
Multirobot Systems PRACTICAL EXERCISE

Hybrid reciprocal velocity obstacle method (HRVO)

1. GOAL

The goal of this practical session is to work with an implementation of a dynamic
obstacle avoidance algorithm in multirobot systems. After the session you will be able
to define a mutirobot setup with mobile agents and dynamic obstacles to produce free
collision navigation of the robots. In particular, this session is based on the
implementation of the following paper: Jamie Snape, Jur P. van den Berg, Stephen J.
Guy, Dinesh Manocha. The Hybrid Reciprocal Velocity Obstacle. IEEE Trans. Robotics
27(4). 696-706 (2011).

2. METHODOLOGY AND SETUP

Before starting the exercise, read carefully the complete instructions of the practice.
The practical session consists of installing the necessary software to make work the
obstacle avoidance program. It is also required to modify the code to show the
resultant trajectories of the robots and perform optional tasks.

We recommend using the IDE (Integrated Development Environments) of “Visual
Studio Code” (VSCode) to edit the code of this session. Nevertheless, any other text
editor will do. A list of popular environments can be found here:
http://wiki.ros.org/IDEs

If not installed, check appendix (A) for instructions to install VSCode.

The source code used in this session is in C++ and CMake 3.10 or higher is required to
compile the code. Check appendix (B).

3. HYBRID RECIPROCAL VELOCITY OBSTACLE METHOD

The source code of the obstacle avoidance algorithm is available in the repository
GitHub with the corresponding documentation:
https://github.com/snape/HRVO
https://www.jamiesnape.io/HRVO/
https://gamma.cs.unc.edu/HRVO

To install this package follow these commands in a terminal:
>> cd
>> git clone https://github.com/snape/HRVO.git
>> cd HRVO
>> cmake .
>> cmake --build .
Execute the compiled example Circle.cpp
>> ./examples/Circle

Master Program in Robotics, Graphics and Computer Vision
Universidad de Zaragoza 1 / 6

Creative commons Attribution Non-Commercial Share Alike 3.0

http://wiki.ros.org/IDEs
https://github.com/snape/HRVO
https://www.jamiesnape.io/HRVO/
https://gamma.cs.unc.edu/HRVO

Multirobot Systems PRACTICAL EXERCISE

This program Circle.cpp sets a scenario in which 250 agents, initially positioned evenly
distributed on a circle, move to the antipodal position on the circle. In this setup, there
are no obstacles apart from the other agents. The code of this example
(HRVO/examples/Circle.cpp) is explained in appendix (C).

As a result, the evolution of the agents’ coordinates is shown in text in the terminal
screen. This is a lot of numbers. Therefore, there is no graphical interface. In order to
show graphically the results, there are several options: (a) Program in Circle.cpp the
code (C++) to plot the robots along the time in the screen using, for example, OpenCV
drawing functions. (b) Save the results in a text file, and then read the results with any
other program to show them in the screen (Python, Matlab, etc.). (c) Any other
approach you make up.

Some hints for (a) and (b) are given in the appendixes. In particular for (a), appendix
(D) summarizes how to install OpenCV in Ubuntu (in case it is not already installed).
Then, appendix (E) explains some basics about how to use OpenCV to show the
program results. Finally writing the results in a text file (b) for later manipulation in
another environment is tackled in appendix (F).

4. OPTIONAL TASKS

Task H1: Define a set of robots distributed in the border of a square and set their goal
position in the contour of the first letter of your name, in capitals. Run the program
and check the lack of collisions.

Task H2: Define a set of static obstacles in the environment. Run the program and
check the lack of collisions. Increase the number of obstacles to analyze the limits of
the algorithm.

Task H3: Define a set of dynamic obstacles with predefined trajectories. Run the
program and check the lack of collisions. Tune the speed of the dynamic obstacles to
analyze the limits of the algorithm.

Task H4: Simulate the results of the collision avoidance algorithm in ROS + Gazebo
using a robotic platform (for example: turtlesim, turtlebot, etc.).

5. SESSION REPORT

As a result of this practical session, the final developed code will be submitted through
the ADD (https://moodle.unizar.es/add/).

