hartenberg (DH) parameters
 - Computation of forward model from joint coordinates
- Inverse Geometric Model: What are the joint coordinates q_i given G?
 - Inverse model
 - Redundant solutions and singularities
 - Analytical and numerical resolution methods



Geometric Model

- Mechanical structure:
 - n links or solid rigid bodies L1,...Ln (open loop chain)
 - n joints or rotational or prismatic joints J1,..,Jn

GOAL: To place the last link at a desired location in the environment (position and orientation)

- Description of the geometry
 - Joint coordinates $\mathbf{q} = (q_1, \dots, q_n)^t$
 - Cartesian coordinates (task, operational) $\mathbf{X} = (x_1, \dots, x_m)^t$

$$\mathbf{X}(q) \longleftrightarrow^{0} \mathsf{T}_{6}(\mathbf{q});$$

Forward geometric model

- Kinematic chain with links connected by joints R or P
 - To assign a reference frame to every link

$${}^{0}\mathbf{T}_{n} = {}^{0}\mathbf{T}_{1} {}^{1}\mathbf{T}_{2} \dots {}^{n-1}\mathbf{T}_{n}$$

- Standard representation of the transformation matrices between consecutive spatial links (Denavit and Hartenberg-1955)
- Reference frames: located so that only 4 parameters are needed: $(\theta_i, d_i, a_i, \alpha_i)$

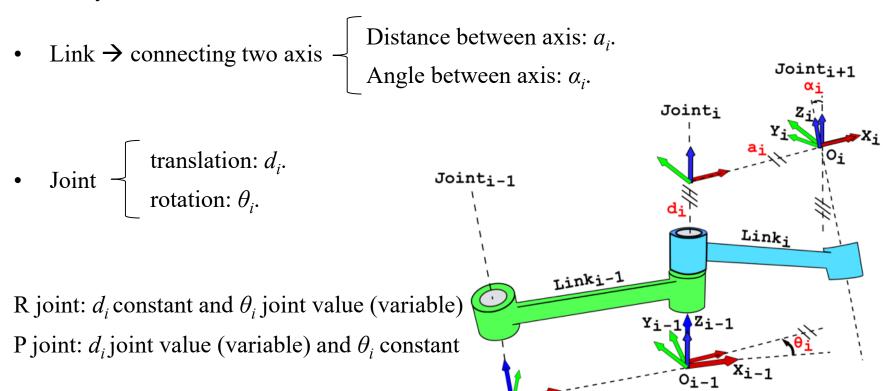
$$^{i-1}\mathbf{T}_i = \text{Rot}(z, \theta_i) * \text{Trasl}(z, d_i) * \text{Trasl}(x, a_i) * \text{Rot}(x, \alpha_i)$$

- The value of these four parameters depends on the geometry of the consecutive links and the value of the joint that connects them (rotational or prismatic joint).
- Fixed / dependent on the current joint position.

https://en.wikipedia.org/wiki/Denavit%E2%80%93Hartenberg_parameters

Forward geometric model

• Every link i is connected, at most, with two links: i-1, i+1



Pushpendra050, CC BY-SA 4.0 https://creativecommons.org/licenses/by-sa/4.0, via Wikimedia Commons. https://commons.wikimedia.org/wiki/File:Classic DH Parameters Convention.png

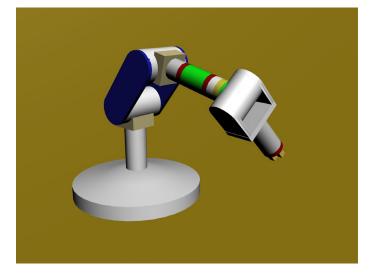
Forward kinematics

• Use the forward geometric model (Denavit Hartemberg parameters)

$$\mathbf{T_i} = Rot(\mathbf{z_{i-1}}, \, \boldsymbol{\theta_i}) \; Trasl(0,0,d_i) \; Trasl(a_i,0,0) \; Rot(\mathbf{x_{i-1}}, \, \boldsymbol{\alpha_i})$$

	θi	di	ai	αi
1	30+90+q1	0	0	90
2	0	L1+q2	0	0

- Apply the values for the joint coordinates q1, q2 ...
- Obtain the resulting pose of the robot tool.



NeD80, Public domain, via Wikimedia Commons. https://commons.wikimedia.org/wiki/File:Robot_arm_model_1.png

Inverse geometric model

$$\mathbf{q} = (q_1, q_2, q_3, \dots, q_n)^T$$

$$\mathbf{X} = (x, y, z, \phi, \theta, \psi)^T \longleftrightarrow^{0} \mathbf{T}_n$$

$$\mathbf{q} = g^{-1}(\mathbf{X})$$

- Robot configurations. redundant solutions
- Inverse geometric solutions:
 - Numerical
 - Analytical
- It does not have a unique solution, or a systematic process to obtain it

Inverse Geometric Model: Numerical solvers

- Iterative, from an initial seed
- Linearization of the geometric model

$$\mathbf{X} = \mathbf{g}(\mathbf{q})$$
 Forward model $\mathbf{dX} = \frac{\partial \mathbf{g}}{\partial \mathbf{q}}|_{0} \mathbf{dq} = \mathbf{J}(\mathbf{q})|_{0} \mathbf{dq}$ $\rightarrow \Delta \mathbf{X} = \mathbf{J}(\mathbf{q})|_{0} \Delta \mathbf{q}$

