
Nombre: RESOLUCIÓN PRUEBA 4, 2021-22, versión 32

Prueba corta 4. Curso 2021_22

Dado el dipolo de la figura, que se encuentra en régimen estacionario, y sabiendo que N_1 y N_2 constituyen un transformador ideal, determinar la tensión entre sus terminales, $u_{AB}(t)$, cuando éstos se encuentran a circuito abierto. (10 ptos)

Datos: R = 6 Ω , C = 5 mF, $e_a(t) = 10\sqrt{2}\cos(50t + \pi/2)$ V, N₁ = 1000, N₂= 250, α = 5.

la unica fuente @ pulsa a w=50 rod/s -> no es recesario aplicar superposición => fasores en RES a w=50 rod/s.

Ecuaciones del transformador

U1 = - N1 = -1000 = -4
$$\Rightarrow$$
 U1 = -4 Uz

referencias + U1 s y U2 (signo negativo porque los terminales e cambian de polaridad)

=> Elimino U. e Ia de las ecuaciones de mallas

$$I_{b}-j_{10}-j_{10}-2U_{2}=0$$

$$I_{b}=-\frac{5}{41}+\frac{45}{41}=\frac{1,104}{5\sqrt{41}}=\frac{96,34^{\circ}}{5\sqrt{41}}$$

=>
$$U_{AB} = 6I_{b} = -\frac{30}{41} + \frac{270}{41} = \frac{30}{41} = \frac{30}{41} \frac{270}{41} = \frac{30}{41} = \frac{3$$

Fundamentos de Electrotecnia

$$U_{AB}(t) = \frac{60}{\sqrt{41}} \cos(50t + 1,68.14)$$

 $U_{AB}(t) = 9,37 \cos(50t + 1,68.15)$

Centro Universitario de la Defensa Zaragoza