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UNIT 7. CORRELATION AND SIMPLE LINEAR REGRESSION 

In this lesson, we will present the models that describe the relationship between 

two variables. We will first introduce Regression Analysis and Linear Correlation Analysis 

from a descriptive point of view. We will learn how to obtain the regression line using 

least squares minimisation, how to measure the goodness of fit, how to interpret the 

estimations of the parameters and how to predict, distinguishing between interpolation 

and extrapolation.  

We may remember that if two variables show no sign of relationship between them, 

that is, if they are independent, their joint study is uninteresting. Nevertheless, in many 

economic phenomena, due to the many interactions, some kind of association between 

the observed values of two or more characteristics is likely to exist. For example, the 

values of the “savings of a group of employees” are expected to be in some way related 
to the observed values of the employees’ disposable income. Or, in the case of a 

company, for instance, the monthly sales figures will probably be associated with the 

amount of the investment in advertising. Whenever it is possible to predict accurately 
the observed values of a variable in terms of the values adopted by other(s) by means 

of a mathematical function, a special type of dependence called ‘functional’ occurs. 

Whenever, without reaching functional dependence, the data observed show some 

degree of association between them, we say that a statistical dependence between the 
variables exists, and its analysis is the aim of this unit. When analysing the statistical 

dependence, two complementary goals will be addressed: 

1. The quantitative analysis of the intensity of the dependence, that is, the degree 

of association. (To what extent do the observed sales depend on the investment 

in advertising?). This is the goal of Correlation Analysis. 

2. The determination or fit of a function describing the behaviour (the values and 
its variations) of a variable by means of the values of other(s). This objective is 

carried out through Regression Analysis. 

SCATTER PLOT 

In order to visually analyse the type of relationship existing between the two 

variables considered X and Y, one of the most usual graphic representations of a joint 
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frequency distribution is the scatter plot, which is a type of mathematical diagram using 

cartesian coordinates to display values for a set of bivariate data. 

Example: 

 
Figure 1. Scatter plot of the Gross domestic product (GDP) versus the expenditure 

 

These diagrams allow us to see whether there is a relationship between the 

variables, whether this relationship is linear or non-linear, whether it is direct or inverse, 
and the intensity of the relationship.   

 
Linear relationship 

   
Non-linear relationship 

Figure 2. Linear vs. non-linear relationship (both are direct) 
 

 
Direct and linear 

 
No relationship 

 
Inverse and linear 

Figure 3. Direct Linear vs. No relationship vs inverse linear relationship 
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COVARIANCE AND CORRELATION COEFFICIENT 

In order to quantify the intensity of the association some coefficients, known as 

correlation coefficients, are used. They are linked to a key magnitude called Covariance. 

The Covariance is a measure of how much two variables change together (measures the 

growth of both at the same time or the growth of one and decrease of the other). The 

Covariance between two variables is defined as:  

𝑆𝑆𝑋𝑋𝑋𝑋 =
1
𝑁𝑁
�(𝑥𝑥𝑖𝑖 − �̅�𝑥)(𝑦𝑦𝑖𝑖 − 𝑦𝑦�)
𝑁𝑁

𝑖𝑖=1

 

The covariance can be expressed in a shorthand form as: 

𝑆𝑆𝑋𝑋𝑋𝑋 =
1
𝑁𝑁
�𝑥𝑥𝑖𝑖𝑦𝑦𝑖𝑖 − �̅�𝑥𝑦𝑦�
𝑁𝑁

𝑖𝑖=1

 

Interpretation of the Covariance 

The covariance is a measure of the degree of joint variation of two variables in the 

sense that its sign informs about the existence or not of the tendency of the cloud of 

points to be located preferentially in the first and third quadrants (if 𝑆𝑆𝑋𝑋𝑋𝑋 > 0), second 
and fourth (if 𝑆𝑆𝑋𝑋𝑋𝑋 < 0) or in none of them (if 𝑆𝑆𝑋𝑋𝑋𝑋 = 0) in the diagram that takes as its 

origin the centroid of the frequency distribution, (�̅�𝑥,𝑦𝑦�). Thus, the points located in the 

first and third quadrants verify that (𝑥𝑥𝑖𝑖 − �̅�𝑥) × (𝑦𝑦𝑖𝑖 − 𝑦𝑦�) > 0 while those located in the 

second and fourth quadrants (𝑥𝑥𝑖𝑖 − �̅�𝑥) × (𝑦𝑦𝑖𝑖 − 𝑦𝑦�) < 0. 