• **J(q)** is the **Jacobian** of the robot (partial derivatives of the forward model relative to q)

$$T = hom(X)$$

 $X = loc(T)$

```
inverse model(wXf, q0):
                                         Goal pose
  wTf = hom(wXf) \leftarrow
  q = q0
  while |\Delta \mathbf{q}| > \varepsilon
                                      Current pose
      \mathbf{wTk} = \text{hom}(\text{ forward model}(\mathbf{q}))
      \Delta X = loc (kTw * wTf)
      compute J(q)
                                      Desired
                                     relative
      \Delta q = J(q)^{-1} \Delta X 
                                      displacement
      \mathbf{q} = \mathbf{q} + \Delta \mathbf{q}
                                      from k to goal
  end while
 return q
```

Singularity

- Location in which some Cartesian degree of freedom is lost
- Near the limits of the workspace / robot envelope.
- Arm fully extended or folded
- Within the robot's work envelope:
 - Points where there is a change of the robot <u>configuration</u>
 - Usually, two or more joint axis aligned

Forward model
$$\mathbf{X} = \mathbf{g}(\mathbf{q})$$

$$\mathbf{dX} = \frac{\partial \mathbf{g}}{\partial \mathbf{q}} \Big|_{0} \mathbf{dq} = \mathbf{J}(\mathbf{q}) \Big|_{0} \mathbf{dq}$$

$$\rightarrow \Delta \mathbf{X} = \mathbf{J}(\mathbf{q}) \Big|_{0} \Delta \mathbf{q}$$

 $|\mathbf{J}(\mathbf{q})| = 0$

- Impossible to move smoothly following some direction
- Inverse geometric model
 - There may exist infinite solutions -> to avoid indeterminations, random solutions, numerical problems
 - Generation of Cartesian trajectories -> to be aware of singularities!

Inverse Geometric Model: Analytical solvers

- To decompose the spatial geometry into planar sections + to solve triangles
- Multiple solutions can be obtained starting from the first one
 - Signs of and origin of triangles
 - Angle quadrants

Wrist-partitioned robots: Kinematic decoupling arm (translation) & wrist (rotation)

• Sufficient condition (DH) $a_4 = a_5 = d_5 = 0$ • $\mathbf{T}_6 = {}^0 \mathbf{T}_1 * {}^1 \mathbf{T}_2 * {}^2 \mathbf{T}_3 * \operatorname{Trasl}(0,0,d_4) *$ Rot $(z,\theta_4) * \operatorname{Rot}(x,\alpha_4) * \operatorname{Rot}(z,\theta_5) * \operatorname{Rot}(x,\alpha_5) * \operatorname{Rot}(z,\theta_6) *$ Trasl $(0,0,d_6) * \operatorname{Trasl}(a_6,0,0) * \operatorname{Rot}(x,\alpha_6)$ $\mathbf{T}_{R456} \text{ pure rotation}$

Since T_{R456} pure rotation, position component of ${}^{0}T_{M}$ and T_{P123} are equal

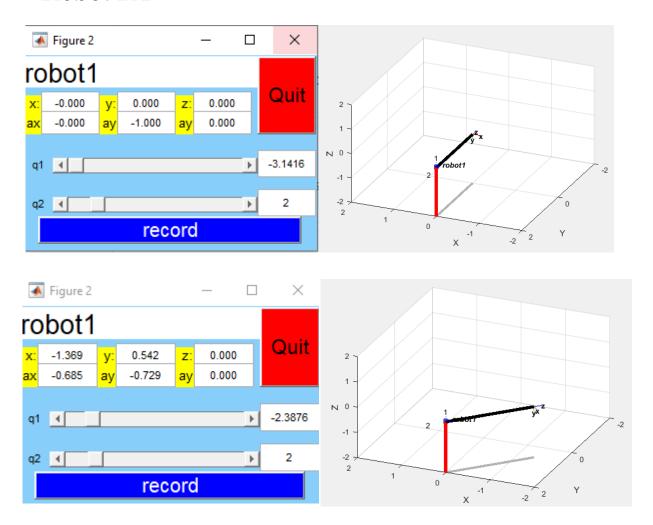
$$\mathbf{T}_{R456}(q_4, q_5, q_6)$$
 ${}^{3}\mathbf{T}_{M} = \mathbf{T}_{R456} = \mathbf{T}_{P123}^{-1} * \mathbf{V}_0 * {}^{M}\mathbf{T}_6^{-1}$

Geometric model. Exercise

- Run rtbdemo at MATLAB
- Pay attention to the instructions for defining the forward and inverse geometric models for a robot, using its Denavit–Hartenberg parameters
- Learn how to use the commands robot.plot() and robot.teach()
- Obtain the DH parameters for the following robot. Implement itm in MATLAB and check that their behavior is the one you would expect.
- Robot RT: a robot with two joints. The first one is rotational, and the second one is translational. Next, we show several different positions of the robot. Please, note the associated joint values.

Geometric model. Exercise

Robot RT



Geometric model. Exercise

Robot RT