Master Program in Robotics, Graphics and Computer Vision
Universidad de Zaragoza 2 / 6

https://moodle.unizar.es/add/

Multirobot Systems PRACTICAL EXERCISE

Appendix (A) How to install Visual Studio Code (VSCode)

Go to the official web and download the appropriate version of the program:
https://code.visualstudio.com/Download
If you download the .deb file for Ubuntu, run on a terminal the following command
with the file just downloaded:
>> sudo dpkg -i ./code_1.52.1-1608136922_amd64.deb

If it asks for the pip installer, run this command:
>> sudo apt-get install python3-pip
If there is an error with rospy (ImportError: No module named 'yaml') use Python 2.7
instead of Python 3:
>> sudo apt-get install python-pip

Install the Python extension for Visual Studio Code:
https://marketplace.visualstudio.com/items?itemName=ms-python.python
Configuration of Python extension:
https://code.visualstudio.com/docs/python/python-tutorial

Install the C/C++ extension for Visual Studio Code:
https://marketplace.visualstudio.com/items?itemName=ms-vscode.cpptools
Using C++ on Linux in VS Code:
https://code.visualstudio.com/docs/cpp/config-linux

Appendix (B) How to install/update CMake in Ubuntu
Follow these instructions:
(https://cmake.org/cmake/help/latest/guide/tutorial/index.html)
Check the CMake version with:
>> cmake --version
If you are running a version lower than CMake 3.10, you need to install a recent
version. Warning: Do not do remove previous version of CMake if you have Robot
Operating System (ROS) installed, otherwise removing CMake will also remove parts of
your ROS distribution, breaking everything and forcing you to re-install ROS.
Go to the official CMake webpage (http://www.cmake.org/download), then download
and extract the latest version. Update the version and build variables in the following
commands to get the desired version. In particular:
>> version=3.11
>> build=1
>> mkdir ~/temp
>> cd ~/temp
>> wget https://cmake.org/files/v$version/cmake-$version.$build.tar.gz
>> tar -xzvf cmake-$version.$build.tar.gz
>> cd cmake-$version.$build/

 Install the extracted source by running:
>> ./bootstrap

Master Program in Robotics, Graphics and Computer Vision
Universidad de Zaragoza 3 / 6

https://code.visualstudio.com/Download
https://marketplace.visualstudio.com/items?itemName=ms-python.python
https://code.visualstudio.com/docs/python/python-tutorial
https://marketplace.visualstudio.com/items?itemName=ms-vscode.cpptools
https://code.visualstudio.com/docs/cpp/config-linux
https://cmake.org/cmake/help/latest/guide/tutorial/index.html
http://www.cmake.org/download

Multirobot Systems PRACTICAL EXERCISE

>> make -j$(nproc)
>> sudo make install

Since we kept the previous version of cmake at /usr/bin/cmake, running
>> hash -r cmake
forces the shell to re-examine your PATH and find its current location at
/usr/local/bin/cmake

Just test your new cmake version:
>> cmake --version

Appendix (C) Example Circle.cpp

/**
 * \file Circle.cpp
 * \brief Example with 250 agents navigating through a circular environment.
 */

#ifndef HRVO_OUTPUT_TIME_AND_POSITIONS
#define HRVO_OUTPUT_TIME_AND_POSITIONS 1
#endif

#include <cmath>

#if HRVO_OUTPUT_TIME_AND_POSITIONS
#include <iostream>
#endif

#include <HRVO.h>

using namespace hrvo;

const float HRVO_TWO_PI = 6.283185307179586f;

int main()
{
 Simulator simulator;

 simulator.setTimeStep(0.25f);

 //Default parameters to setup each agent. Details of the parameters in:
//https://www.jamiesnape.io/HRVO/classhrvo_1_1_simulator.html#a54848993c608b7df2cfbf0f99ddbd0c5

 simulator.setAgentDefaults(15.0f, 10, 1.5f, 1.5f, 1.0f, 2.0f);