 

Figure 4. Sign of the covariance terms 
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The covariance calculates the mean of the above products so that if 𝑆𝑆𝑋𝑋𝑋𝑋 > 0 it is 

because the number of pairs (𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖) that verify that (𝑥𝑥𝑖𝑖 − �̅�𝑥) × (𝑦𝑦𝑖𝑖 − 𝑦𝑦�) > 0 is greater 

than those that verify that (𝑥𝑥𝑖𝑖 − �̅�𝑥) × (𝑦𝑦𝑖𝑖 − 𝑦𝑦�) < 0 (see Figure 5a), the opposite being 

true if 𝑆𝑆𝑋𝑋𝑋𝑋 < 0 (see Figure 5b) and both sets being balanced if 𝑆𝑆𝑋𝑋𝑋𝑋~0 (see Figure 5c and 

d). Therefore, if 𝑆𝑆𝑋𝑋𝑋𝑋 > 0 this indicates that the relationship between X and Y is direct, 

i.e. the higher the value of X, the higher the value of Y tends to be (see Figure 5a), while 

if 𝑆𝑆𝑋𝑋𝑋𝑋 < 0 the relationship is inverse, i.e. the higher the value of X, the lower the value 

of Y tends to be (see Figure 5b). If 𝑆𝑆𝑋𝑋𝑋𝑋~0 nothing can be said about the type of 

relationship: it may not exist (see Figure 5c) or it may not be linear (see Figure 5d). 

 
a) 

 
b) 

 
c) 

 
d) 

Figure 5. Scatter plots for variables (X,Y) with 𝑺𝑺𝑿𝑿𝑿𝑿 > 𝟎𝟎 (a), 𝑺𝑺𝑿𝑿𝑿𝑿 < 𝟎𝟎 (b) and 𝑺𝑺𝑿𝑿𝑿𝑿~𝟎𝟎 (c), (d) 

 

0

10

20

30

40

50

60

0 20 40 60 80 100 120 140 160 180
0

10

20

30

40

50

60

40 45 50 55 60 65 70 75 80 85

0

20

40

60

80

100

120

0 10 20 30 40 50 60
0

5

10

15

20

25

30

0 10 20 30 40 50 60



                                                        
 

 5 

Properties of the Covariance 

• The Covariance depends on the units of measurement. 

• The Covariance is invariant for translation transformations but not for scale 

changes. 

 

• The variances of the two variables and the covariance are arranged in a 

matrix known as the Covariance matrix: 

𝑆𝑆 = � 𝑆𝑆𝑋𝑋
2 𝑆𝑆𝑋𝑋𝑋𝑋

𝑆𝑆𝑋𝑋𝑋𝑋 𝑆𝑆𝑋𝑋2
� 

 

Correlation Coefficient 

It is a dimensionless coefficient associated with the covariance. It is used to measure 

the intensity of the association and its direction. 

 
The Pearson’s Linear Correlation Coefficient measures the degree of linear 

association between two quantitative variables, in relative terms, with respect to the 

dispersion of these variables. 

𝑟𝑟𝑋𝑋𝑋𝑋 =
𝑆𝑆𝑋𝑋𝑋𝑋

𝑆𝑆𝑋𝑋 ⋅ 𝑆𝑆𝑋𝑋
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Properties of the Correlation Coefficient 

• Has the same sign as the Covariance 

• It is a dimensionless coefficient 

• Ranges from -1 to 1 

• If a precise (functional) linear relationship between the two variables exists, 

then its value is 1 or -1 

• It is invariant for linear transformations, except for the sign 

 
Example: 
The managers of a multinational company want to analyse the possible relationship 

between the Annual profits (Y) and the Advertising expenditure (X) for a group of 

different products. The values are shown in the following table: 

 
Determine the Linear Correlation Coefficient.  
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Let’s now define a concept related with that of the independence of two variables. 

