{"nbformat":4,"nbformat_minor":0,"metadata":{"colab":{"provenance":[],"toc_visible":true,"authorship_tag":"ABX9TyMTDZUMGINdFvyYyH4QmLqx"},"kernelspec":{"name":"python3","display_name":"Python 3"},"language_info":{"name":"python"},"widgets":{"application/vnd.jupyter.widget-state+json":{"c51731aedf554344a4a459c70fc9919b":{"model_module":"@jupyter-widgets/controls","model_name":"VBoxModel","model_module_version":"1.5.0","state":{"_dom_classes":["widget-interact"],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"VBoxModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"VBoxView","box_style":"","children":["IPY_MODEL_805876fe8cea484da63154b27c5087a1","IPY_MODEL_2823bf1a78564208b517871dc3c46835","IPY_MODEL_ba8ebe06151a4031a710388bf358d282","IPY_MODEL_baca085711f542168968114fa642ba9e","IPY_MODEL_2dfa71874dec43949c852ee6b2c82731","IPY_MODEL_49a6d5bef049473eba66a8f4e77ac63a","IPY_MODEL_8f3d4939637b4d6da58f09fac2630fc2","IPY_MODEL_e2436f6649574ccc9882af327032f829","IPY_MODEL_dc0bda8d629c4e02a6db4e2620000f37"],"layout":"IPY_MODEL_663402ce22894caabfd4bb0692032b43"}},"805876fe8cea484da63154b27c5087a1":{"model_module":"@jupyter-widgets/controls","model_name":"FloatSliderModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"FloatSliderModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"FloatSliderView","continuous_update":true,"description":"yp","description_tooltip":null,"disabled":false,"layout":"IPY_MODEL_ce602f26c89740d18f02f74901ff0174","max":1e-9,"min":1e-9,"orientation":"horizontal","readout":true,"readout_format":".3f","step":0,"style":"IPY_MODEL_50a9631cc8af41acb9eefa76dd323a00","value":1e-9}},"2823bf1a78564208b517871dc3c46835":{"model_module":"@jupyter-widgets/controls","model_name":"FloatSliderModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"FloatSliderModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"FloatSliderView","continuous_update":true,"description":"P","description_tooltip":null,"disabled":false,"layout":"IPY_MODEL_ebbce7ace3e646ee919d435722506319","max":0.1,"min":0.001,"orientation":"horizontal","readout":true,"readout_format":".3f","step":0.001,"style":"IPY_MODEL_5705a299262347d2b147eacd16078641","value":0.01}},"ba8ebe06151a4031a710388bf358d282":{"model_module":"@jupyter-widgets/controls","model_name":"FloatSliderModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"FloatSliderModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"FloatSliderView","continuous_update":true,"description":"a","description_tooltip":null,"disabled":false,"layout":"IPY_MODEL_22a44308751f403dbb2e5b1cdb4c4340","max":0.0001,"min":0.0000010000000000000002,"orientation":"horizontal","readout":true,"readout_format":".3f","step":0.0000010000000000000002,"style":"IPY_MODEL_246a0349dc5a41dba6810bc5aa892da7","value":0.00001}},"baca085711f542168968114fa642ba9e":{"model_module":"@jupyter-widgets/controls","model_name":"FloatSliderModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"FloatSliderModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"FloatSliderView","continuous_update":true,"description":"d","description_tooltip":null,"disabled":false,"layout":"IPY_MODEL_ad71fbd1c0d84e29ad89bedfe8cf06d9","max":0.0001,"min":0.0000010000000000000002,"orientation":"horizontal","readout":true,"readout_format":".3f","step":0.0000010000000000000002,"style":"IPY_MODEL_8665cd93eda94e9f94e0d8db446e38a2","value":0.00002}},"2dfa71874dec43949c852ee6b2c82731":{"model_module":"@jupyter-widgets/controls","model_name":"FloatSliderModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"FloatSliderModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"FloatSliderView","continuous_update":true,"description":"N","description_tooltip":null,"disabled":false,"layout":"IPY_MODEL_64d395e3366d477c87426d2af543dce4","max":15,"min":1,"orientation":"horizontal","readout":true,"readout_format":".3f","step":1,"style":"IPY_MODEL_f0f6814a19f945f1984606291cba6c3e","value":3}},"49a6d5bef049473eba66a8f4e77ac63a":{"model_module":"@jupyter-widgets/controls","model_name":"FloatSliderModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"FloatSliderModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"FloatSliderView","continuous_update":true,"description":"lambda_nm","description_tooltip":null,"disabled":false,"layout":"IPY_MODEL_9e3a3f13ccea4989813c67f8972fd99c","max":1800,"min":300,"orientation":"horizontal","readout":true,"readout_format":".3f","step":60,"style":"IPY_MODEL_428ce04ec5224496a90025c8dda9df9f","value":600}},"8f3d4939637b4d6da58f09fac2630fc2":{"model_module":"@jupyter-widgets/controls","model_name":"FloatSliderModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"FloatSliderModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"FloatSliderView","continuous_update":true,"description":"x scale","description_tooltip":null,"disabled":false,"layout":"IPY_MODEL_5a211ecbbba44ca09d06db97efac8f5c","max":0.003,"min":0,"orientation":"horizontal","readout":true,"readout_format":".3f","step":0.000030000000000000004,"style":"IPY_MODEL_02ba8ede78d8409a9f8220c5082423c1","value":0}},"e2436f6649574ccc9882af327032f829":{"model_module":"@jupyter-widgets/controls","model_name":"FloatSliderModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"FloatSliderModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"FloatSliderView","continuous_update":true,"description":"y scale","description_tooltip":null,"disabled":false,"layout":"IPY_MODEL_f83f4b8a33e64bb1a413872e6a463391","max":5,"min":0.01,"orientation":"horizontal","readout":true,"readout_format":".3f","step":0.5,"style":"IPY_MODEL_930779ea26d9482babc2875ba14b6e5a","value":1}},"dc0bda8d629c4e02a6db4e2620000f37":{"model_module":"@jupyter-widgets/output","model_name":"OutputModel","model_module_version":"1.0.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/output","_model_module_version":"1.0.0","_model_name":"OutputModel","_view_count":null,"_view_module":"@jupyter-widgets/output","_view_module_version":"1.0.0","_view_name":"OutputView","layout":"IPY_MODEL_74d2c8a324664807a60f25460b269b68","msg_id":"","outputs":[{"output_type":"stream","name":"stdout","text":["{'yp': 1e-09, 'P': 0.01, 'a': 1e-05, 'd': 2e-05, 'N': 3.0, 'lambda_nm': 600.0}\n","1st Min. Difraction at lambda/2a= 0.030000000000000002\n","1st Máx. Interference at lambda/2d= 0.015000000000000001\n","gamma (width)= 0.01\n"]},{"output_type":"display_data","data":{"text/plain":"