 //This loop creates 250 agents. Maybe it is too much to start with. Reduce the number to, for
example, four. Then, the distribution around the circle should be multiplied for ratio 1/4=0.25 instead
of 1/250=0.004. So, change 0.004f with 0.25f
 for (std::size_t i = 0; i < 250; ++i) {
 const Vector2 position = 200.0f * Vector2(std::cos(0.004f * i * HRVO_TWO_PI),
std::sin(0.004f * i * HRVO_TWO_PI));
 simulator.addAgent(position, simulator.addGoal(-position));

Master Program in Robotics, Graphics and Computer Vision
Universidad de Zaragoza 4 / 6

https://www.jamiesnape.io/HRVO/classhrvo_1_1_simulator.html%23a54848993c608b7df2cfbf0f99ddbd0c5

Multirobot Systems PRACTICAL EXERCISE
 }

 do {
#if HRVO_OUTPUT_TIME_AND_POSITIONS
 //Prints in the terminal the time of each iteration:
 std::cout << simulator.getGlobalTime();

//Prints in the terminal the coordinates (x, y) of each robot of each iteration:
 for (std::size_t i = 0; i < simulator.getNumAgents(); ++i) {
 std::cout << " " << simulator.getAgentPosition(i);
 }

 std::cout << std::endl;
#endif /* HRVO_OUTPUT_TIME_AND_POSITIONS */

 simulator.doStep();
 }
 while (!simulator.haveReachedGoals());

 return 0;
}

Appendix (D) How to install OpenCV in Ubuntu
Follow the instructions in this web:
https://docs.opencv.org/master/d7/d9f/tutorial_linux_install.html
In particular:
Install minimal prerequisites
>> sudo apt update && sudo apt install -y cmake g++ wget unzip
Download and unpack sources
>> wget -O opencv.zip https://github.com/opencv/opencv/archive/master.zip
>> unzip opencv.zip
Create build directory
>> mkdir -p build && cd build
Configure
>> cmake ../opencv-master
Build (this takes some time)
>> cmake --build .

Appendix (E) How to use OpenCV to show the program results
See the examples in this source code to draw shapes with OpenCV:
https://docs.opencv.org/3.4/d3/d96/tutorial_basic_geometric_drawing.html
https://sodocumentation.net/opencv/topic/9749/drawing-shapes--line--circle-------
etc--in-cplusplus

In order to compile the code with the OpenCV functions you inserted in Circle.cpp, you
need to link OpenCV libraries in your program. General instructions are provided here:
https://docs.opencv.org/master/db/df5/tutorial_linux_gcc_cmake.html
In particular, you need to modify the file: /HRVO/examples/CMakeLists.txt
Add the following lines at the beginning of the file:

Master Program in Robotics, Graphics and Computer Vision
Universidad de Zaragoza 5 / 6

https://docs.opencv.org/master/d7/d9f/tutorial_linux_install.html
https://docs.opencv.org/3.4/d3/d96/tutorial_basic_geometric_drawing.html
https://sodocumentation.net/opencv/topic/9749/drawing-shapes--line--circle-------etc--in-cplusplus
https://sodocumentation.net/opencv/topic/9749/drawing-shapes--line--circle-------etc--in-cplusplus
https://docs.opencv.org/master/db/df5/tutorial_linux_gcc_cmake.html

Multirobot Systems PRACTICAL EXERCISE

find_package(OpenCV REQUIRED)
include_directories(${OpenCV_INCLUDE_DIRS})
add_executable(Circle Circle.cpp)

And then, add the term ${OpenCV_LIBS} in line 50 (approximately) such that:
 target_compile_definitions(Circle PRIVATE
 ${HRVO_EXAMPLES_COMPILE_DEFINITIONS})
 target_link_libraries(Circle PRIVATE ${HRVO_LIBRARY} ${OpenCV_LIBS})

Appendix (F) How to write a text file using C++
Some useful code to write the results in a text file:

#include <fstream>

std::ofstream outfile;
outfile.open("result.txt"); // open a file in write mode.

outfile << simulator.getGlobalTime(); // writes time in the file
outfile << " " << simulator.getAgentPosition(i); // writes agent’s i position

outfile << std::endl; // writes an end of line

Master Program in Robotics, Graphics and Computer Vision
Universidad de Zaragoza 6 / 6