Definition: X and Y are said to be uncorrelated if 𝑟𝑟𝑥𝑥𝑥𝑥 = 0 (𝑆𝑆𝑥𝑥𝑥𝑥 = 0) 

If two variables X and Y are statistically independent ⇒ X and Y are uncorrelated (𝑟𝑟𝑥𝑥𝑥𝑥 =
0). The opposite is not true: two variables may have a null correlation and still be non-

independent. There are numerical counterexamples that corroborate this. For example, 

in the following figure it can be seen that there may be other associations, of a non-

linear type, which can make the covariance equal to zero. 

 

LINEAR REGRESSION MODEL 

Regression analysis is aimed at describing the relationships between two variables. 

As the values, or more generally, the behaviour of a variable Y is influenced in an 

⇒ Very strong 
direct linear 
relationship 
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unknown way by the values of a second variable X, the regression analysis assesses, 

through an appropriate function, the dependence Y=f(X) and establishes its adequacy. 

As the formal relationship is not usually precise, but just an approximation in which 

other variables of secondary importance are to be omitted, regression models include 

an additional error term, that will reflect the missing factors whose influence on the 

variable is secondary and that, individually, are not relevant. 

The Regression problem consists of obtaining the equation of a curve that goes 

"close" to the points represented in the scatter plot, and which adapts as well as possible 

to the set of these points, fulfilling certain conditions. Regression Analysis is applied in 

two stages: 

• STEP 1: MODEL SELECTION. Decide the kind of function (curve) that best fits the 
data set, that is, that best explains the change in an output or endogenous 

variable (Y) for each value observed of an input or exogenous variable (X). At this 
stage, a scatter plot of the data set is often very helpful, since the pattern of dots 

orientates the choice of the trend line or line of best fit. 

• STEP 2: ESTIMATION OR FITTING. Once the mathematical family of the function 
has been set, the choice of the function in the family closest to the observed 
point has to be made.  

In short, a criterion must be established to determine the best values for the 

function coefficients or parameters. Formally, a General Regression Model is 

represented by an equation: 

 

For 𝑓𝑓(𝑋𝑋) = 𝑎𝑎 + 𝑏𝑏𝑋𝑋, a and b constants. The linear regression model is expressed 

as: 𝑌𝑌 = 𝑎𝑎 + 𝑏𝑏𝑋𝑋 + 𝑒𝑒 
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 Parameter b is the slope of the line, also called Regression Coefficient. Its value 

represents the change in the dependent variable for every unit change in the 

explanatory variable. For this reason, in the field of economics it is identified with 

the so-called Marginal Propensity. 

 Parameter a is the y-intercept and represents the value of the dependent 

variable when the explanatory variable is set to zero. 

  

Estimation of the linear regression model 

The goal is to estimate, based on the data set, the values of the unknown 

coefficients a and b of the model that best fit the points. In the first place, it is useful to 

use an intuitive approach in order to set some fitting criteria. For that purpose, the 

scatter plot is used. If the dependence was accurate, the observed data would lie along 

a straight line. In general, the data are not aligned; they are arranged as a cloud of dots. 

In such a case, we must look at the straight line as a “formal” approach, and the fitting 

problem as the choice of the “nearest” line to the data set. 
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In order to measure the closeness of the line to the scatter plot, for each observed 

value of the variable X, xi, we must take into account two values of Y: 

• the observed value yi 

• The estimated value given by the expression 𝒚𝒚�𝒊𝒊 = 𝒂𝒂 + 𝒃𝒃𝒙𝒙𝒊𝒊 

 

The difference between the observed and the estimated value is the residual or 

error 𝑒𝑒𝑖𝑖 = 𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖              

Their values take into account the fluctuations of the values of the variable Y that 

are not explained by its relationship with the variable X. 