","image/png":"iVBORw0KGgoAAAANSUhEUgAAArMAAAIUCAYAAAAJ/qRNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACQTUlEQVR4nO3deZwT5f0H8M9Mjr1gd4GF5RBYBOQWkEs8KgqC1Wpb9Vdv0XrUqypYr1bFo1ZrVWw9SrVYtNV6tR4tVMVVVBRZbrnvc2EPYO/sZpOZ5/dHNsmGvZLsTJ6Z7Of9ei0k2WTmm53kyTfPPM/3UYQQAkRERERENqTKDoCIiIiIKF5MZomIiIjItpjMEhEREZFtMZklIiIiIttiMktEREREtsVkloiIiIhsi8ksEREREdkWk1kiIiIisi0ms0RERERkW0xmiYiIiMi2pCazX331Fc4//3z07t0biqLggw8+aPMxS5YswUknnYSUlBQMGjQICxYsMD1OIiIiIrImqclsTU0NRo8ejRdffDGq++/evRvnnXcezjzzTKxduxZ33nknrr/+enzyyScmR0pEREREVqQIIYTsIABAURS8//77+MlPftLife69914sXLgQGzZsCN126aWXory8HB9//HECoiQiIiIiK3HKDiAWy5Ytw7Rp0yJumzFjBu68884WH+P1euH1ekPXdV3H0aNH0a1bNyiKYlaoRERERBQnIQSqqqrQu3dvqGrrAwlslcwWFRUhNzc34rbc3FxUVlaitrYWaWlpTR7zxBNP4JFHHklUiERERERkkP379+O4445r9T62Smbjcf/992P27Nmh6xUVFejXrx92796Nzp07S4yMmuPz+fDFF1/gzDPPhMvlkh1Ouzkuvxzam2/KDsMQyXZskoH69EA4oAMARMM/ihK4rE97DPqYK2WGRw2S7b3Ddo0SoaqqCgMGDIgqV7NVMtuzZ08UFxdH3FZcXIzMzMxme2UBICUlBSkpKU1u79q1KzIzM02Jk+Ln8/mQnp6Obt26JUfDctttQLdusqMwRNIdG5vbf9SD49wCiqJAAPC4uiHddwShwVPfPAZMvUNihBSUdO8dtmuUAMHjEc2QUFvVmZ08eTLy8/Mjblu8eDEmT54sKSKiNvh8siOgJFX95syI65+NnIu6nBMRnNIrdL72yCRs18hipCaz1dXVWLt2LdauXQsgUHpr7dq12LdvH4DAEIGrr746dP+bbroJu3btwj333IMtW7bgpZdewjvvvINZs2bJCJ+obayDTCYZevjT0JAC0XMMAMD5i8+Bxp0YK+bLCI2SHds1shipyezKlSsxduxYjB07FgAwe/ZsjB07Fg899BAA4NChQ6HEFgAGDBiAhQsXYvHixRg9ejSeeeYZ/PWvf8WMGTOkxE9EJMPB8tqGQbIB2nWfNbmPAgCfPJCwmIiIZJE6ZnbKlClorcxtc6t7TZkyBWvWrDExKiIDvfqq7AgoCe3/9AX0arh87Giy8uMvQPbOjwK9tn5Pk98TtRvbNbIYW42ZJbKd3/9edgSUhMZs/gNCcyKc6RG/y7rydQhmsGQmtmtkMUxmicy0davsCCgJuURgIRgBADN+G/E7VVUie2M5bpaMxnaNLIbJLJGZBg2SHQElmWPHy2LCdU3u41dTAXDcLJmE7RpZDJNZIjM9wESCjLVqb1nockujCQ5MfCBcosvvMT8o6ljYrpHFMJklMtM118iOgJKMuqrR5Bu1+SLvvabeAq0h1RUKm3kyGNs1shi2ckRENjJ135+gBrtk3Z2avU+qywFVCXTNKkJPUGRERHIwmSUy01VXyY6AkogQAm40mvw19cEW78tJYGQatmtkMUxmicyUnt72fYiiVFRZBz1Yd0tRm538FbSjxzkQgpPAyARs18himMwSmekvf5EdASWRLYeqoCK64QPFZ78YLnrASWBkJLZrZDFMZomIbGLToUr4g812C5O/gob16gw/HAAA0cZ9iYjsjMkskZleekl2BJREJq6+Gy409Mi2MPkrqFunFASXCWt50XCiOLBdI4thMktkJp6OIwONq/oCitL25K8gJ/wAAEX3mRsYdSxs18himMwSmWndOtkRUJLQdQG/CDTZQnW1OvkryK+khq+wogEZhe0aWQyTWSIz9e0rOwJKEgcrakOXW1r561grhtwFnRUNyGhs18himMwSmekPf5AdASWJ3Ydr4IQGIPphA/VjrwlfYUUDMgrbNbIYJrNEZrr0UtkRUJLYfbgm6koGQYO6d2JFAzIe2zWyGCazREQ20HXTP+CMspJBUO/stEbJrNOs0IiIpGIyS2Smn/1MdgSUJKYcmAdVAQSUqCoZAIBDVaAEy3MJFugig7BdI4thMktkpl69ZEdAScIh6gEAuiMlqkoGQQ25LHTmsmQUtmtkMUxmicz0xz/KjoCSgNevwSEaasYKLabHCjUFAODU64D3ok+CiVrEdo0shsksEZHF7T9aG3Mlg6B1Q26HCJbn2vAv44MjIpKMySyRmebOlR0BJYH9ZZ5QJQMlxqoEdaNnwheqgsBJYGQAtmtkMUxmicz0z3/KjoCSwIGyWmgNVQngiC2Z7dc1PfRYEeNjiZrFdo0shskskZkKCmRHQEmg+5Z/IAUNwwscKTE9tk+XtEAFBLCiARmE7RpZDJNZIjP16CE7AkoCp+/7c8xluYJSnI5weS4zgqOOh+0aWQyTWSIz/eUvsiOgJODQA2W5NDW2slxBDdW5IFifi4zAdo0shskskZl++lPZEVASCKagiqq0er+WaA3luRy6F1gx36CoqMNiu0YWw2SWiMjCauu10FjX+FJZYPmAW6ALQIEA8h8zLjgiIgtgMktkph//WHYEZHOF5Z5AEgqExr7GqnzEVfCioZKB5jUqNOqo2K6RxTCZJTLTkCGyIyCb219WG7ocb89sr6w0Y4IhAtiukeUwmSUy01NPyY6AbO5Ao2Q2Xr2zU0OXOQWM2o3tGlkMk1kiIgtrT43ZoNzMVNaaJaKkxWSWyExPPik7ArK59tSYDUp1sdYsGYjtGlkMk1kiMy1cKDsCsjmtIfv0uTLjqjEb5FMCE8A01W1EWNSRsV0ji2EyS2Smr7+WHQHZ3HfKGGhCQdVxZ7RrO5vTJ0ITCg50nWxQZNRhsV0ji2EyS2SmzEzZEZCN6brARG01HIpA9sGv2rWtIfWb4FAE8oo+5cIJ1D5s18himMwSmekf/5AdAdnYUU89UhBYylbV6tu1re8H/By6AFToXDiB2oftGlkMk1kiM114oewIyMaKKupCl+NcLyGkbPiVXDiBjMF2jSyGySyRmfx+2RGQjRVX1rV9pyj1zubCCWQQtmtkMUxmicw0Y4bsCMjGDlUYl8z2ymq0cALrc1F7sF0ji2EyS2SmiRNlR0A2lrvtjXYvmBDaVuOFE1htltqD7RpZDJNZIjM9xok2FL9x+xdAVQAdatwLJgS5HCp8SqDGrN7OxJg6OLZrZDFMZomILGqLa3igNmzvc9q1YELQGvc4aEJBaY/TDIiOiMgamMwSmenhh2VHQDY20rMCDkWg1+FvDNneeF+gZm2XQ+2rWUsdHNs1shgms0Rm+saYJIQ6JqcIjJd16O2rMRukqoExs25/FRdOoPixXSOLYTJLZKbFi2VHQDZV4/UDDRO1FLSzyGyDZf1vaVg4QXDhBIof2zWyGCazRGZK4UQbik9RZR2UYDJrTC6L4iFXcOEEaj+2a2QxTGaJzPTuu7IjIJsqqqhDfTDxNKj6QI/OKeFtOpmQUJzYrpHFMJklMtPll8uOgGyqqKIOBfoQaFCBQVMN2WZuZioK9CHwQwUGGrNN6oDYrpHFOGUHQJTUqqtlR0A2VVrtxTR1KxzQgZ35hmyzR2YK+qlb4YQOsSPfoJG41OGwXSOLYc8skZnOOEN2BGRTfXf+E53hCVwxaMGubhluuOAPbNJv3FK51MGwXSOLYTJLZKbp02VHQDY15cA8qAoCS9C2c/WvIKdDhaIEl7QlihPbNbIYJrNEZvrNb2RHQDalN2SbPlemIat/BfmUwAQwXXUbtk3qYNiukcUwmSUisqACx1hoQkFFnx8Yut1NaROgCQWF3U41dLtERLIwmSUy0333yY6AbGqcP7D0bNdDXxu63SG+TXAoAv0OfcxVwCg+bNfIYpjMEplpwwbZEZANef0a3CKwhK1i8OIGq/pe27AKmM5VwCg+bNfIYpjMEpnpv/+VHQHZ0JHqevgaKicqzlRDt110wuWoQnrgCmtzUTzYrpHFMJklIrKY0ipvaHEDxaAFE4KCCydoXDiBiJIEF00gMtNHH8mOgGyotMqLiQ2LGxi1YEJQTic3jg8uxrDD2G1TB8F2jSyGPbNEZrr2WtkRkA2VVnvhhi9wxW/smNmcTimhbQuDx+NSB8F2jSyGySyRmY4ckR0B2VBplRf1CNSDhSPF0G3ndEqBFw01Zh2sNUtxYLtGFsNklshMkyfLjoBsKG/3WwCAWmemYat/BaW5HVgqRkMTCmr6TjF029RBsF0ji2EyS2Smiy+WHQHZ0FkH/4IsxQNVgaGrfwWdrn4PhyKQsneJ4dumDoDtGlkMk1kiM911l+wIyIaceqDGrEOrN2X7KQ1jZhV/nSnbpyTHdo0shsksEZHFeBvGywqDa8wG+dXAWFnN4PG4REQyMJklMtPs2bIjIJsRQuBr/URoQoG3/xRT9rE9cxI0oWB31smmbJ+SHNs1shgms0Rm2rdPdgRkMzX1Gk5T1sKhCGTs/9KUfRxfuwEORWDw4cXAivmm7IOSGNs1shgms0Rmeu892RGQzZRWeUOrzJq12uzmgddBE0pg4YSlc03aCyUttmtkMUxmiYgs5HC1N7zcrMFL2QYdGXoVPtfHBPbRd5Ip+yAiShQuZ0tkpnfekR0B2cyRai8mB5ebNXgp26CcTm4M5ZK2FC+2a2Qx7JklMtOsWbIjIJs5UlNv2lK2QTmdw0vagkvaUqzYrpHFMJklMlNhoewIyGaOVNebtpRtUE5GSmgfguW5KFZs18himMwSmWnsWNkRkM0cv+dtAECtw/ilbIMy05z4SoyBJhR4TCr/RUmM7RpZDJNZIjNdZ/xSpJTcziychyzFA8WkpWwBQFEU/CC4pO2eL0zZByUxtmtkMUxmicx0222yIyCb0UXgf1UxqzBXQHDzQghT90NJiO0aWQyTWSIiC1nhHAtNKCjv/QNT97MxbQI0oeBgzqmm7oeIyGxMZonMdMstsiMgmxnnWw2HItC16GtT93Ni3Uo4FIEeJUtN3Q8lIbZrZDFMZonMVFEhOwKyEV0X0BtO+5s7yCA8jIGjDChmbNfIYpjMEpnpjTdkR0A2Ulnnw3J9GPzCvNW/glYNug0VIj0wZnbFfFP3RUmG7RpZDJNZIiKLOFJTj8nqJjgVHY5dn5u6r5IhVwAAMvQqIP8xU/dFRGQmJrNEZvr732VHQDZytKY+fMXk0/9dMtzhK2aPaaDkwnaNLEZ6Mvviiy8iLy8PqampmDRpEgoKClq9/3PPPYchQ4YgLS0Nffv2xaxZs1BXV5egaIliNGeO7AjIRo5U16NAHwIN5g8z6JbhRoE+BH6owEBz90VJhu0aWYzUZPbtt9/G7NmzMWfOHKxevRqjR4/GjBkzUFJS0uz933zzTdx3332YM2cONm/ejPnz5+Ptt9/Gr3/96wRHThSlXbtkR0A2cqTGi4nqVjigAzvzTd1Xl3Q3Jqpb4YQOscPcfVGSYbtGFiM1mX322Wdxww034Nprr8Xw4cMxb948pKen49VXX232/t9++y1OPfVUXH755cjLy8P06dNx2WWXtdmbSyTNsGGyIyAbOVqduGEG3Tq5ITi+gOLBdo0sxilrx/X19Vi1ahXuv//+0G2qqmLatGlYtmxZs4855ZRT8I9//AMFBQWYOHEidu3ahUWLFuGqq65qcT9erxderzd0vbKyEgDg8/ng8/kMejZklOAxSZpj88tfAknyXJLu2FhQ/91vAQBqHZlwT/k19Cj/1vEcGycE8sVonItl8Bx3OlJ5XE2TdO8dtmuUALG1Z5IcPnwYmqYhNzc34vbc3Fxs2bKl2cdcfvnlOHz4ME477TQIIeD3+3HTTTe1OszgiSeewCOPPNLk9k8//RTp6entexJkmsWLF8sOwRATH38cBb/5jewwDJUsx8aKzjrwZ3RWPKjRM/Df4lxg0aKYHh/rsTlDWQeHIuDclY9FMe6LYpcs7x22a5QIHo8n6vtKS2bjsWTJEvzud7/DSy+9hEmTJmHHjh2444478Nhjj+HBBx9s9jH3338/Zs+eHbpeWVmJvn37Yvr06cjMzExU6BQln8+HxYsX4+yzz4bL5ZIdTrs5XnkF5557ruwwDJFsx8aK6taqgACcTkdMr5t4j03tWgUQgMPpTJrXqRUl23uH7RolQvBMejSkJbM5OTlwOBwoLi6OuL24uBg9e/Zs9jEPPvggrrrqKlx//fUAgFGjRqGmpgY33ngjfvOb30BVmw4BTklJQUpKSpPbXS4XX7gWljTH5/rroSbD82gkaY6NBX3tHIsz6r9Gee8zkBvH3zjWY7MibQIm1SxBUc6p6Mdjarqkee+wXaMEiOV4SJsA5na7MW7cOOTnh2fR6rqO/Px8TJ48udnHeDyeJgmrw+EAgMAqNkRENjbOtxoORaBb0dcJ2d/oupVwKAI9SpYmZH9ERGaQWs1g9uzZeOWVV/Daa69h8+bNuPnmm1FTU4Nrr70WAHD11VdHTBA7//zz8ec//xlvvfUWdu/ejcWLF+PBBx/E+eefH0pqiSylhcocRMcSQkBv+FKeqBoDiqI07DtBO6TkwHaNLEbqmNlLLrkEpaWleOihh1BUVIQxY8bg448/Dk0K27dvX0RP7AMPPABFUfDAAw+gsLAQ3bt3x/nnn4/HH39c1lMgIjJEZa0fy/VhmKauhmLygglBywfcgpO2/wkuAFgxH5hwXUL2S0RkJOkTwG677Tbcdtttzf5uyZIlEdedTifmzJmDOVx9hOzilVdkR0A2caTGi8nqJjgVHdj1eUL2WTjocpy0/U9I1yqB/MeYzFJ02K6RxUhfzpYoqT37rOwIyCaO1iRuwYSgbhnu8BWun0DRYrtGFsNklshMmzfLjoBs4nB1PQr0IdCgAgkaZtAlwx3e58DE7JOSANs1shgms0RmOv542RGQTRytqcdEdSsc0IGd+W0/wADdMtzhfe5IzD4pCbBdI4thMktkpmZWnyNqztGa8LLbiRpm0KXRMAMWNKCosV0ji2EyS2Smq66SHQHZxIA9bwMAah2ZwNTmVzQ0WnaaC1/po+AXCrx5UxKyT0oCbNfIYpjMEhFZwORDryNL8cDvzEhYVQGnQ8U4x044FQHHgYKE7JOIyGhMZonMdMUVsiMgm9jqGg5NKDjabWxC97vZOQyaUFCec1JC90s2xnaNLIbJLJGZsrJkR0A2MbI2sLRsr8PfJHS/E7S1cCgCWYVfJXS/ZGNs18himMwSmemll2RHQDYRXso2sQVf1YbdcQIYRY3tGlkMk1kiIgv4BqOhCQW1/aYkdL/bO0+CJhTsyT45ofslIjIKk1kiM73wguwIyAb8mo5TROB0f6cDSxK67+NrN8ChCAwuXQysmJ/QfZNNsV0ji2EyS2Sm+UwOqG0VtT4okDPMYP2An0MTClTowNK5Cd032RTbNbIYJrNEZlqzRnYEZANlHh8K9CHwQ4WSoKVsg4pPuAKf62MCS9r2nZTQfZNNsV0ji3HKDoAoqfXpIzsCsoFyTz1GqXvghA7sX57QfXft5MYwdU9gSdsE75tsiu0aWQx7ZonMNJenbaltR2vqsV7Pk9I72jXdjfV6HvzsmaVosV0ji2EyS2Smn/1MdgRkA+UeHyaqWwO9ozvzE7rvLuluTFS3BnqFdyR232RTbNfIYpjMEhFJVuapD19JcMHX7AyXrF0TERmCySyRmS6+WHYEZAP9d78NAPA4MoGpDyZ0351TnPhSHw2/UFDXf0pC9002xXaNLIbJLJGZ+vWTHQHZwKTCBchSPPA704EJ1yV034qiYLxjB5yKgLOwIKH7Jptiu0YWw2SWyEzPPis7ArKBbe4R0ISCw13GStn/ZudQaEJBec5JUvZPNsN2jSyGySwRkWTDPSvgUASOO/KtlP1P0AKrj2UVfiVl/0RE7cFklshMzzwjOwKyASEaVv9SErv6V5DasFtOAKOosF0ji2EyS2Sm996THQHZwLfKaGhCgafvGVL2v63TJGhCwd7sk6Xsn2yG7RpZDJNZIjMtWyY7ArI4IQRO1gOn+Tsf+FJKDMfXbYBDERhUuhhYMV9KDGQjbNfIYpjMEpmpWzfZEZDFVXn9CJ7glzXMYG3/a6EJBSp0YClXd6I2sF0ji2EyS2Smv/1NdgRkceU1PqzQh8AvVCiDpkqJoXDQZfhcHyNlOV2yIbZrZDFMZonMdMEFsiMgizvqqccodQ+cig7sXy4lhi7pboxS9wSW05UUA9kI2zWyGCazREQSlXnqsUHPk9ormp3uwnrJMRARxYvJLJGZfvQj2RGQxZV76jFScq8oe2YpJmzXyGKYzBKZaeRI2RGQxZXV+KT3imanu/C9PgB+oUKwZ5bawnaNLIbJLJGZnnxSdgRkcX13/RNnqWul98xOVLfCqegQOz6TEgPZCNs1shgms0REEo3fvwAORUCHCpw2S0oMqS5H6LLgMmBEZDNMZonM9PjjsiMgi9uROgKaULA7dzow4TppcSxXT4ImFFT2+YG0GMgm2K6RxTCZJTLTp5/KjoAsLs8TWH2rV+X3UuMYgy1wKAJpRSulxkE2wHaNLIbJLJGZvpSzPCnZxwZ1KDShoKr7SVLj2JES6CE+3GWM1DjIBtiukcUwmSUyU6dOsiMgizvJtxoORaBb8VKpcYyuXwWHIpAjOQ6yAbZrZDFMZonM9OabsiMgi9MbZlwpkuNQlUAEnP9FbWK7RhbDZJbITP/3f7IjIAur82n4Vh8Ov1ChDzxLaixL+92MCpEeqGawYr7UWMji2K6RxTCZJTKT1ys7ArKwMk89TlJ3wKnocBaukBrL3gGXohYpSNcqgaVzpcZCFsd2jSyGySyRmc4+W3YEZGFHa+qxUc+DHyoUyStvZae7pK9ERjbBdo0shskskZlOPVV2BGRhFbU+TFC3wgkd2JkvNZbshlXAHNCBHXJjIYtju0YWw2SWyEwPPyw7ArKwCo8vfEXyzKsu6a7wFdmz0cja2K6RxTCZJSKSpLzWhxX6kMCp/UFTpcaSne5GgT4EfqjAQLmxEBHFgskskZkefFB2BGRh5R4fRqp7Aqf29y+XGkt2ugsj1b1wQoeQHAtZHNs1shgms0RmKiiQHQFZ2IA9byMNXngcmcBps6TGkp3mwkp9MPxChbfXeKmxkMWxXSOLYTJLZKZPPpEdAVnYpMIFyFI88DvTgQnXSY3F6VAxzrETTkWHQ3KZMLI4tmtkMUxmiczkdMqOgCxse8oIaELB4S5jZIcCANioDoMmFFTmnCQ7FLIytmtkMUxmicz073/LjoAsbFjNCjgUgeOOLJMdCgBgklgLhyLQ+cCXskMhK2O7RhbDZJbITFdeKTsCsjDRUI7LKpWwgh8IkquEkdWxXSOLYTJLZKbKStkRkIV9p46BJhRU9T1DdigAgK2dJkATCvZ3nSw7FLIytmtkMUxmicx0+umyIyALG6FthkMRyCxdLTsUAMDAuk1wKALdy9bKDoWsjO0aWQyTWSIznXee7AjIonyajjX6QPiFCr3PRNnhAABW9b0GFSIdLs0DrJgvOxyyKrZrZDFMZonMdN99siMgi6qo9WGcug1ORYfrkDVKYe0feClqkYJ0rRJYOld2OGRVbNfIYpjMEhFJUO7xYYOeBz9UKH0nyQ4HAJCV7sJ6PS+wvK5FYiIiaguLxRGZ6Z57ZEdAFlVRW4+J6lY4oQM782WHAwDITnPjJHVrYHndHdaIiSyI7RpZDHtmicy0davsCMiiKmp94SsWqYWVmeYKX7FKvTCyHrZrZDFMZonM9OGHsiMgiyr3+FCgDwmc0h80VXY4AIDsdBcK9CHwQwUGWiMmsiC2a2QxTGaJiCQo9/gwSt0TOKW/f7nscAAA2WkujFT3wgkdwiIxERG1hckskZnef192BGRR/Xa9hTR44XFkAqfNkh0OgMAwg5X6YPiFivpeE2SHQ1bFdo0shskskZl+8QvZEZBFjT+wAFmKBz5HOjDhOtnhAABcDhUnqTvhVHSohQWywyGrYrtGFsNklshMJSWyIyCL2pkyHJpQUNpljOxQImx0DAsssdv9JNmhkFWxXSOLYTJLZKaJ1ljZiaynv2cDHIpAr8p1skOJMFpshUMRSC9aKTsUsiq2a2QxTGaJzHTZZbIjIIva5Az0gFbmWKsHdEdqoMf4sMV6jMlC2K6RxTCZJTLTLGtM7CHrGeNdBYcikFO8VHYoEUZbNC6yELZrZDFMZomIJNAb/lcVa61OEIzHIus4EBG1ickskZnuuEN2BGRBQgh8rY2EXyiozztTdjgRvup7MypEOoQAsGK+7HDIitiukcUwmSUy06FDsiMgC6r2+jFO3QanIpB6yFoTrXbnXYJapCBdqwSWzpUdDlkR2zWyGCazRGZ65x3ZEZAFlXt82Kj3h1+oUPpNkh1OhOx0F9breYFldvtaKzayCLZrZDFMZomIEqyiNrCUrVOxzlK2QVlpLssts0tE1Boms0Rmeust2RGQBZV7fJbt/cxOY88stYHtGlkMk1kiM919t+wIyIIqan2YqG4N9H7uzJcdToSsdFc4th3Wio0sgu0aWQyTWSIz7d8vOwKyoPLa+vAVi9XAykpzhS4La1UNI6tgu0YWw2SWyEyjR8uOgCyoz45/AgBq1Exg6oOSo4mUne7GN/oI+IUKbcBZssMhK2K7RhbDZJbITL/4hewIyILG7v0bshQPfM50YMJ1ssOJkOF2YLS6G05Fh8IJYNQctmtkMUxmicx0yy2yIyAL2pU2EppQUJxlvR4uRVHwvTIEmlBQnTtOdjhkRWzXyGKcsgMgIupo+tWsh0MR6FP1vexQmjVW2QYHrLegAxFRc9gzS2Qmno6jZmx2DoMmFJTnnCQ7lGZtcw+HJhQc6TpGdihkRWzXyGJi6pndvHkz3nrrLXz99dfYu3cvPB4PunfvjrFjx2LGjBm46KKLkJKSYlasRPbj8ciOgCxosHcjHIpAztE1skNp1nD/ZjgUgazDq2WHQlbEdo0sJqqe2dWrV2PatGkYO3Ysli5dikmTJuHOO+/EY489hiuvvBJCCPzmN79B79698fvf/x5er9fsuIns4e9/lx0BWdA6ZSg0oaC253jZoTRrb8YoaELBwUzrjeklC2C7RhYTVc/sRRddhLvvvhvvvfcesrOzW7zfsmXL8Mc//hHPPPMMfv3rXxsVIxFRUpmorYFDEcgs/Ep2KM0aWBfoOR5Y/CmwYr7lKi4QETUWVTK7bds2uFyuNu83efJkTJ48GT6fr92BESWFBQtkR0AW4/VrEA0rJSgWXZRg1XHXYMrO38Oh6MDSuUxmKRLbNbKYqIYZRJPItuf+REnrt7+VHQFZTEWtDyv0IfALFRg4TXY4zdp7/KX4XB8DDSrQd5LscMhq2K6RxRhWzWDlypX46qvYT5m9+OKLyMvLQ2pqKiZNmoSCgoJW719eXo5bb70VvXr1QkpKCk444QQsWrQo3rCJzLVjh+wIyGIqPD6c2LAogXrAmosSZKe7MErdAwd0gAsn0LHYrpHFGFZn9qqrrsK2bdugaVrUj3n77bcxe/ZszJs3D5MmTcJzzz2HGTNmYOvWrejRo0eT+9fX1+Pss89Gjx498N5776FPnz7Yu3dvq+N4iaQaMkR2BGQx5bU+7NHz0N1RAYdFez2z011Yb/EYSSK2a2QxhiWz+fn5MY+VffbZZ3HDDTfg2muvBQDMmzcPCxcuxKuvvor77ruvyf1fffVVHD16FN9++21oKENeXl67Yycyzb33yo6ALKbC47N8r2dWmgt9LB4jScR2jSzGsGS2d+/eMd2/vr4eq1atwv333x+6TVVVTJs2DcuWLWv2MR999BEmT56MW2+9FR9++CG6d++Oyy+/HPfeey8cDkezj/F6vRGlwiorKwEAPp+PE9UsKHhMkuXYOK65Btr778sOwxDJdmxkOVJdG+r1VPpMgGbA39PoY5PhUrFez0OOowKqQTF2ZMn23mG7RokQyzGJO5ktKSlBSUkJdF2PuP3EE0+M6vGHDx+GpmnIzc2NuD03Nxdbtmxp9jG7du3C559/jiuuuAKLFi3Cjh07cMstt8Dn82HOnDnNPuaJJ57AI4880uT2Tz/9FOnp6VHFSom3ePFi2SEYYmJJCQqSbEx3shwbWZYdVHBfQ6+nZ/uXWGzg68OoY1PlA6aqe+A0IcaOLFneO2zXKBE8MSzOEXMyu2rVKsycORObN2+GEMHyMgqEEFAUJaYxs7HSdR09evTAyy+/DIfDgXHjxqGwsBB/+MMfWkxm77//fsyePTt0vbKyEn379sX06dORmZlpWqwUH5/Ph8WLF+Pss89OiqoYiteLc889V3YYhki2YyNL2htPIQ1eeByZSJl6H84d1/7Xh9HHxqfp+HzdCThHXQH1+NOT5jUsS7K9d9iuUSIEz6RHI+Zk9uc//zlOOOEEzJ8/H7m5uVDiLJSYk5MDh8OB4uLiiNuLi4vRs2fPZh/Tq1cvuFyuiCEFw4YNQ1FREerr6+F2u5s8JiUlpdkldl0uF1+4FpY0xyctDUiG59FI0hwbSSYWvo4sxYMKZ0+kn3wjmh8gFR+jjo3LBYxVd8Kp6MDBlXDyeBsiad47bNcoAWI5HjGX5tq1axeeeuopTJo0CXl5eejfv3/ET7TcbjfGjRuH/Pz80G26riM/Px+TJ09u9jGnnnoqduzYETG0Ydu2bejVq1eziSyRdK+8IjsCspgdqcOhCQWl2WNkh9KqjY5h0ISCqu4nyQ6FrIbtGllMzMns1KlTsW7dOkN2Pnv2bLzyyit47bXXsHnzZtx8882oqakJVTe4+uqrIyaI3XzzzTh69CjuuOMObNu2DQsXLsTvfvc73HrrrYbEQ0RktqHVK+BQBPoebX6iq1WcrK+FQxHotP9L2aEQEbUq5mEGf/3rXzFz5kxs2LABI0eObNINfMEFF0S9rUsuuQSlpaV46KGHUFRUhDFjxuDjjz8OTQrbt28fVDWcb/ft2xeffPIJZs2ahRNPPBF9+vTBHXfcgXtZJoSsat482RGQxQTPK1l0JdsQRQEg0LDwLlEjbNfIYmJOZpctW4ZvvvkG//vf/5r8Lp4JYLfddhtuu+22Zn+3ZMmSJrdNnjwZ3333XUz7IJLmhReA3/1OdhRkIQXqGJzpX4qq485AN9nBtGJz+gSMq/4CB7pNxvGygyFrYbtGFhPzMINf/vKXuPLKK3Ho0CHouh7xY2YlAyJb2rBBdgRkMcO1zXAoApmlq2SH0qrB9RvhUARyytbKDoWshu0aWUzMyeyRI0cwa9asJvVhiagZMUyKpOSn6wIrtUHwCwX+4ybKDqdVy/vMRIVIh9PvAVbMlx0OWQnbNbKYmJPZCy+8EF988YUZsRAlH56Ko0aqvH6MV7fBqQikHlopO5xW7cq7BLVIQbpWCSydKzscshK2a2QxMY+ZPeGEE3D//fdj6dKlGDVqVJMJYLfffrthwRHZ3hVXAB99JDsKsogKjw9b9f7ooZbD2XeS7HBalZ3mDi2767B4rJRgbNfIYuKqZtCpUyd8+eWX+PLLyJItiqIwmSUiakF5bT1GqXsCixHsXy47nFZlpbkwqmHZXavHSkQdW0zJrBACS5YsQY8ePZCWlmZWTETJ47LLZEdAFlLu8aHYJr2d2eku9sxS89iukcXENGZWCIHBgwfjwIEDZsVDlFy6Wbn4EiVaRa0PE9Wtgd7OnfltP0CirDRXONYd1o6VEoztGllMTMmsqqoYPHgwjhw5YlY8RMnlhRdkR0AWUl7rC1+x+GoEWWmN5kNYfYUHSiy2a2QxMVczePLJJ3H33XdjA+vMERHFpMJTjwJ9CDSowKCpssNpVXa6C9/qI+AXKrQBZ8kOh4ioRTFPALv66qvh8XgwevRouN3uJmNnjx49alhwRLb3pz/JjoAspNzjs82kqk4pTpyo7oZT0aFZPFZKMLZrZDExJ7PPPfecCWEQJanXXwceekh2FGQRwwrfQxq8qHNmIvW0WbLDaZWiKPheGYKe4giqc8cjS3ZAZB1s18hiYk5mZ86caUYcRMlppbUL41NinVH6D2QpHlQ7ewETrpMdTpvGKtvggEDqoRWyQyErYbtGFhNzMgsAmqbhgw8+wObNmwEAI0aMwAUXXACHw2FocES216uX7AjIQrY4h2GyrwQVOSehk+xgorDVPRzd677C0a5jwFcyhbBdI4uJOZndsWMHzj33XBQWFmLIkCEAgCeeeAJ9+/bFwoULMXDgQMODJLItzvqlRgZ7N8KhCHQrWys7lKiM8G+GQxHIPLxadihkJWzXyGJirmZw++23Y+DAgdi/fz9Wr16N1atXY9++fRgwYABX/yI61kUXyY6ALGQNhkATCmpzx8kOJSp700dCEwoOZY6WHQpZCds1spiYe2a//PJLfPfdd+jatWvotm7duuHJJ5/EqaeeamhwRETJZJS+BQ5FoHOpPXo6B9ZtgkMR6G6TnmQi6phi7plNSUlBVVVVk9urq6vhdrsNCYooafz0p7IjIIuo82lYqx8Pv1Ch950oO5yorOx7DSpEOlyaB1gxX3Y4ZBVs18hiYk5mf/SjH+HGG2/E8uXLIYSAEALfffcdbrrpJlxwwQVmxEhkXxxDTg0qan04Td0Ap6LDtfsL2eFEZe/xlwIA0rVKIP8xydGQZbBdI4uJOZn905/+hIEDB2Ly5MlITU1FamoqTj31VAwaNAh//OMfzYiRyL6eflp2BGQR5Z7wUraKxZeyDcrmkrbUHLZrZDExj5nNzs7Ghx9+iO3bt2PLli0AgGHDhmHQoEGGB0dElCwqan3Ypw/BWY51cFh8Kdug7HQXCoIxD7RHzETU8cRVZxYABg8ejMGDBxsZC1Hyeeop2RGQRZR76nGiTZayDcpKc+E4m8VMCcB2jSwm5mRW0zQsWLAA+fn5KCkpga7rEb///PPPDQuOyPY+/BAYOlR2FGQBFbU+rNfz0N1RAUffSbLDiUp2ugvr9TzkOCrgtEnMlABs18hiYk5m77jjDixYsADnnXceRo4cCUXhQCqiFn3zjewIyCIqan043Wa9nFlpboxU98AJHWL/cg6bpQC2a2QxMSezb731Ft555x2ce+65ZsRDlFy6dJEdAVlEsGe2h6MCqk16ObPSXPhUPwHnqCug95oAFl8kAGzXyHJirmbgdrs52YsoWq+9JjsCsohyjw+j1D1QbdQz63aqGKvuhFPRoRYWyA6HrILtGllMzMnsXXfdhT/+8Y8Qwia1ZYhk+slPZEdAFjHy0HtIgxd1zkzgtFmyw4naRscwaEJBVfeTZIdCVsF2jSwm5mEGS5cuxRdffIH//e9/GDFiBFwuV8Tv//3vfxsWHJHtHTNBkjquqYffQJbiQY2rNzDhOtnhRG20CCzBm1a0UnYoZBVs18hi4qoz+1MuZUcUHY4tpwYbncNwmr8UlTknIUN2MDHYnjICObVf4nDXsThOdjBkDWzXyGJiTmb/9re/mREHUXIaO1Z2BGQRY7yr4FAEuhcvlR1KTMbUB+LOKfpadihkFWzXyGJiHjNLRDF4/HHZEZBFCATmGditmiHLL1ITbNfIYqJKZs855xx89913bd6vqqoKv//97/Hiiy+2OzAiomSh6wJfaaPgFwrq886UHU5Mvu57EypEOnQBYMV82eEQETUR1TCD//u//8NFF12ErKwsnH/++Rg/fjx69+6N1NRUlJWVYdOmTVi6dCkWLVqE8847D3/4wx/MjpvIHh59VHYEZAFVXj/Gq9vgVAQch+w1kWpX3iUYs/sVZGllwNK5tpq8RiZhu0YWE1Uye9111+HKK6/Eu+++i7fffhsvv/wyKioqAAROQQ0fPhwzZszAihUrMGzYMFMDJrKVJUuAMWNkR0GSVdb6sEXvjx5qOZz97LFgQlBWmst2y/CSydiukcVEPQEsJSUFV155Ja688koAQEVFBWpra9GtW7cm5bmIqMHnnwN33ik7CpIsuGCCU7HPgglB2WlujLLZMrxkMrZrZDFxTwDLyspCz549mcgStSYtTXYEZAHBpWw1qIDNejez013YYNPYySRs18hiYi7NRUQxePtt2RGQBZTX1mO8TXs3s9JcGGjT2MkkbNfIYliai8hMl1wiOwKyADv3zAbHzPqF/WInk7BdI4thMktkptpa2RGQBQTHzNqxdzM73YUR6l44FR1in71iJ5OwXSOLYTJLZKazzpIdAVlAZUPPrG7DntlOKU6s1IfALxTU9RovOxyyArZrZDExJ7MzZ87EV199ZUYsRMlnyhTZEZAFDDnwLs5S10K1Yc+soij4gWM9nIqAe88XssMhK2C7RhYTczJbUVGBadOmYfDgwfjd736HwsJCM+IiSg4PPSQ7ArKAM0r+AYciAj2zp82SHU7Mgh8UuhBS4yCLYLtGFhNzMvvBBx+gsLAQN998M95++23k5eXhhz/8Id577z34fD4zYiQisrXNzmHQhIKDx/3QlitorUkZB00oOJx7muxQiIiaiGvMbPfu3TF79mysW7cOy5cvx6BBg3DVVVehd+/emDVrFrZv3250nET29JvfyI6ALGCwdxMcikDO0TWyQ4nLCP9mOBSBzMOrZYdCVsB2jSymXRPADh06hMWLF2Px4sVwOBw499xzsX79egwfPhxz5841KkYi+1pjz+SFjLVOGQJNKKjtac8JVHvTR0ITCg5ljpYdClkB2zWymJiTWZ/Ph3/961/40Y9+hP79++Pdd9/FnXfeiYMHD+K1117DZ599hnfeeQePPvqoGfES2cuiRbIjIAsYoQV6NjuX2rNnc2BdoGe5e9la2aGQFbBdI4uJeQWwXr16Qdd1XHbZZSgoKMCYMWOa3OfMM89Edna2AeER2ZzK6ncdnU/TsUYfiFz1KPQ+E2WHE5eVfa/BhJ1/gkvzACvm23LcLxmI7RpZTMyvyLlz5+LgwYN48cUXm01kASA7Oxu7d+9ub2xE9vfBB7IjIMkqan0Yp26DU9HhOrRCdjhx2Xf8pahFCtK1SmAph5B1eGzXyGJiTma/+OKLZqsW1NTU4Oc//7khQREljZkzZUdAkpV7fNig58EPFYrNFkwICi5pa8fleMkEbNfIYmJOZl977TXUNrOUXW1tLV5//XVDgiJKGmVlsiMgySpqA0vZOm24YEJQdrrLtsvxkgnYrpHFRD1mtrKyEkIICCFQVVWF1NTU0O80TcOiRYvQo0cPU4Iksq1TT5UdAUlWUVuPo3oeujsq4LBpr2Z2ugsbbP4cyEBs18hiok5ms7OzoSgKFEXBCSec0OT3iqLgkUceMTQ4Itv78Y9lR0CSVdT6cJa6NdCruTNfdjhxyUpzYVDwOeyw53MgA7FdI4uJOpn94osvIITAWWedhX/961/o2rVr6Hdutxv9+/dH7969TQmSyLbuuQf46CPZUZBE5Z5GcwxsuhpsVpo7dFkAUOSFQlbAdo0sJupk9owzzgAA7N69G/369YOisDkjImpLuceHAn0IznKsg2PQVNnhxCUrzYVP9VE4R10BPe9MuNt+CBFRwkSVzH7//fcYOXIkVFVFRUUF1q9f3+J9TzzxRMOCI7K9X/1KdgQkWXACmJ0nT7mdKsaqO+FUdPgLC2SHQ7KxXSOLiSqZHTNmDIqKitCjRw+MGTMGiqJAiKbnyxRFgaZphgdJZFs7dwI/+IHsKEiiEQffQxq8qHNmIvW0WbLDidtGxzD01JaiqvtJ6CI7GJKL7RpZTFTJ7O7du9G9e/fQZSKK0vvvA9deKzsKkujM0n8gS/GgxtXL1itnjRZb4VAE0opWyg6FZGO7RhYTVTLbv3//Zi8TEVHrNjmH4VR/KSpyTkKG7GDaYUfKcOTUluJw17E4TnYwRESNxLVowsKFC0PX77nnHmRnZ+OUU07B3r17DQ2OyPb+9S/ZEZBkJ9RvgkMR6Hp0rexQ2mWofzMcikD24dWyQyHZ2K6RxcSczP7ud79DWloaAGDZsmV44YUX8NRTTyEnJwezZtl3PBiRKW67TXYEJNlanABNKPD2Gi87lHbZlzEKmlBQ2JmTfDs8tmtkMVGX5grav38/Bg0aBAD44IMPcPHFF+PGG2/EqaeeiilTphgdH5G9HTokOwKSSAiBk/W1cCgCnfd/KTucdjm+dgMcisDg0sXAivm2Hv9L7cR2jSwm5p7ZTp064ciRIwCATz/9FGeffTYAIDU1FbW1tcZGR2R34+3dG0ft46nXEFopwea1udf2vxaaUKBCB5bOlR0OycR2jSwm5mT27LPPxvXXX4/rr78e27Ztw7nnngsA2LhxI/Ly8oyOj8jerr5adgQkUUWtDyv0IfALFYpNF0wIKhx0Ob7Qx0CDCvSdJDsckontGllMzMnsiy++iMmTJ6O0tBT/+te/0K1bNwDAqlWrcNlllxkeIJGt3X677AhIonJPYMEEp6JDsemCCUHZ6S6MtPniD2QQtmtkMTGPmc3OzsYLL7zQ5PZHHnnEkICIiJJFRa0PhXoeujsq4LB5b2ZWmgsbkuS5EFFyiTmZBYDy8nIUFBSgpKQEuq6HblcUBVdddZVhwRHZHmf9dmgVtfUYkyS9mVlpLgxMkudC7cR2jSwm5mT2P//5D6644gpUV1cjMzMTSqNJDUxmiY7RMFmSOqaKWh/WJ0lvZna6C+v1POSoFXDa/LlQO7FdI4uJeczsXXfdhZ///Oeorq5GeXk5ysrKQj9Hjx41I0Yi+/rnP2VHQBIFx8wmQ29mVpoLI9S9cCo6xD57PxdqJ7ZrZDExJ7OFhYW4/fbbkZ6ebkY8RERJI9gzqydBBYBOKU6s1IfALxTU2XwBCCJKLjEnszNmzMDKlSvNiIUo+bzxhuwISKIT9r+Ls9S1gdqsNu+ZVRQFP3Csh1MRcO/5QnY4JBPbNbKYmMfMnnfeebj77ruxadMmjBo1Ci6XK+L3F1xwgWHBEdner38NPP+87ChIktOL/w6HIqBDhXqa/Zf7DvZ+6ELAITUSkortGllMzMnsDTfcAAB49NFHm/xOURRomtb+qIiSxd69siMgiba4huNkXwkKjzsH/ZJg+de1KeNwat1XKM09Db1lB0PysF0ji4k5mW1ciouI2jBypOwISKJB3o1wKALdy9bKDsUQw/2b4VAEsg6vlh0KycR2jSwm5jGzjdXV1RkVB1FyYj3GDu17DIEmFHhyk2PC1N70kdCEgkOZo2WHQjKxXSOLiTmZ1TQNjz32GPr06YNOnTph165dAIAHH3wQ8+fPNzxAIlu76SbZEZBEI/RAT2ZmaXL0ZA70bkqqnmaKE9s1spiYk9nHH38cCxYswFNPPQW32x26feTIkfjrX/9qaHBEyWbfEQ/eX3MAS7aWwOvn+PJkpukCq7SB8AsF2nETZIdjiFXHXYMKkQ6X5gFWsPMimR0o8+CDNYX4fEsx2yqyvJjHzL7++ut4+eWXMXXqVNzU6NvZ6NGjsWXLFkODI7K9hgmTfk2H9tue6Kt70Tf4OwUQAJTzngWSYHIQRaqs9WG8uh1ORcBxKDnKGe49/lKM2PkXZGllwNK5fN0mISEE6n7bD338legTvDHYVo28GLh4fqhdI7KKuBZNGDRoUJPbdV2Hz+czJCiipOHzQQgB7+P94Na9UBSEfxD4EQtns5crCVXU+rBB7w+/UKHYfMGEoOx0FzboedCSYBEIal7tY32R6q9svq3a8F6greJnPVlMzMns8OHD8fXXXze5/b333sPYsWMNCYooaSxYgKPPnYp0rQqKEr5ZNPwAwYT2LgnBkZnKa32YqG6FU9GBnfmywzFEdroLE9StgeV5dyTHc6KwolevQFobbZW+cDawYEHigyNqRczDDB566CHMnDkThYWF0HUd//73v7F161a8/vrr+O9//2tGjES2dcSRiq4VGyM+HDDyYigXz4f+aA6g+xD4lQBengLcuERGmGSCitpGvVei5fvZSVZao0VylJbvR/bj9WvI3fffyLaq91goNy6B/tuegL821EOLEd/JCZKoBTH3zP74xz/Gf/7zH3z22WfIyMjAQw89hM2bN+M///kPzj77bDNiJLItddzaUCIjAKD32MCYMwDqQ4dD91MAiINrEh0emajcU48CfUjglPygqbLDMURWmhsr9CHwQwUGJsdzooCKP57WtK1q+HKtPlAUup8CQKR4Ex0eUaviqjN7+umnY/HixSgpKYHH48HSpUsxffp0o2MjsrXD1V5k+4qhBCdPpHZp0vMqRlwc2Wn38pTEBUimqqz1YZS6J3BKfv9y2eEYIjvdhRHqHjihQyTJcyKg3q+je9WmUK+sAqVJW6Wc92y4rRJgW0WWEnMye/zxx+PIkSNNbi8vL8fxxx8fVxAvvvgi8vLykJqaikmTJqGgoCCqx7311ltQFAU/+clP4tovkZkOL7gq8ob79jS5j/p/8yEa3obsnU0u5R5f0k2WykpzYZV+AvxCha9XcpQbI2Dzf+ZG9sqe90zTO024Dt6MPhAiMCmMbRVZSczJ7J49e6BpTWvOeb1eFBYWxhzA22+/jdmzZ2POnDlYvXo1Ro8ejRkzZqCkpKTNOH71q1/h9NNPj3mfRGbzazqGHP6kUU9Hy/Qf/iGyd5aVDZJCea0PI5OsZ9blUDFW3QmnokMtjK7Tgaxv+LrfRbZVLZRcS/nVxsjG7D2WZiNriHoC2EcffRS6/MknnyArKyt0XdM05OfnIy8vL+YAnn32Wdxwww249tprAQDz5s3DwoUL8eqrr+K+++5r9jGapuGKK67AI488gq+//hrl5eUx75fITF9uK8VZApH1GVvgnHQ9xP8C1QwUAPjfvazfmQSGHngXafCizpmJ1NNmyQ7HMBsdw9BTW4rK7iehq+xgqN12H65BnvBH1VYpigIdKhTooVJdysX88k3yRZ3MBk/lK4qCmTNnRvzO5XIhLy8PzzzTzKmJVtTX12PVqlW4//77Q7epqopp06Zh2bJlLT7u0UcfRY8ePXDdddc1WyasMa/XC683PFi9srISAODz+VgX14KCx8Tux+b4938Ucd3343mt1mb0HH8BMnd+FDh9p/vgt+DzT5Zjkyg/LHkFnRQPvEomfGOuNrU2ZyKPzcn6GjgUgU77v+RrIUpWfu9437om4npbbZX/7CeR+uk9oZ5cKz6nWFj52HR0sRyTqJNZXdcBAAMGDMCKFSuQk5MTe2THOHz4MDRNQ25ubsTtubm5La4mtnTpUsyfPx9r166Nah9PPPEEHnnkkSa3f/rpp0hPT485ZkqMxYsXyw4hbl4N+D/vtkBiKoDyjAH4atGi1h+UdTEuUMJnPza9/ivsyTnL5EjjY+djk0hTGtpMza/h47aOv0EScWzObBgU4/f7sThBzytZWO29IwRwweFPQ4mpDgcWtXlMe+KCRteq507AV0OafsbajdWODQEejyfq+8ZcZ3b37t2xPsQwVVVVuOqqq/DKK69EnUzff//9mD17duh6ZWUl+vbti+nTpyMzM9OsUClOPp8Pixcvxtlnnw2Xy9X2Ayxow0d/DF9RgE6zVuDcKB6nr3XCIfxQAJxY+AaGX/20WSHGJRmOTSJ9tf4kTPEtRXX/M3HuudG8AuKXyGOzZttEjKtegkO5p5v+vJKFVd87W4uqoKxBaIgBznkS545r+5hWrs9Dpm8PFAXI9uy29evAqseGwmfSoxFzMgsA+fn5yM/PR0lJSajHNujVV1+Nejs5OTlwOBwoLi6OuL24uBg9e/Zscv+dO3diz549OP/880O3BffvdDqxdetWDBw4MOIxKSkpSElJabItl8vFF66F2fn4DN/wVMRkimifR8npj6H7l/cHHqv7LPv87XxsEmmYfwscikCXI2sS9vdKxLEZXL8JDkWge/lavg5iZLX3zuGvXg5dVgA4Tr4Rjigelz76d8Cqy0PXrfSc4mW1Y0Oxva5irmbwyCOPYPr06cjPz8fhw4dRVlYW8RMLt9uNcePGIT8/vCyiruvIz8/H5MmTm9x/6NChWL9+PdauXRv6ueCCC3DmmWdi7dq16Nu3b6xPh8hQnno/XHpgjLYAgKPdo35s9zNvjpwpzKoGtqXrAiu1gfALBf4+E2WHY6jlfWaiQqTD6ffwNWpzp27/Q3jFLzX6xMH1yl8ib2BVA5Is5p7ZefPmYcGCBbjqqqvavnMUZs+ejZkzZ2L8+PGYOHEinnvuOdTU1ISqG1x99dXo06cPnnjiCaSmpmLkyJERj8/OzgaAJrcTyfDtjiOIWBdpz/CoH6soSsQa6PjkAVY1sKkqrx/j1W1wKgKOQytlh2Oo3XmXYszuV5CllQFL5/I1alMVHh8yG1cx+OHvY3p84XHnoc/+hYFkeMN7oZUNiWSIOZmtr6/HKaecYlgAl1xyCUpLS/HQQw+hqKgIY8aMwccffxyaFLZv3z6oalwLlRElXPdPbwldVgDgpZdienxp//PRfc9/ApPH/J5W69OSdZV76rFN748eajmc/ZJjwYSgrDQXNuh56O6ogCNJFoPoiL7aXorzEGinWqst26yXXkLnbrnAk4G5KwKt19ImMlvMWeL111+PN99809AgbrvtNuzduxderxfLly/HpEnhBnLJkiVYsGBBi49dsGABPvjgA0PjIYrXqPLPQsvXovdY4C9/aeshETKvfC1yAQWypXKPDxPVrXAqOrAzv+0H2Eh2ugsT1K2BxSB2JNdz60j65P8y/gT0L39BVpqLw6LIMmLuma2rq8PLL7+Mzz77DCeeeGKTAbrPPvusYcER2cmewzXo37iL4sYlwAUXtPKIplJdDohjPyB4Gtd2yjz1yAteSbJvJ9lpjdp8dsfZkhACYyrDX7xbWyihWevWAQD8aipceh0XeyHpYu6Z/f777zFmzBioqooNGzZgzZo1oZ9oa78SJaOiz18MXQ59xscxKdGvpoa38ckD7Y6LEq+i1ocCfQg0qMCgqW0/wEYy01xYoQ+BHyowMLmeW0dxoKw28ktWrONdG9q1w6c8BNGwHaFz0QGSJ+ae2S+++MKMOIhsb+zmp5vODP7DH2LeTsnkB9F76W84btbGymrqMUndEzgVv3+57HAMlZ3uQo66B07oEPuX8/VpQ9/tOoKLGi7Hdfwa2rXcs24Blv7aqLCI4saZVUQG0HQBl2hUkis4M/jSS2PeVs+ptybbmekOp7zWh/V6XqBnNskmSWWnu7FGHwS/UKElWdmxjmLgV3e270tIQ7umqsdshSW6SJKoe2YvvPDCqO7373//O+5giOxqa1EVhjYeL9uOsWMOVeG4WZsr9/gwKkl7ZjPcDpyo7oZT0aEl2XPrKNo1XvYYu3uegwGHPmaJLpIq6mQ2KyvLzDiIbK3iq3mhPDair+JnP4trexETK1hv1naGF76LNHhR58xE6mmzZIdjKEVR8L0yBD3FEVTnjgM/GezlUEUtcht/8Y4n+WzUrukX/hXixeOggCW6SJ6ok9m//e1vZsZBZGsnbW00XtaZHv5Fr15xbW/vuN9gYMGDgW36Pe2OjxLr3JK/opPigVfJSsovIqdgHRyKQPq+L2WHQjEq2H0UwQXh4048G7VrA7t3ijyTRCQBx8wStZMQx4yXnfHb8C//+Me4ttlz2i2hcbMcP2s/esP/yfoZrzZ8cxOCr067GfDlHe1/XTZq1xRFidwex82SBExmidpp1+GayIzTgJ64TinOcE8v2c5ydQw0oaDquDNkh2KKjWnjoQkFB3NOlR0KxWhkWaOFXdo5XjZoV+45EKLhy9uG9wzZJlEsmMwStVPB7qOhy03yz7lz496uT0kNX2Fvh62M0DbDoQhklq6SHYopTvBtgkMR6HZ0jexQKAY+TYcerAurqPFP1jqmXav+0V94JomkYjJL1E4nLG1U5qbxeFkA+Oc/497uxlH3sLfDhjRdYJU2EH6hQDsuOUtXfdfralSIdDj9NVzG1Ea2FlVBbUg3FaG3ce9WHNOuDe+dCb2hFRQK0wpKPL7qiNppbGV++LRd4/GyAFBQEPd2O592I3s7bKii1ocfqOvhVARS9iyRHY4pdg8I1BlN0yqB/MckR0PRqvnm5earrsTqmHbN5VChKo2SZH7BoQRjMkvUDhUeX+vjZXv0iHvbA3I6xf1YkqfcUx+6nKzDnrPTXeEryfokk9DILX9qvupKrJpp17gMN8nEZJaoHb4vLA9dbvYz/S9/iXvbgcUTAm9RwbeqbZR5fCjQhwRW/xo0VXY4puiS7g4/x4HJ+RyTkUsPlPlr9ixSLJpp13aOuR+h4hYsJ0gJxk9IonbwL/9r6x1TP/1pu7avBMe3gafu7KLcU5+0q38FdUl3J/1zTDbVXj+cwh++oT1VV5pp13qcdTOHRZE0TGaJ2uGUnXMNL3PT2ME+PwxPAuOpO1so9/iwXs8L9Fr2nSQ7HFN0yXBhvZ4HfxI/x2SzsbAiNElLMWGSVrdOKdB5Jokk4SuOKE6NF0sA0HyZmx//uF378P30r+HeDp66s4WyDtIzO1LdAyd0iCR9jslGK5gPR7A1aU8lA6DFdk1tWC6EZ5Io0ZjMEsXpQFlt2+fThgxp1z76d03nBBubqagN9MzqSdxrmZ3uwmp9MPxCha/XBNnhUBRGb3vemMlfQIvtmtZ4EhirXFACMZklitO6A+Vtn7Z76ql27UNVldApO566s4dB+97BWeraQC9VkvZapjgdOEXdCKeiw7H7c9nhUBTcRk3+Alps1/ZP+E1oUQbUV7dvH0Qx4KcjUZzyvri90Wk786Y8cBKYvZxW9Hc4FBHomT1tluxwTKM2dPNxso/1+TQdDqMmf7Wi+5k3hy4L3WfKPoiaw2SWKE7DI9Y4v6j5Oz35ZLv3s783J4HZyRbXcGhCwYE+55iWNFjBGvdJ0ISCw7mnyQ6F2rCztDp0FglGTP5qoV3rnOrisCiSgsksURx0XUAXjZZvbGmN84UL272vqvPmcRKYjQzyboRDEehRtlZ2KKYaoW2BQxHoXLpadijUhk0HK41ZxjaolXZNgzN8hWeSKEGYzBLFYd9RT3jmbmsfDl9/3e59DerRieue28g6DIEmFHh6jpcdiqn2pI+EJhQUZZ4oOxRqwwlf3xnuMG3v5C+g1XZNa9g+J4FRIvGTkSgOGw9WRlezMTOz3ftKdTki1z0nS5uorYFDEcgq/Ep2KKYaUbMSDkWg9+FvZYdCbYgYEtXeyV9Aq+1a0fh7OAmMEo7JLFEcBnwZ5eSvf/zDkP3x1J091Pt1iODp3CQfOxj8DscJYNYmhIg8s2PEOO5W2jVOAiMZmMwSxWHokcVtT/4CgAsvNGR/PHVnD+W19VihD4VfqMDAabLDMdXaQb9EhUiHEIJfsCysqLIOqohiSFQsWmnXMlKcnARGCcdklihGTXo6Wpr8BQB+f8u/i8HeMXeFT91p3lbvS/JUeHw4Ud0Fp6JDPZCcNWaDSoZegVqkIEOvApbOlR0OtWDzocrAssMAFNVlzEbbaNd4JokSjcksUYxKqrzR93TMmGHIPrN/cFPoA0loPHVnVWWewOpfWhKv/hWUne7uMM/VzhyrFsDZMFkVDoOS2TbaNZ5JokRjMksUo40HK6Kb/AUAEycass8enVPgVBo+kDgOzbLKPfWYqG6FAzqwM192OKbqku4KP9cdyf1c7Wz8zuehBk/7O1KM2Wgb7dr+sb/iJDBKKCazRDFSVr4a/cpfjxnTK6EoXNbWDso9jb5oJPnMqC7p7vAVjpG0LLdeC6Dh5Tj1QWM22ka71uWMm0KXOQmMEoGfikQxOmXn3OgmfxmMy9pa31FPPQr0IYFT74Omyg7HVF0y3PhWHwG/UOEfcJbscKgZui4SsoztsXI6pUBX+OWbEoevMqIYuUSjCVitTf4CgIcfNmy/e3rOCC9ry3FollRWU49R6p7Aqff9yT0BLMPtwInq7sDwlyR/rna1v8wTGmsPoyZ/AVG1a6FFZcDa2GQ+JrNEMaio9YWWsY1qjfNvvjFs38VnvwRf8C3LcWiWdML+d5EGL+qcmcBps2SHYypFUbBeHQpNKKjucZLscKgZ24rD7YShI0GiaNf8amr4ynuJ6RGmjovJLFEMYl7jfPFiw/Z9Qm6n0KxkjkOzphnFLyNL8UBRlISd0pXpFLEWDkUgY39yr3ZmV+41f4Mr2DOqG1MmEEBU7drmE+8Nn0na8C/j9k3UDCazRDHQG49Vjea0XYpBs4cBdOuUAr8SqN8ojDxlSIYJzuDuKPOhlIZlzkRbEyFJivE7XzBnfH8U7VrGKTdCC9Xj7ijvCJKFySxRDMZsb1Tmxt2p7Qe8+66h+w/umsmDNRU4xkATCiqPO0N2KAmxOX0CNKHgQLfJskOhZgQrGeiKq+3x/bGIol0bkJMROosFo1YeI2oBk1miGLg1D4AYytxcfrmh+3dAAwCows+KBhY03r8GDkWgy8GOcdp9RO0KOBSBXoe/lR0KHUNrVMlAFQYPS4qiXXOoSmCFRLCiAZmPrzCiKMVV5qba2IlarGhgXT5ND/WYd5SzqmpomIHkQKiJ/UdNqmQARN2usZwgJQqTWaIoxVXm5gxjTzcXTXuRFQ0sqtzjQ4E+FH6hAgOTu8Zs0MpBt6FCpAeSeCYrlrKtuCp02fDvVlG2a/zyTYnCZJYoSluK4vhwmD7d0BgG53ZmRQOLKvPUY7S6C05Fh3qgQHY4CXFo8OWoRQoy9Cpg6VzZ4VAj7rULzKlkAETdrh0958/88k0JwWSWKEqueMrc/OY3hsaQ08nNigYWdbSmHuv1vMDqX30nyQ4nIbqkuzvcc7aLCWZVMgCibtdO6Mkv35QYTtkBENnFqY2WsVUSuIxtY4qisKKBRZXV1OMUdWtg9a+d+bLDSYiuGS4MCj7nHR3jOdtF40oGDiMrGcQgM9UFv6JChQ4BtcOUrKPEY88sUZRiWsY26L77DI+DFQ2s6ainPnylg3zPyE53h68wU7EM3cxKBkBM7RqXtaVEYDJLFIU6nxZaxlZEs4xt0IYNhseyO5eTKqyorKYeBfqQwCn3QR1jAliXdDeW6cPgFyr048+SHQ41KK6qM6+SARBTu8ZlbSkRmMwSRWFHSXVsy9gG/fe/hsdyYOoLqEPDB5Tmbf3OlDAD9ryNs9S1gVPu+5fLDichstJcmKRugVPpOEMr7GBXaQ00OAAAisOEZDaGdm3jyHu4rC2ZjsksURS2FVeFejoUyROvjs/JCA01EBonVVjF5IOvw6EI6FCB02bJDichHKrSaElbycFQiGP1q0iBNdoG98nXhyoaCJXTdMgcTGaJojBk6Z3hSgbRLGMb9NFHhsfSJzstNEMYnCFsGVvdw6EJBft7nxPdghpJYpVzLDSh4Giv02WHQg1O3Npo2W1HivE7iKFdG9i9E4IDqvl9h8zCZJYoCsOOfhYucxPNMrZB115reCyqqoTLcyksz2UVA+s2wqEI9ChfKzuUhBqlb4VDEcgoWSU7FGqgNgw/irm9ilYM7VqqywGnEjiTpPDLN5mEySxRFPRQz4IaW6/bkSOmxCOUwHg4reF/km8thkATCmp7jpcdSkLtThsJTSgoyhwtOxRqEOwB1R2p5pwliLFd0xpXAWUFFjIBk1miNlR4fFBFnOVlJk82ISJAbzh16NTrOEPYIiZqa+BQBLIKv5IdSkKNrF0BhyLQ6/A3skMhAF6/FirLpQjNnJ3E2K75nekAWIGFzMNklqgNW4oq45/8dfHFJkQEbBl+J2cIW0idT4MIVrvoYPVWVU4As5R9RzxwwuTT+jG2a7tGzYYefH2wAguZgMksURvEyvnhCVexlrm56y7jAwLgmHhdeM1zzhCWrtzjwwp9CPxChTJomuxwEmr14F+iQqQHVqTjKWTpdpbWmF95JcZ2Le2UG0IxsQILmYHJLFEbTJ8ZHIcBORnwN4xD05nMSne0pj5Ub1XpYPVWS4dcAQDI0Kt4CtkC0ta9Fv7yHUvlFRP175bBCixkKiazRG1waR4Acc4Mnj3b8HgAoHOqK1CoHgB0vyn7oOiVdcClbIO6ZnBJWys5ecezUOOpvBKLGNs1h6qEVk4UTDvIBHxVEbVCiPAa5wBinxm8b5+xATXiRMMkD/Z0SHe0Ay5lG9Q1w40CfUjgNPLAjvXcrcgl6sJXzKp3HEe7pgTHlEPncBQyHJNZolYUlte2b43z994zNqBG/EqjNc/54SBVmaceE9WtgaVsO9gwg26d3JioboUTOsSOjvXcrSg4/EiYuVJhHO3aztwZ4UmrHI5CBmMyS9SKbcVVoctWO4O6Yshd0PnhYAlHazr2MAMRqsPcwZ68xZR76qGJwLGQvez2sQrPej48abW+Wm4wlHSYzBK1wrFqQXgZ23jGpr7zjrEBNVI/9ppwrzE/HKQauPdtAECtI9O8cYoWleJ04BuMgSYU1PSdIjucDm3X4Ro4zC7LBcTVrg3tmRmaBCY4NIoMxmSWqBXjdz4fXsZ25EWxb2DWLKNDChmY04kfDhZxVuFfkKV4AjVmzRqnaGGnKevgUARS9y6RHUrHtuLV9n35jlYc7VpuZkp4GW6L9RqT/TGZJWqFW68FAOiKC7g4jnGphYUGRxTWp0sa/AgsZ8sPB7mCBeGVjrZiQoPwwgkcZiDTsE3Pte/Ld7TiaNcURQkN1eLrhIzGZJaoBZoermSgijh7PseONTCiSA5VgRbs6VAcpu2H2rbCORaaUFDR+weyQ5FiY/p4aEJBYc6pskPp0BQ9sLqWX02N78t3tOJs14JDIFTh56RVMhSTWaIW7DvqgR7sS1DifKtcZ+4p52BHoM6ODqnG+VbDoQh0LfpadihSjKpdCYci0LN0qexQOrRgh6dq9gmCONu1PT0bVTT45AFDQ6KOjcksUQu2FlVBDdZGFHp8G7ntNgMjakqogRXJnHod8F7HG6tpBbouoDdkER21QQ0PM5AcSAemNzqTpAjN3J3F2a6VTn8pXO/C7zEsHKKO2vYStWl7cVX7aswmwJYRd4Z7Ojb8S3Y4HVJ5rQ/L9WHwCxWigy2YELRq0G2oEOmBsZA8fSzFwYpaOBNRyaAdTsjtzHH+ZAoms0QtOHntPeGZwfGucX7LLcYF1AxlwnXh2o2q09R9UfOOVHsxWd0Ep6LDsetz2eFIUXzCFQCADL2KNY8l2VVaE/rybXqN2TjbtS4Z7tDYKHbik5GYzBK1YFzVF+GZwfHWDq2oMDKkJgbkZLCnQ7LD1R13wYSgrp3c4Ssds6CDdK41fwuV6ov7y3e02tGucRluMgOTWaJm1Pt1+EXg7SFUV/y1Q994w8ComspKc0FpmJymd9RMSrIjNV4U6EOgQQU66DCDbhluFOhDAj2DAzvm30C20dueh6ogMGnV7IU72tGucRluMgOTWaJm7DlSg2A3m9U7moLj5KCxp0OGI9X1mKhuhQM6sDNfdjhSdM1wY6K6FU7oEDs65t9ANpcWmFAlFIelF+5YP/Lu8DLcrGhABmEyS9SMrUVVoVN27Tod9ve/GxRRy1i7Ua4j1d7wlQ7aOd4tIwUiXBJfaiwdlQPBmtgmrvwV1I52zTnx+vAVVjQggzCZJWqGYZUM5swxJqBW7OzRqHYjJ98k3PF7A+vU1zozzT+9a1FpbgeWitHQhIKavlNkh9Ph1Pk0+EUCx863o10bnNuJ4/zJcExmiZpx2rr72l/JAAB27TImoFbsmfIn1KHhQ0Hztn5nMty0Q39BluIJFKq38Olds52ufg+HIpCyd4nsUDqcPUdqAmO2ASiOBCSI7WjX0t3OcEUDFiYmgzCZJWrG+BoDKhkAwLBhRoXUogE5GaHL/GhIvODqa4rlR1ebSwmVXOKrMNF2ldaELifkVdjOdi1U0SARQyKoQ2AyS3SMOp8WSlCEoravt232bGOCakW/rumByUcABCeBJVyBYww0oaCyzw9khyLVxrTx0ISCQzmnyg6lw0n//jWkIIHv/Xa2a361UUUDrlxIBmAyS3SMHSXV7V/GNuiGGwyIqHVupwqnYu2Vf5LZeP8aOBSBLoe+lh2KVCfWrYRDEehRslR2KB3OhJ0vBIa5AIAjxfwdtrNd23zivVy5kAzFZJboGNtLqhK3ko5BNARW/9IVrgKWSF6/Fhr3p3TsUQZQQ+MgJQfSATn0wMId7R4WlSCpJ98QWrlQcOVCMgCTWaJjpK17PbySTnsnU/z85+0PKAo+RzoAQBEay3Ml0NGaeqzQhwQW2Bg4TXY4Uq0cdBsqRHoguedrMGGEEMHWCrozLTGTENvZrgXG+XNZWzIOk1miY5y276XEnrIzwIahd0AXCAyPYHmuhDlSXY9J6hY4FR3qro69WMDhoVcAADL0Kr4GE6jM4wsNh1JtMgmRQ6PIaExmiY5h6Cm7V19tdzzR0MddCy/LcyXc4Wov3MGJN/6O/XfP6ZQS/lvwNZgwu0qrQ5cTNtTFgHaNQ6PISExmiRqp8frhCJaLUV22qRt6fE5GaCUwVjRInCPV9agPfomwSS++Wbp3Tgn/LZwd+2+RSLtKa0LvfTstaa05A0OjVOFnRQNqNyazRI1sL6mGEwae/nrllfZvIwrdO6eEx/nytF3CHKnxokAfEihYP2iq7HCkyumUgu/0YfALFfrxZ8kOp8PI3Pj38AIveoLqthrQru08cTYrGpBhmMwSNbKtqAp6cNyZYsDb49ln27+NKCiKAk0JnrazRwWGZNBv11s4S10bqPO7f7nscKTqku7GxIbxw9jRsccPJ9Jp+14KL/Ay8qLE7NSAdi3jlBuhBSeBdfRSINRuTGaJGslY/xocwfm1RtQY2ry5/duIkq44Iv4n800sfA0ORUCHCpw2S3Y4UjlUJVSeq53VmSkGwTH+uiMVuDhBVSQMaNf6dk0P1fNGe+t5U4dniWT2xRdfRF5eHlJTUzFp0iQUFBS0eN9XXnkFp59+Orp06YIuXbpg2rRprd6fKBZn7J9nbC/H8ce3fxtR0hvGbDp0L0sjJchW13BoQsH+3ufYZny1mVa7ToImFBzOPU12KB2CpotGdY4T2LtpQLvmUHk2iYwjPZl9++23MXv2bMyZMwerV6/G6NGjMWPGDJSUlDR7/yVLluCyyy7DF198gWXLlqFv376YPn06CgsLExw5JSO3qAUACNVlTC/HI4+0fxtR2j5yVrg81ycPJGy/HdmI2sCqV70PfyM7FEuYEFoN7SvZoXQIhWW1jcb4J2i8LGBYuxasZKAKH7+AU7tIr4nx7LPP4oYbbsC1114LAJg3bx4WLlyIV199Fffdd1+T+7/xxhsR1//617/iX//6F/Lz83