Open In Colab

Licencia Creative Commons
<span xmlns:dct="http://purl.org/dc/terms/" property="dct:title"></span> The following notes written by <span xmlns:cc="http://creativecommons.org/ns#" property="cc:attributionName">Sergio Gutiérrez Rodrigo (sergut@unizar.es) </span>. Distributed under License Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional

Departamento de Física Aplicada
Universidad de Zaragoza
Instituto de Nanociencia y Materiales de Aragón (INMA)
C/ Pedro Cerbuna, 12, 50009, Zaragoza, España

Óptica - Tema 1 - Fraunhofer Diffraction: rectangular aperture


Diffraction by an aperture (numerical)

For $r_p,r_s \gg \lambda \Longrightarrow$ $E_{cP}=\dfrac{\imath k A}{4\pi} \int_\sigma \dfrac{e^{-\imath k (r_p+r_s)}}{r_p r_s} \left( \cos(\theta)+\sin(\chi)\right ) d\sigma$

image.png

Fraunhofer diffraction by an aperture (numerical)

For $l_p,l_s \gg \text{aperture dimensions} \Longrightarrow$ $E_{cP}=cte \int_\sigma e^{-\imath k [(\alpha_s-\alpha_p)\xi+(\beta_s-\beta_p)\eta]} d\sigma$

image.png

Fraunhofer diffraction (analytic)

image.png

image.png

Parameters (geometry)

Infrarrojo lejano con abertura rectangular

Diffraction pattern at $\varphi=0$ (both analytic and numerical)

Plot static figure (both analytic and numerical)

Location of diffraction maxima

Maxima at $U_M/\pi \iff \tan(U_M)=U_M$

Plot dynamic figure (analytic)

2D diffraction pattern (analytic)