It seems reasonable to estimate the unknown constants in a way that they provide 
the smaller overall residuals. 

Global measures for the size of the errors or residuals  

• The first synthesis strategy would be the sum, or the average: 𝑆𝑆𝑆𝑆𝑒𝑒𝑆𝑆 =
∑ 𝑒𝑒𝑖𝑖 = ∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)𝑁𝑁

𝑖𝑖=1
𝑁𝑁
𝑖𝑖=1 . The weak point of this approach is that when making 

the sum of all positive and negative residuals, the total sum yields a wrong 
synthesis about the closeness. 

• A second alternative synthesis strategy would be to measure the intensity of the 

residuals, without a sign (absolute value): 𝑆𝑆𝑆𝑆𝑆𝑆𝑒𝑒𝑆𝑆 = ∑ |𝑒𝑒𝑖𝑖| = ∑ |(𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)|𝑁𝑁
𝑖𝑖=1

𝑁𝑁
𝑖𝑖=1 . 

Now, the weak point is the difficulty to do algebraic calculations, in particular 

derivatives. 

• The synthesis measure that overcomes the disadvantages of the previous ones 

is based on the sum –or the average- of the squared residuals:        
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The fit of the regression line on the basis of the MSE consists of the determination 

of the fit which minimizes the mean squared error, giving rise to the most common 

criterion, called Method of least squares.  

Getting the best fit using the method of least squares becomes a mathematical 

problem: 

 

Differentiating with respect to each of the two parameters a and b, and setting 
to zero the resulting expressions in order to find the critical points, a system of two 

equations is obtained: 

 

The resolution of this system of equations provides the values of a and b. 

Formally, these values are given by:  

 

The regression line of Y on X may also be expressed by the point-slope equation: 
𝑌𝑌 − 𝑦𝑦� =

𝑆𝑆𝑋𝑋𝑋𝑋
𝑆𝑆𝑋𝑋2

(𝑋𝑋 − �̅�𝑥) 

From the above expression, it is easy to see that the equation is satisfied for the 

point (�̅�𝑥,𝑦𝑦�).  
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Interchanging the roles of the variables and carrying out the same procedure, we 

obtain the equation of the regression line of X on Y: 𝑿𝑿 = 𝑎𝑎𝑋𝑋|𝑋𝑋 + 𝑏𝑏𝑋𝑋|𝑋𝑋𝑿𝑿 

𝑎𝑎𝑋𝑋/𝑋𝑋 = �̄�𝑥 − 𝑏𝑏𝑋𝑋/𝑋𝑋�̄�𝑦 

𝑏𝑏𝑋𝑋|𝑋𝑋 =
𝑆𝑆𝑋𝑋𝑋𝑋
𝑆𝑆𝑋𝑋2

 

bX/Y  – Regression coefficient of X on Y 

Alternatively, the regression line of X on Y may be expressed by the point-slope 

equation: 

𝑋𝑋 − �̄�𝑥 =
𝑆𝑆𝑋𝑋𝑋𝑋
𝑆𝑆𝑋𝑋2

(𝑌𝑌 − �̄�𝑦) 

From the above expression, it is easy to see that the equation is also satisfied for 

the point (�̅�𝑥,𝑦𝑦�), i.e., both regression lines intersect at the centroid. 

Properties of the regression coefficients 

• Given the regression line Y = a + b X, If the regression coefficient b is positive, 
the scatter plot is arranged so that the values of Y increase when the values 

of X increase. In this case, it can be observed that the linear dependency of 

the variables X and Y is direct. If the regression coefficient b is negative, the 
scatter plot is arranged so that the values of Y decrease when the values of 

X increase.  This is a case of inverse linear dependency. The regression 

coefficient b is invariant for translation transformations but not for scale 

changes.  

