
“Specs”:
• Small and simple (but rich/flexible enough)
• Manageable and didactic (student-oriented)
• Emphasis on robot algorithms (control-oriented)
• “Continuous” time: asynchronicity (but simple physics)

Choices:
• Python → ROS (BTW, Python ⇒ Some Fun Required)
• Time Scaling & Verification → Distributed Simulation

Version: 2.2 (still in construction) License:

SmallWorl2D (link to download)

Swarm Robotics @ Multi-Robot Systems @ MURGCV

https://drive.google.com/open?id=1wZphsITPDBzGXS240Glyk_B5Ex8YD0Fc&authuser=eteruel%40unizar.es&usp=drive_fs

A Space is a rectangle populated by different kinds of
Body's, some of which are static (Obstacle’s, Nest’s,
Food’s) and some of which are mobile, the MoBody’s.

MObstacles are dumb MoBody’s, but there are also the
more interesting, animated, AniBody’s (Mobot’s,
Killer’s, Shepherd’s).

An AniBody typically has (one or more) Soul’s that
animate it, and sometimes Knows something that
influences its state and which it can tell to peers.

SmallWorl2D Creation (“Rationale”):
In the Beginning there was Nothing...

Swarm Robotics @ Multi-Robot Systems @ MURGCV

Swarm Robotics @ Multi-Robot Systems @ MURGCV

A World Without (Control) Law

https://docs.google.com/file/d/1t4z0c2EO9kdQiBm65Pqyr7ia9xlkXUZv/preview

Front matters

Not mine imports

import os

from pathlib import Path

from time import time, localtime, strftime

import numpy as np

from random import seed, random, uniform, choice

from shapely.geometry import Point, Polygon, LineString

from shapely.affinity import translate, rotate, scale

from shapely.ops import nearest_points

from point2d import Point2D

import matplotlib as mpl

import matplotlib.pyplot as plt

import matplotlib.patches as patches

from matplotlib.animation import FFMpegWriter # requires having ffmpeg installed, from https://ffmpeg.org/

Mine imports

from gadgETs import coordlistr, tuplestr, pipi, voronoi

Personalities

working_dir = str(Path.home())+'whatever you like'

os.chdir(working_dir) # Working_dir for files

SmallWorl2D Depends

Swarm Robotics @ Multi-Robot Systems @ MURGCV

“Global” variables

They’re set in Space.init()
randomseed=0 # Random seed for reproducibility
visual=False # to see the world (and selected KPI's) on the run, and record a movie
shoul=True # to show Soul's or not
showconn=False # to show the graph of connections or not (only in visual mode)
Info detail
loginfo=False # dump info to a log file
movietxt=False # dump the data to make a movie afterwards
Canvas sizing; default aspect ratio W:H; coords (-W:W,-H:H)
SS=15 # Screen Size SS in ches
W=16
H=9
room=[(-W,-H),(W,-H),(W,H),(-W,H)]
Time Scale (check or set OK!)
TS=1 # simulation-time seconds per real-time second (adjust to case)
fps=10 # frames per second in the movies (10 or 25 are usual choices)
Max vel's should be a fraction of the following vN and wN (intended for relatively small
displacements per redraw)
vN=4/TS # traverse 4 units distance in 1 sec real-time (32 canvas-width in 8 secs)
wN=8*np.pi/TS # 4 full revolutions in 1 secs real-time (quite fast)

Swarm Robotics @ Multi-Robot Systems @ MURGCV

A rectangle populated by Body's

Data:
name

fig,ax,limits (W, H)

 # the space is a white rectangle 2Wx2H, limited (or not) ‘v’ or ‘h’

 # x, y coords of everything range from -W to W, -H to H

bodies=[] # list of Body's in this Space

dist,R,conn,conngraph # distances and connections

time,TS,t0,T,updates,avgT (fps, T=TS/fps)

 # timing, and statistics

class Space

Swarm Robotics @ Multi-Robot Systems @ MURGCV

Functions:
__init__(self,name,TS,R=1,limits='',...“globals”...)
""" Also creates and inits files and graphics

resetime(self,t0)
""" Resets the t0 and time of Space and its Body's and Soul's

update(self)

""" Redraws whatever newer than self.time and advances its self.time

has_been_closed(self)
""" Returns True when the figure where self is drawn is not active

close(self)
logprint(self,string) """ Log printing from outside

class Space

Swarm Robotics @ Multi-Robot Systems @ MURGCV

Body management functions

findbody(self,name):

""" Returns the index in self.bodies of the Body named so

typindices(self,type)

""" Returns the indices in self.bodies of the Body's of the type

update_dist(self)

""" Updates the matrix of dist between all Body’s

update_conn(self)

""" Updates the list of conn pairs between AniBody's of the same type

def graph(self,type)

""" Returns the graph formed by the AniBody's of type

class Space

Swarm Robotics @ Multi-Robot Systems @ MURGCV

Body management functions (cont.)

fits(self,new,where,noverlap=True,safe=0)

""" Returns True if the new Body fits in where

remobodies(self,ko,why='unspecified reason')

""" Removes (offs) all the self.bodies in list ko

Perception functions

nearby(self,i,type,r,rng=np.pi)

""" Returns a list with the Body's of type "visible" from Body i

RnB(self,i,type,r,rng=np.pi,fast=True)

""" Simulates a range&bearing sensor (*)

class Space

Swarm Robotics @ Multi-Robot Systems @ MURGCV

Perception functions (cont.)

clearway(self,i,type,r,rng=np.pi,N=30,th0=0)

""" Returns the closest to th0 angle with clear straight way (*)

nearest(self,i,type,r,rng=np.pi)

""" Returns the nearest to Body i of the nearby Body's of type

nearestpoint(self,i,b):

""" Returns the coords of the nearest to Body i point of b

incontact(self,i,type):

""" Returns a list with the Body's of type in contact with Body i

class Space

Swarm Robotics @ Multi-Robot Systems @ MURGCV

The key performance indices

Data:
name,fig,ax # x from 0 to now, y’s from 0 to 1

time,t0,T,updates,avgT

KPI,KPIplot # [(i,'{.-:o+*}{rgbcmyk}'),...]

Functions:
__init__(self,name,TS,T,KPI0,KPIplot=[],...)

resetime(self,t0)

update(self,KPI) """ Writes/Plots the last KPI values

has_been_closed(self), close(self)

class KPIdata

Swarm Robotics @ Multi-Robot Systems @ MURGCV

Something (depicted by a polygon) in a Space

Data:
space,name,time,t0,updates,avgT,on

pos,th,area,vertices,r_encl,fc,pp

Functions:
__init__(self,space,name,vertices,pos,th,area,fc)

__repr__(self)

switch(self,on) """ Turn on or off, i.e., "remove"

update(self)

index(self) """ Returns the index in self.space.bodies

class Body

Swarm Robotics @ Multi-Robot Systems @ MURGCV

• Obstacle, Nest, Food, MoBody
• MoBody: MObstacle, AniBody

(Extra) Data: v, w, vth, v_max, w_max

(Extra) Functions:

teleport(self,pos=None,th=None)

set_vel_max(self,v_max=0,w_max=0)

cmd_vel(self,v='=',w='=',vth='=')

• AniBody: Mobot, Killer, Shepherd
(Extra) Data: souls=[], knows=None

Body subclasses

Swarm Robotics @ Multi-Robot Systems @ MURGCV

Something within a (Ani)Body that controls it:
manipulates its behavior in response to its
environment, possibly using what it knows (*)

Data:
 body,T,time,t0,updates,avgT

 fc,vertices,pp

Functions:
 __init__(self,body,T,fc=None)

 update(self)

class Soul

Swarm Robotics @ Multi-Robot Systems @ MURGCV

GoTo
""" Low-level Soul to go somewhere by several step-by-step cmd_vel's. When
no where to go keepgoing, stop, wander or zigzag. Avoids obstacles

Voronoid
""" Soul of a Voronoi's-based mobile sensor in a network covering a static
region, Cortes2004 like

... Your work

Soul Subclasses

Swarm Robotics @ Multi-Robot Systems @ MURGCV

What a (Ani)Body knows

Data: body, state

Functions:
 __init__(self,body,state='idle')

 set_state(self,state)

 tell_state(self)

Knowledge Subclasses: Your work

class Knowledge

Swarm Robotics @ Multi-Robot Systems @ MURGCV

A meaningless demo of almost everything

(and a pattern for the main code in Your work)

small_worl2d MAIN

KPIs:

• Fraction of surviving Mobots
• Average Mobot update time (s) / Space T

Swarm Robotics @ Multi-Robot Systems @ MURGCV

https://docs.google.com/file/d/1t4z0c2EO9kdQiBm65Pqyr7ia9xlkXUZv/preview

Create exercise modules like following Demo.py,

with your Soul’s, Knowledge’s, etc, and a ## MAIN,

and analyse behavior (KPI’s vs parameters)

Your Work

A Demo
...
from small_worl2d import Space, KPIdata, Obstacle, MoBody,Nest, Mobot, Soul, GoTo, Knowledge

A couple of functions related to quadrants
def qdrnt(body): ...
def cmykdrn(qdrnt): ...

class GoToQdrnd(GoTo):
 """ A specialization of the GoTo Soul that zigzags randomly towards a quadrant destination """
 def __init__(self,body,T,destination=0): ...
 def set_dest(self,destination): ...
 def update(self): ...