  

Figure 6. Sign of the linear dependence of X and Y 

• The sign of b coincides with the sign of the covariance, 𝑆𝑆𝑋𝑋𝑋𝑋:  
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Properties of the linear regression model 

• Both regression lines intersect at the centroid (�̅�𝑥,𝑦𝑦�) 

• The average of the residuals obtained by the least squares method is zero: 

 

• The average of the theoretical values given by the linear model equals the 

average value of the dependent variable. That is to say, on average, the 

prediction equals the average value of the dependent variable. 

 

GOODNESS OF FIT 

We have estimated a linear regression model, and new questions arise: Does it fit 

the data well? Does it describe the relationship between X and Y? Can it be used to 

predict? Once a regression model has been estimated, it is necessary to evaluate how 

well it fits the data, that is, how well it describes the dependency between the data. This 

is known as Goodness of fit. To evaluate it, a numerical measure of the proximity 

between the model and the data is needed. The measurements that quantify the 

goodness of fit are based on the values of the residuals or errors. When the residuals 

are generally small, the fit will be good, and the regression line will be reasonably 

representative. However, how can we measure the overall size of the residuals? In the 

following, we will present some of the measures that exist to quantify this intensity. 

Residual Variance and Coefficient of Determination R2 

The overall size of the residuals is approximated by averaging their squares -without 

a sign. This is called Residual Variance. It is a key measure to evaluate the degree of 

goodness of fit. 

𝑆𝑆𝑟𝑟𝑌𝑌
2 =

1
𝑁𝑁
�𝑒𝑒𝑖𝑖2 =

1
𝑁𝑁
�(𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2
𝑁𝑁

𝑖𝑖=1

𝑁𝑁

𝑖𝑖=1
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The lower (higher) the residual variance, the better (worse) the fit, and the closer 

(further) the predictions to the observations. The main drawback is that the magnitude 

of the residual variance depends on the magnitude of the data and on the units of 

measurement. 

To express the goodness of fit in relative terms, the coefficient of determination (R2) 

is defined: 

𝑆𝑆2 = 1 −
𝑆𝑆𝑟𝑟𝑌𝑌
2

𝑆𝑆𝑋𝑋2
 

 

The amount 1 − 𝑆𝑆2 =
𝑆𝑆𝑟𝑟𝑌𝑌
2

𝑆𝑆𝑌𝑌
2  gives the proportion of the residual variance (not 

explained by the regression model) with respect to the variance of the endogenous 

variable.  

R2 can also be expressed as: 𝑆𝑆2 = 1 − 𝑆𝑆𝑟𝑟𝑌𝑌
2

𝑆𝑆𝑌𝑌
2 = 𝑆𝑆𝑌𝑌

2−𝑆𝑆𝑟𝑟𝑌𝑌
2

𝑆𝑆𝑌𝑌
2  =

𝑆𝑆𝑒𝑒𝑒𝑒𝑒𝑒𝑌𝑌
2

𝑆𝑆𝑌𝑌
2  

where the numerator is called Explained variance: 𝑆𝑆𝑒𝑒𝑥𝑥𝑒𝑒𝑋𝑋2 =  𝑆𝑆𝑋𝑋2 − 𝑆𝑆𝑟𝑟𝑋𝑋2  

This explained variance can be calculated as:  

𝑆𝑆exp𝑋𝑋2 =  
1
𝑁𝑁
��𝑦𝑦𝑗𝑗 − �̄�𝑦�

2
−

1
𝑁𝑁
��𝑦𝑦𝑗𝑗 − 𝑦𝑦�𝑗𝑗�

2
=

1
𝑁𝑁
��𝑦𝑦�𝑗𝑗 − �̄�𝑦�

2
 

From the previous expression, 𝑆𝑆2 =
𝑆𝑆exp𝑌𝑌
2

𝑆𝑆𝑌𝑌
2   which represents the percentage of the 

variation in Y explained by the regression.  

The coefficient of determination is invariant for linear transformations.  