Swarm Robotics @ Multi-Robot Systems @ MURGCV

class Nestxists(Knowledge):
 """ A trivial specialization of Knowledge, actually it is just the basic Knowledge
 with an integer state that informs of the integer quadrant were there is a Nest (1:4),
 0 when no Nest known
 """
 def __init__(self,body,state):
 super().__init__(body,state)

class Demo(Soul):
 """ A Soul that makes stay by the Nest known by my own contact or through my contacts """
 def __init__(self,body,T,r=1,rng=np.pi):
 self.r=r
 self.rng=rng # might be smaller than pi, but not too much
 GoToQdrnd(body,T) # requires a GoToQdrnd soul in the same body
 self.GoToQdrnd=body.souls[-1] # this way it knows how to call it
 Nestxists(body) # this Soul needs a Knowledge in its Body to work
 super().__init__(body,T)
 def update(self):
 current=self.body.knows.tell_state()
 if current==0:
 i=self.body.index()
 if self.body.space.incontact(i,Nest):
 current=qdrnt(self.body)
 self.body.knows.set_state(current) # I've been in one!
 else:
 neigh=self.body.space.nearby(i,type(self.body),self.r,self.rng)
 for n in neigh:
 current=n.knows.tell_state()
 if current>0:
 self.body.knows.set_state(current) # If some neigh is aware of Nests, then so I am
 break
 if current>0: # changes color and set destination to quadrant
 self.body.fc=cmykdrn(current) # this is NOT the usual way to show a soul
 self.GoToQdrnd.set_dest(current)
 super().update()

Swarm Robotics @ Multi-Robot Systems @ MURGCV

Swarm Robotics @ Multi-Robot Systems @ MURGCV

MAIN

def init(TS):
 ## Create Data Structures
 name='Demo_'+strftime("%Y%m%d%H%M", localtime())
 global s, p, N
 ## Populate the world
 # two Nests ...
 # many Obstacles ...
 # and N Mobots ...
 i=0
 while i<N:
 new=Mobot(s,'m'+str(i),pos=(uniform(-s.W,s.W),uniform(-s.H,s.H)),...)
 if s.fits(new,room,safe=new.r_encl*5):
 s.bodies.append(new)
 Demo(new,TS/uniform(10,20),r=R)
 i += 1
 # init distances matrix and connections graph
 s.dist=np.zeros((len(s.bodies),len(s.bodies))) # distances between centroids in a np.matrix
 s.update_dist()
 s.update_conn()
 if s.loginfo: ...
 s.update() # first frame
 if s.visual: ...
 t0=time() # reset initial time of space to disregard time "spent before the start"
 s.resetime(t0)
 p.resetime(t0)

Swarm Robotics @ Multi-Robot Systems @ MURGCV

TS=10 # adjust so that the first KPI below is OK
init(TS)
end=False
while not end: # THE loop
 ko=[]
 avgT=0
 count=0
 for b in s.bodies: # movement update
 if isinstance(b,MoBody):
 b.update()
 avgT+=b.avgT
 count+=1
 avgT/=count
 s.update_dist()
 s.update_conn()
 for b in s.bodies: # collision management
 i=b.index()
 if i>=0 and isinstance(b,(Obstacle,Mobot)):
 ko+=s.incontact(i,Mobot)
 s.remobodies(ko,'collision')
 if time()>s.t0+(s.updates+1)*s.T: # graphics refresh (new frame)
 s.update()
 if time()>p.t0+(p.updates+1)*p.T: # KPI's computation
 KPI=[avgT/(s.TS/s.fps),...]
 ...
 p.update(KPI)
 end=ts.has_been_closed() or p.has_been_closed() or ...
else:
 s.close()
 p.close()

Swarm Robotics @ Multi-Robot Systems @ MURGCV

https://docs.google.com/file/d/1y0xLr9KEE04ZZdvowTqPo2_UyKo_ubr1/preview

KPIs:

● Fraction of surviving Mobots
● Fraction of Mobots who know a Nest
● Average Mobot update time (s) / Space T

Swarm Robotics @ Multi-Robot Systems @ MURGCV

Create a Space with two Nest’s in different (random) quadrants, with different areas
(a=1 A=1.1, 2, 5), and N (25, 50, or 100) Mobot’s in random initial positions.

Design a PFSM micro-behavior (Souls and Knowledge) for the Mobot’s such that they
end up aggregating in the large Nest.

The perception range of a Mobot is r=1, rng=𝜋 (omnidirecional). The communication
range between Mobot’s is R, equal to r, 2r, or 4r (omnidirectional).

Besides perceiving other Body’s nearby or incontact (but not their position or size),
these Mobot’s know the quadrant (1 to 4) where they are, and they can remember,
increase, compare or replace (only) a few integer numbers. They can tell them to peers.

The KPI’s must include the fraction of Mobot’s aggregated in the large Nest, over time,
and the fraction of surviving Mobot’s.

Analyse (using simulation replications) the behavior depending on the parameters of
the case (A, N, R) and the tuning of your parameters (probabilities, etc).

(Proper aggregation - be careful with collisions! - within the nest is an extension.)

Exercise 1: PFSM

Swarm Robotics @ Multi-Robot Systems @ MURGCV

A Mobot (PFSM, call it “you”) may have the following states:

1. Knows nothing
2. Knows one Nest
3. Knows the two Nest’s (but is not yet convinced about which is the largest)
4. Is convinced about which Nest is the largest
5. Is resting in the (supposed to be) largest Nest, aggregated with others
6. ...

In each of the states, “you” do different things, particularly moving, often in mode “wander” or
“zigzag”, in the appropriate fashion - probably making use of the GoToQdrnd Soul from Demo.py.
For instance, it does make little sense to wander in a quadrant where there are no Nest’s when
both are already known. Of course, in whichever state, you talk to peers nearby to share
information (in both directions).

The state transitions are often affected by (state dependent) probabilities. Even a Mobot in state 5
should have some (small) probability to change to state 3, and go re-visiting the two Nests.

Besides the fraction of Mobot’s aggregated in the large Nest , the number of Mobot’s in some
states can be useful (insightful) KPI’s, in order to tune the parameters (probabilities, etc).

Exercise 1: Hints/Suggestions

Swarm Robotics @ Multi-Robot Systems @ MURGCV

Exercise 2: Boids (basic)

Program, adjust, and describe a Boid Soul for Mobot’s.

You can (should) adapt the literature proposals, e.g., use scaling factors for
the flocking (steering) vector components, use alternative functions for the
cohesion/repulsion or potential gradient, use or not heading perception, take
or not into account own heading in alignment, make the motion control
magnitude dependent or not, etc, and of course adjust the parameters.

In your report, state complete and clearly your solution, and in case you’ve
tried alternative solutions justify briefly your final choice.

Demonstrate it with a video with N=25 Mobot’s (*).

Evaluate KPI’s (*) wrt. some parameter(s) of your interest (e.g.,
different adjustments of critical control settings, N, etc).

Swarm Robotics @ Multi-Robot Systems @ MURGCV

Basic Boids

Swarm Robotics @ Multi-Robot Systems @ MURGCV

https://docs.google.com/file/d/1yWv_u4cU_BQwGQvEzhulElOpB5UKC0S3/preview

Exercise 2: Boids (extensions)

Extensions:
• Influence of a fraction of informed or Mobot’s who have

a favorite direction (and include accuracy as a KPI)
• Avoidance of Obstacle’s or/and evasion from Killer’s

Off-topic Exercise 2x:
Adapt your algorithm to get something like the behavior in
the following video (I call them Wowid’s, and it requires a
bit of out-of-the-box thinking).

Swarm Robotics @ Multi-Robot Systems @ MURGCV

Swarm Robotics @ Multi-Robot Systems @ MURGCV

Extended Boids

https://docs.google.com/file/d/1yPk6tJ1XYP3GzHx4sNjtGprqPeGoGydB/preview

Wowids

Swarm Robotics @ Multi-Robot Systems @ MURGCV

https://docs.google.com/file/d/1onhqnXWu8IuTdqMlaK_3Nj_cSfHu4kq-/preview

Exercise 3: Voronoids
Program a VoronoiDynamic Soul for Mobot’s with 360°
perception of radius r and high level control period TS,
based on the basic Voronoid Soul

• Compute current target region interpolated between the
previous and next waypoints (*), using a constant
velocity, a fraction of r in one TS

• Estimate next movement (assume equal to last one)
• Compute current Voronoi cell (this is already done)
• GoTo (*) its centroid plus estimated movement
• Update your KPI’s

Swarm Robotics @ Multi-Robot Systems @ MURGCV

Exercise 3: Voronoids

Define an “interesting” mission, several waypoints in a
16x9 SmallWorl2D, and:

• Choose an appropriate r “just enough” for your
waypoints areas and the number of Mobot’s

• Simulate 50 Mobot’s covering the first waypoint, and
then the subsequent ones. Record a movie.

• Evaluate KPI’s (*) from 5 runs with different values of N
(25, 50, 100) and 𝜂 (0.2, 0.4, 0.6).

Swarm Robotics @ Multi-Robot Systems @ MURGCV