In the linear regression model, the explained variance equals the variance of the 

estimated values: 𝑆𝑆exp𝑋𝑋2 = 𝑆𝑆𝑋𝑋�
2. 
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Linear coefficient of determination 

In the specific case of linear regression, the coefficient of determination takes a 

particular expression. By combining the formulas that give the least squares regression 

line and the definition of the coefficient of determination, the Linear Coefficient of 

Determination is obtained: 

𝑆𝑆2 = 𝑟𝑟2 =  
𝑆𝑆𝑋𝑋𝑋𝑋2

𝑆𝑆𝑋𝑋2𝑆𝑆𝑋𝑋2
 

It can be appreciated that the Linear Coefficient of Determination is the square of 

the Linear Correlation Coefficient, previously defined as: 

𝑟𝑟 =
𝑆𝑆𝑋𝑋𝑋𝑋
𝑆𝑆𝑋𝑋𝑆𝑆𝑋𝑋

 

NOTE: Correlation does not imply causation. The presence of a strong association or 

linear correlation between two variables does not guarantee the existence of a causal 

connection between them. A spurious relationship is a situation in which two or more 

variables are statistically related but no causal link between them exists (no logical 

connection). In most cases, there is a third variable that explains both. Some examples 

are: 

 Height and incomes of people. 

 Number of single aunts and level of calcium in bone. 

 Ice cream sales and number of people fainting in a town. 

 

PREDICTION 

In a large number of applications of regression, the ultimate goal is Prediction. Once 

the regression model has been fitted, the value of the endogenous variable for a specific 

value of the explanatory variable is approximated through the equation of the 

regression model. The resulting value is known as Prediction. 

Thus, to predict the value of Y given a value 𝑋𝑋=𝑥𝑥ℎ of the explanatory variable, it is 

enough to substitute it into the model equation 𝑌𝑌=(𝑋𝑋). 

𝑦𝑦�ℎ = 𝑓𝑓(𝑥𝑥ℎ) 



                                                        
 

 16 

In the specific case of linear regression: 

𝑦𝑦�ℎ = 𝑎𝑎𝑥𝑥|𝑥𝑥 + 𝑏𝑏𝑥𝑥|𝑥𝑥𝑥𝑥ℎ  

If the value xh for which the model is used falls within the range of observed values 

of the variable X, it is said that the prediction is an interpolation. When the value of 

interest lies outside the range of observed values the prediction is said to be an 

extrapolation.  

Analogously, when we want to predict values of the variable X, we consider the 

regression line of X on Y. This prediction of X for a specific value yh of the variable Y 

would be obtained by simply substituting the value yh in the equation of the line. That is 

to say: 

𝑥𝑥�ℎ = 𝑎𝑎𝑥𝑥|𝑥𝑥 + 𝑏𝑏𝑥𝑥|𝑥𝑥𝑦𝑦ℎ  

When extrapolating, it is important to keep in mind that the reliability of the prediction 

will be lower, as the linearity of the relationship between X and Y may not exist outside 

the range of the observed values. To sum up: 

𝐼𝐼𝑓𝑓 𝑡𝑡ℎ𝑒𝑒 𝑓𝑓𝑓𝑓𝑡𝑡 𝑓𝑓𝑆𝑆 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑎𝑎𝑎𝑎𝑔𝑔 𝑓𝑓𝑡𝑡 𝑓𝑓𝑆𝑆 𝑎𝑎𝑎𝑎 𝑓𝑓𝑎𝑎𝑡𝑡𝑒𝑒𝑟𝑟𝑖𝑖𝑔𝑔𝑖𝑖𝑎𝑎𝑡𝑡𝑓𝑓𝑔𝑔𝑎𝑎 ⇒𝑹𝑹𝑹𝑹𝑹𝑹𝒊𝒊𝒂𝒂𝒃𝒃𝑹𝑹𝑹𝑹 𝑖𝑖𝑟𝑟𝑒𝑒𝑔𝑔𝑓𝑓𝑝𝑝𝑡𝑡𝑓𝑓𝑔𝑔𝑎𝑎 
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