H11Vc3ub/X64XXGy4TU1lZCQDw+Xzw+ThRxmqCx0TGsamo9aGr8ANKYPKXETE4rrgC2vvvGxBd2/SxM4E1gQ8Z4ffAb/DfUOaxsSqXCJziVTWv1L+LVY6NC8G/R730WKzErOOzragcxwUrGRjUZkXDqHZNONyAvw4KAJH/KPxjmn6Gm80q7x1qKpZjIjWZra+vx6pVq3D//feHblNVFdOmTcOyZcui2obH44HP50PXrl2b/f0TTzyBR5r5Fvnpp58iPT09vsDJdIsXL074PndWArdBhRs6dDiwaNGidm9zYkkJCgzYTjS8GjAcDrihGRZ/c2QcGyvSBTBFOJGmeOETDnySoOPcGtnHZiqcSIEXXuFAvgX+HlZj9PFZckjBDwxus6JhVLuWknUhph9eAFUBNK8nYfE3R/Z7h5ryeDxR31dqMnv48GFomobc3NyI23Nzc7Fly5aotnHvvfeid+/emDat+aUk77//fsyePTt0vbKyMjQ0ITMzM/7gyRQ+nw+LFy/G2WefDZcrseOo3izYD+wIXFZVFeeee267t6lUVxuynWj5v3cC0ACHy/D9yjw2VnSkph7LVw3DNHU1nEOnJ/Q4H8sqx2ZZ9S8xetuf4FRV/Ci3GPq4a6XFYiVmHR+x4IlQST41tXPCXoNGtWtFlWfB/6fX4YYOhyKkvIes8t6hpoJn0qMhfZhBezz55JN46623sGTJEqSmpjZ7n5SUFKSkNC3g7XK5+MK1MBnHp8uWN0L1GhXdb8z+u3UDEvg8Gk44Qhcw7e/H905AeV0tJqubAqWodi9J6HFuiexjUzbiamDbnwJL2i75HRwn3ygtFisy+vhMPfgyVAUQUKBMfShxx96gdu24rk4IJVwfW+ZrV/Z7h5qK5XhInQCWk5MDh8OB4uLiiNuLi4vRs2fPVh/79NNP48knn8Snn36KE0880cwwqYOYvv954+s1vvSSMduJUrA0klOv44QKk5VWcSnbY3FJ28RKCU5YVZyJraZhULumKApEQxoi5M9HJxuT+upxu90YN24c8vPDBbZ1XUd+fj4mT57c4uOeeuopPPbYY/j4448xfvz4RIRKSU4IATcaffgmql6jwXSHG0DDqjr5j0mNJdmVVHq5lO0xuKRt4njq/XA2LL2tCPtOXlIaas0q0PkFnOIm/avQ7Nmz8corr+C1117D5s2bcfPNN6OmpiZU3eDqq6+OmCD2+9//Hg8++CBeffVV5OXloaioCEVFRaiurpb1FCgJlFZ54RcNbwfVwFNNL7xg3LaisG/MXdCDaz2wZ8xUpdVcyvZYOZ1SsEwfDr9QoXFJW1PtKq2Bv+EjXDGyzYqGge3anp4zwsva8gs4xUl6MnvJJZfg6aefxkMPPYQxY8Zg7dq1+Pjjj0OTwvbt24dDhw6F7v/nP/8Z9fX1uPjii9GrV6/Qz9NPPy3rKVAS2FxUFbpsaOnx+YntaUidfCO8DT1jRixgRi3ru/OfXMr2GNlpLkxSN3NJ2wTYdbgGGhpW+3MkOJk1sF0rnf4SfMFUpJ6dUhQfS0wAu+2223Dbbbc1+7slS5ZEXN+zZ4/5AVGHs+VQJU5HeCKCYdasMW5bUejTJQ3e4HrnEMYm5hRhyoF5cCiBv7LSwZeyDVJVBalKQ/F+nhkw1a5SiYmfge3aCbmdQxUZhO5jm0Vxkd4zS2QF41fdHW5EnQbWH+7Tx7htRcGhKoFeMQDQ7DuOzg6Cwzl8rkwuZduIr2FpUl11S44kuZ2+7l6kBifbJXrMtoHtWpcMN3SlYRKYwpSE4sNXDhGAsZWfhysZzPitcRueO9e4bUXJieCkkAQub9kBFTjGQBMKKvr8QHYolrIxbQI0oeBgzqmyQ0lqY6u+CLdZUx9M7M4NbtfUYElEoRu6Xeo4mMxSh+fT9FAvm1BUY3vZfvYz47YVJb/aqOYyZwebZpx/DRyKQNdDX8sOxVJOrFsJhyLQo2Sp7FCSlhAiNGFVqK7EnxkwuF3zK43arPd4loNix2SWOrxdpTVQg+VhkqBnYP2Iu6FzdrCp6nwa3KIeAKBwbGiEYK3jFH8Vv0yZpKTKG6iiAQmVDEywfsTd4YoGG/4lOxyyISaz1OFtKao0r8TNxRcbu71ojP95qKIBJ+GYo7TKG66PqXDKSmOrB/8SukDgCyK/TJliZ6PJX1Jefga3a45J14crGqiWmJdONsNkljq8lLWvhWbTGl7ipl8/Y7cXheNzOsHRsLCt4CQwU5RUhRdMULhgQoTy4VehCg2TKJnnm2JXaU3oPS5loqfB7drgHp0QfLHY/9wYycBkljq80/a9BDX4oWt0YvLss8ZuLwpdMtzhigZGlhmjkNKqOi6Y0IKeWSlYoQ8JnO0YyL+NGbps+jtcoVKCEiZ6GtyuZaQ44VQCybnCNoviwGSWOjy33rC+OZD4WcEm0RpKSOuK/cfTWVFplRcT1a2BBRN2cnGAxnp0TsUEdSuc0CG4cIIpzjgwL1zJYORFssMxhNa47D3HWlOMmMxSh1buqQ+tbw7A+FnBzzxj7PaipCuBDwZNcUjZf7Lruf1NdIYncIUrrUXokZkCV0N5OOGvkxxNcnLogcmHuiMVuFhC4mdCu+Z3BIamcOIqxYPJLHVoW4qqoDeM1VLMKNj93nvGbzMKwhEoWO/S61jqxgSn7v0zVAWB106S9OYbJcXpCM1KYp5vPK9fg0MEa0lrcoIwoV3bMWp2qEQil7WlWDGZpQ5ty6HKUFkumFGWa9ky47cZhZ2jZrPUjYn0hk9dn7MzV/9qhh9cBcwse4944ITk8aUmtGudTrsxdFlw3CzFiMksdWijV/zKnGVsg7p1M36bUXCdHC51I1jqxnArnGOhCQVlvbn6V3M2pnMVMLPsKq02r5RgtExo1/p3TYcOLmtL8eErhjq00eX55ixjG/S3vxm/zSj075YOf8OECiazxhvrWw2HIpBTzFWumsNVwMyz63ANNDSMhTe6lGC0TGjXVFWBqnBZW4oPk1nqsDRdQBcNY/uMXsY26IILjN9mFFKcjlAxfyE4ctFIjVf/UrkoRbNUlauAmSV365tIQcNpeFk1jk1q13RWNKA4MZmlDmv34RqoSN6egOC4Oil1KJNYSSVX/2rL9yfczlXATHLeoRegKslVSjBIc2UAYEUDih2TWeqwNh6sMLeSAQD86EfmbDcKwRWCVOFnL4eBiirD5aaYyjavauTVXFLZJG40+nvKmnxoUrtWOvGeUEUDwYoGFAMms9RhpaxdAEeokoFJp+JHjjRnu1HY0/OccEUD9nIYpqiyLrSUrbTTvBaXm5ka/hs5+TcyytGaevhFw8e2rMlfgGntWs6Um8NXWNGAYsBkljqsKXv+aP4qOk8+ac52o3Bo2guoY++Y4YoqarmUbRtyM1OwXB8Gv1ChH3+W7HCSxq7S6tDkL0XW5C/AtHYt1eWA3nCWTDA9oRjw1UIdkhAi8nSdjFV0THZ894zQUAOhsZfDKH12/BNnqWsDS9nuXy47HEvq1ikFE9QtcCo6wCVtDbOrtCb0nkaSvqdD8xiQfPMYyDxMZqlDOlhRF6pkADNrGj7+uHnbbkPPzFQ4gx8IPGVnmCkH5sGhCAgowGmzZIdjSQ5VQarSsKQtzwoYpvOG1+AKvaclTuw0sV3T1NTwFa5eSFFiMksd0obCitDKX6ZWMvj0U/O23QZFUaApgVI3uiLxlGSSceiBslyamsLVv1oRnBzH0nDGOX3/PPOHRkXDxHZt3/jfcPVCihmTWeqQHKsaFf02cyLFl1+at+0o6EpgfJ0qfKxoYJBgaqaorGXQqoY/D3NZ47j1WgCAUFxyh0aZ2K51PeMmaAjW/+Z7jKLDZJY6pNN3z0UoF3F3Mm9HnUzcdhT0htn2rGhgDF0XoZ5Gfsy2TlcDrz2H7uUXKQN46v1wisDQAkVIHjZkYrvWJcMNVQlWmeG4WYoOk1nqkFwiMI7P9MLjb75p3rajsG3EnaG6jaxo0H6HaxotmMB0tlUrB97GhRMMtLOkBv6Gj2xFZlkuwPR2je8sihWTWepwDld7Iyd/mTnu8f/+z7xtR0GZcF24eD21W3GFN1Q/VWH91FaVj7gKVUgPXGF20m47SqtCZbkgsywXYHq75uMkMIoRk1nqcDYerEzM5C8A8MrtDR2QkxEoIQVAT9JSPol0iDVmo9YnOxUF+pBAb+JA/q3aK+P715ECi7yHTW7Xdo29n5PAKCZMZqnjaTx+z+zTdWefbe7229A51QWnEqhLqbA8V7sVV9Zhoro18AVhJ+untqZ3dhomqlvhhA7BWrPtdsrel8Lj/GWvPGdyu9Z1CieBUWyYzFKHc/KOZxMz+QsATj3V3O1HQUOwPJdTciT2133rG+gMT+AKZ+m3qkfnVLjQUGvWXyc5GvsLloQzfZx/NExu13p0TuUkMIoJk1nqcBI2+QsAHn7Y3O1HQTQksarwc1Z5O52+789QFQQWTJCdUFicQ1WgNPSqsTxX+3j9GhwNlQyE6pJf3zgB7Rr7YykWTGapQympqkvc5C+LEE6W5zIKF0yIDRdOMMbuwzVwomMNF/JzEhjFgMksdSjf70/Qyl9BD8rvvSuecDfLcxmECybEJjjckals+2wvrrZOWS4gIe3a3nGNVwJ7z/T9kb0xmaUORaycn9jTVwUFidxbs7qecTP8DSV9WNEgfnU+jQsmxIgLJxgjfd1rcDZUJZFelgtISLvW/aybQ1+C+GWI2sJkljqU03c/12ht84vN3+Enn5i/jzZ0SnGyooEBDlXUhRdM4AzrqHw/5HYunGCAk/e8aJ1KBkBC2rWsNBd0JZCiCKYq1Aa+QqjDEELALRqdZk/E2uZOa1QQCH4Y8EMhfoVltaHLTGWj4xk9M7xoB4e4xM2lB157lqhkACSsXVMbeqMV6OzZp1bxk406jD1HPIk/X/Xvfyd4h80LL8HKD4V4FZZ7ZIdgO32y02SHYHtevwZnQyUDANaYeJigdk1rmATGyavUFiaz1GGs218OvaFPTVES9NK/8srE7KcNB/r8MDyZgh8KcWncM0vR6ZWVGh73yIGPcdlZUhOa/GX6Ii/RSlC7VjjxgfDk1frqhOyT7InJLHUYx391BxzBj9ZEfbJWViZmP22oPHcefMGhBvxQiEvfXW+FlxO1wrhFG+ic6gqUwAMgOI0nLluKwm2IZYa3JKhdyz3rltBlwfH+1Aoms9RhjCpb3Gjy10WJ2enppydmP20Y1KNTeDY0PxTick7xK1wwIQ6sNds+ad+/Blfovetv/c6JkqB2Lc3tAOdaUjSYzFKHECir1OiGREz+AoDzzkvMftqQ6nJwZnA7OUVgwQTdkWqNcYs2EUxGdOaycTlz7x8T/yW8LbLaNS6eQC3gpxp1COv2l8vZ8X33ydlvMyJmBlNM/JoerjHLnqKYCNaabZeEV2CJRgLbtcLjzmu0eMK/ErZfshcms9Qh1C57JXTZEivoSMDlIeMXUWPWOiMXbYG1ZuN3pNobufx2B+T8v1ehNbznBL9JUgs65ruDOpyTdzwbLjru7pS4Hd9zT+L21YZto++zTQ+HbrFz0nuPhMty8fM0Nt4x11iy1qwQwnKvs2NtLapK7PLb0Upgu9YzKxWqEpy4a6G/AVmKNSq6E5lI18OLJQgASiIn72zdCpx2WuL214rOp90I3+rH4IYGoTot179Y4fEh7Q994BJeKAIIdkgJRYU6p0xqbHuO1GCc1Ajsq3+39NDl0JcpSYQQKP/Tacgu2wA0xBLq+Ow9FrhxicTomtpSVIXxUOGGbp2yXEDC27WI18yK+RyzTk2wZ5aS3vaS6sjFEhLZEH74YeL21Ya+XdIR/FiwWn/U0devQuencuDSvVAQ6P1U0PCj6xAPZwEvT5EW376jXDAhXr2z0wIVICC3PFedT4P30VxkH90Qfo01ep2Jg2ugP5ojLb7mjF3xq3Alg0SeUWpLgts1f+PFEz55IKH7JntgMktJr/yreaFv9lbrjUwkVVXgVAKlfRQLlec68tpV6LLzI6gIn8IXjX6CCYc4uEZaQjt146+RyhqzcXE5VDiVhoRMk1NayqfpwOO9kKJ7m32NAcEvTj7ov+0lJcbmjK7ID1cy6MDl4EpPeTBUjUb4+cWSmmIyS0lvzOY/hMc5OtNbva/h3n8/sftrg954ZJEFZpbvP+pB190fRSQYAKCMvBjKwxUQihqRbIiDayRECUyo+YJJRTs40fAlSsj5ElX95FCkCG/EeGcltQuUhyugpHaJTGj9HmDuSBlhRvBreqicmVBUa51aT3C7lnvWrZY7m0TWwmSWkp6r0XhZzPhtYnf+i18kdn9t0FwZAKxxuk7TBXL+lBfKYAUAxZkOPFwRKkGkzimDaJRsAEh4z5kQAn7RUKNXdVkrqbAJn9KokkaCv0QdnH85suuLIyfujbwYuG9P4PJ9e6CMvDjyS1PFfukVP3aUVltz8heQ8HbNoSqRx88CX8TJWpjMUlLbf9Qjb7wsAJSUJHZ/bTg66V7LnK47/OwpSG3oLQslsg8canI/9b49EM60wH3Q0HOWwOEGJVVeaA1NZUct69ZeywfPhh6c/JXA8lzlnnr02r+waSJ7bL3Wi+c3TWg3vJegKJu3/kBF6LLlhkdJaNc4bpZaw2SWklrx5y/JHS87caKMvbYo58ybG9VslPf2LyyvRY+qTaEkQwGaTWSD1AeKQpcTPdxgz+Ga8L4tl1XYQ82oq6WU5xJzR0b0/COrb8sLD1w8HyKzb+TpbInDDYZ8c2e4zUr08Ki2SGjXiidz3Cy1jMksJbVRG5+SN14WAC67LPH7bIXLoYZqNso8dZn1p8Ghy4FlOi9u8zGNe84AJCzR2MtKBu2Wl5MRupyosY+7D9dEDC9QoACzNrT6GHX2BgS/9oaGG0g6pT2yrNHkr0QPj2qLhHat19RbQ2XUiI7FZJaSlhBC7nhZAJg1K/H7bIMmeRLYvk+fR4ZWFR5ekNolumU6L54PLSU7VKtUVOw3O1QAQPbGvyMF1qn+YEcDcjLgaCgxJbTE/C0z542NvOG8Z6J6nHLeM5HDDRb9ytC4omHpyV+AlHbNoR6z9h7HzVIjTGYpaUmtL2thWkMPtayxZ32+fShyeEFwIk4UnPfvjRwvkoDe2VP2vhRePY5lueKS6nLAqWgAElMWbktRJbr6isM9m1l9o3//T7gOWufjQqe0IfSEJ047S2usO/lLIo6bpZYwmaWk9e2Ow6HL0s5O3XGHrD23qGTiPdLGnu379HmoDR/OAgB6j231/s3xd+qT0N5Zh14PgGW52it4RkBXzF94svtfx4cuK0CbwwuO5bxrY6jRkNE7+/2B8tBlS55Zl9SuHT71IY6bpWYxmaWkdcaXl8j/IDjU8qQmWXqceYu0SWBNemXjWD7U9atNCeudrffrEA2fnsKZxt79dvA7Gs4ICM3Uns4DZZ6mvbJx8OWOkdY7a+nJX4C0di33zFs4bpaaxWSWklK9X0eed2v4Ay2KCUameOcdOfttRarLIWUS2MaDFe3ulQ3yJah3ds+RmnDBf13O6lXJYsPQO6ALBE6fm3mK+JUzQxfj6ZUNct/8ZUTvLP53b3sji9qoss+sO/kLkNauqceOm5VcC5isg8ksJaUVe45GzpqOZoJRByJjIkXPVydE7j+OXtkg97G9sybVnd1RUg1nw8QlKy0BbEfKhJ+Hr5h0irja60efmi3t7pUNatw7KxJ0/L1+LdwjDPBswDHKs0eEvshCci1gsg4ms5SUKr6aJ7e+bNBbb8nce4sK+5wb/kBIwESKkqq6yFO/7eiVDRJKoG6pmXVntxdXwx9sJrlgQrsM7N4JfjgANKykZoLSBVdF3hBnr2xQ495ZAAmZcLjxYCX0UJewRT+iZbZrNywJdVRwiVsKsug7hah9zt43V2592aC775a371ZoF/41/IGQgIkU+rxjTv22o1c25Ie/j/wwM6GH+ZR198DV0DMLdyfDt9+RdMlwh1adMCsJyTu0KDwm26BEsD4jsRMOPd+8DIfVKxlIbNe6ZLi5tC01wWSWks7eIzVwisD4RuljzvYnphZqrPp1TU9Yl3W9X0duzSbDTv0GqRPDp1/NmnE+ruqLcNysZNBu4fHHxp+yL1z8QuRqX+c+bch2U+5OzJCWoAnbnrHGF/HWWKRdY4kuCmIyS0mncPGLocsKIHfM2ejR8vbdCkVJXAHyLf99LrIrrp2nfhvzDb0wcsa5ger9Fi9cb0N+JTV8xeDJO7nfzImslGHg8dITMKQFsMhCL9GQ3K6VH38BS3RRBCazlHRO2vJ05GkomX7xC9kRtCiiAHn+Y6btZ9jaxyOTDAO5L/2bab1mO0urWbjeYOtH3t1o8s6/DNtutdcPR+OzMQaMyY7wwydNH9ICAAcr6uyx0Ivkdi37qtctWoCXZGEyS0mlpKoOKY17NmSV5Aq65Ra5+2/FgQm/Cfc81lebso8NhRWRQz5MOB7VXUeFxzQa2Gu2qdFEHKPGX3Z0KSff0KjGsXHZyOFjJ34ZMSa7EcfE60OXzVxEYfXeMnu85iS3a8qxrx2Th36Q9Vn43UIUu13/+1PosgKwJFcrek27NXzFpLJDmX+fHrps1vHo9MuvI3tpDOo1S123IDQRJ7JWEsVrUI9Ood5uI4eF9G888cukSglmDmkJ6vfFL/mai9LRAReY8iWW7InJLCWVMZssNMQAkH46rjWpLoepf6ujNfXoW2tczc+WNO6lUQDAoF6zqfv+1GjRjYsM2WZHl+pyQG/ocRQGffw0mfj1w98bst1jmTmkJWhU+Wf2eM1ZoF3rwqEG1AiTWUoapVVeaw0xAACPjSYnGDwh5/CCKyNvMHDi17Hqhv40PCHEgF4zIQTc8IZvYA+/YULjkGHMErFmTvw6Vl33E03rDSw6dryslV9zFmjXVJVDDSiMySwlja3/fS502TJDDP7+d9kRtOpI3vnhD2cDV9PxazoGl35i2sSvY6VdusDQXrMDZbXQRei8dbu2RZF25c4wbMGOGrMnfh0j7dZjhrQY+AXwUP6L1ljoJRoWadc41ICC2EpTUhBCYNLWp6w1xMAGOl3xminb/WxzSeSp3wT0kld2MW4i2Op9ZaxkYJKyH/7ZsAU7Nv/nucgbDJ741RyhBFYxM/oL4PD1bL9i1fXq100ZL0/2w2SWksKGwkrTZ83HZcEC2RG0KtXlMOXDYNy/TwtdTlQvuZETwdRVr1q/d8ymRvXJMmxbozc8kbDe/5Af/sHwMl2B+rJ1gcuAddqvllikXWsyXv5/90qLheRiMktJocub5s+aj8tvLVr0vJGIerMGrKaztagKOVppeCKLyad+gxyqcR9sZ+9/vtFEHIsnFjaT6nIEFqFA+yaBJaLsW3OarDxnQAK1vaTaPuNlAUu1a3VDGo2XN6kqC1kfk1myvRqvH308W8Kn6EwqzROXHTtkR9Cm8tPnGLqaTsZr00KXFSAhp36DjPhgq63X4Bac/GUmpfEksDjHnfrf/Xmj7SGhx0nLHROunGVAAnXos5fsM14WsFS7lnbZgoQuN0zWxGSWbO/7959NSGmeuAwZIjuCNuVMudmwT9CKWp/ULxZGfLB9f6DcoGioJQePO7fRSmCxjzut9voxuuwzaa8z581fGppATdr+jL3Gy1qsXatL782JYB0ck1myNV0XmLDliYSV5onZvdYfw2XkajqljcpxyfpiIRoSm3g/2Gq+edlevWQ25Pi/+eFJYHE8fuOHc0OXZb3OfJ36GJJAldXUW6+kYFss1q65f7WJE8E6OCazZGub//McHA2zzS35QfDzn7d9Hwso7X9+uz+YfZqOgcUfy/9icc7v2zVB55Sdc8O9ZM50o6KiRnplpcX9TUEIgZM2PSn9ddYkgYpzuMTiTcWhy5Ya798ai7Vrx46XN2u5YbIuJrNkW7ouMHTNo5Efanb4ILCgJiVu4rD+g7kJL8fVnGMn6MSyIlhVnS+yl2yGdSa6JJuIl1sMZwPW7C+3TOUSI8p0jfv0QgMj6rj0nmPDX2KFMQtykH0wmSXb2vDRXKiNe2UTNGs+JtdcIzuCqDgdxzQFMQ410HWB0et/a5kvFt44VwT7btfR0GXLDVlJMsX9fhTX2YCub8wIXZb9OmtSpivG3tmSyjocX7/NfpUzLNiuOW5aErrM3tmOh8ks2ZLXr2Hk2mN6ZRM4az5qLgtVVmhDTbf4l+rc8t/nLPXFIvXYFcHmjozqcTmf3GJKPNRU5zgW7Nh/1IP+dVvDyV9WX8PjikWTMl0x9s5uX/SniMfb5sySRdu1Jr2zBi/RTdbFZJZsqey506A0dL1ZIXlq0SuvyI4gahm3fRXXGEBNFxiy2npfLOq6N0rOK/a3eX+fpmNMxWf26yWzqYwUZ8yTdtS/nhm6rADArA2GxxUr//AL4xqjLYTAyY0mr9qKRdu1Jr2zBq7QRtbGZJZsZ2dpNXKrNlkuebK7Y1fTifaDoHD+5ZbqlQ1Ku/XrmHpnv9t1xF6F65NINIsPHKn2ondNo7JvijU+vlw/+1vosgJALLwrqsd9u/NI5PuGX54MIXqNjfxyEeVZGbI3a7QGZAueej8Ky2ux+VAl1uwrw8aDFdhRUo2ymnoIIdregAG8fg29Xzw+dN3yHwLz5smOICa+oRci4lC20ctUW6+hb+Eiy36x8DauP9lG72y/984LXbZjZ5kd+YdfGPXiA3Uv/SB0WQDAuU+bFlesROPT2xBRndU44c3Jocu2GmIAWLpdU3+xBMF3cOh9n6DhBnU+DYcqarG1qApr9pVhQ2EFthVXobTKm7DPyI7KKTsAsqYDZR7o712H4woXhT7Y0wSQBqB3C48RjTKAuu6jkXrLl01rmLaDEAL+3/VHuvCGTgUrqV2s/SHwwgvA734nO4qouS/9G8TD/wYQnkShtDIJquy5U9BLBO4sACgW6ZUNSr1nM8TDWeEb5o5s9tR0aZUX/RqNxbTa80hWrp+FX28AAhMPm/kydKDMgz6NemUVRbXU5Dz1piWh11nwrIbSSru0am8ZTtJK7Pt6s3i7ppz3DMTC2VDQ6Hj0P8XQ10xtvYY1+8ow/o0RcIk6AECKAHoi8NOcxp+RuuLEkdmF6NE51bCYOjImswQhBHaW1uC4l4chxV8JAOjT8CUyIheNIS9NLVkHPJINgcD669qDR+A6dsZ8jDFWPjEUmVpVZC/gfXvi3mZCbJA/pi9WvtwxcBWtDfydg5MomvlgLlz8QsRpX6v1ygb5MvrAVV0YSBwq9kNZMb/Jh5p/3hmhy1Z9HslKqC4oui808fDYZkYIgZQXRoevA1As1CsbMvLiQNLUcFV/Mg9qM+2TrgsMXhA+9W3L15vV27UJ10F8PReo3B9KaPWFs6G2M5kt99RD+8sUdK3YiFQBBPvWw0Nfot+WqvvR/encyE6gIT8NrGJIMbPEMIMXX3wReXl5SE1NxaRJk1BQUNDq/d99910MHToUqampGDVqFBYtWpSgSJODX9OxobACVU8MCfQmPJKNgS/2QYqvMvTGV5TwG1Q0+mmOaOY+ioLwtoQO52NdIB7OgvZIN3jq/THF6/VrqH80F5neosjk2srDC4L695cdQczcjZbqbGnsbFlNPXp98xtbHA/33Zsino++cHbE70sq69CzerPlxmJ2FOoPj1nk4piycAf+ejly/CWW7ZUNCvTEhk9vK3VlzZa4OzL3FHTWqy1TkSEuNmjX1NkbIJxp4c8kIPB5F+OQg3JPPY7MPQXi4Sxk/b47upZvjPiMjOZzssXPyMafkwBSt7wP8XAWxMNZ0B/uggNlntiedAcmvWf27bffxuzZszFv3jxMmjQJzz33HGbMmIGtW7eiR48eTe7/7bff4rLLLsMTTzyBH/3oR3jzzTfxk5/8BKtXr8bIkeYM9BZCwFOv4WhNPco89ThaU4+sjX/H6O8fbfmLWHOv6Da+ta078SHUnDgT3TunoHunFGSnu9p9ml4IgcLyWmwrrsLkd8cjVauEQwAjgiE1841SHHOT4kwHHjjU4j4iInwyD6gri3j6jZ+CqvuR9ng3CAXwq6mo+dV+ZKe7W4y9dMFVyNn7HyjimF7i3mOtPbwgyMKn4lojeo4FisK9ZPqjOcD9gdfA0Zp6dHmuH5TGwwssPtxDZB4HVB4I99I09Jr5NR2Zz/YL3w8W7fVLZhOuAxbdDQgt3DvbcDZg36fPo++BRZHvfQsfnyantw+ugfLyFODaxQCAI6/PRG7lMZNXLVCRIWY2adfUB4oCbVdDzz8Q+HIutiyE+kBRi487XO2F55/X4LjCRchqfJaytc/JkRe32AZGfEaumA80fKEWx9wn4nUudPR5rldEz+2+yb9Ftyk3o1OKMambp96Pw1X1KK2uQ2lVPaZ8MCF0draJOHIarzMTi89fjm4ZbnTt5EbXDDe6prub1jU3gCIkj0qeNGkSJkyYgBdeeAEAoOs6+vbti1/+8pe47777mtz/kksuQU1NDf773/+Gbjv55JMxZswYzItiUHplZSWysrLw5teb4UzNQL2mw+fX4fFpuOarKUjTq5o+qIW/kNElVZo9Es3s47uhv8Ge4y+F26HC7Qy8KGp9Grw+DVVeP25YMglONPR+HrPN5mI+9k2J3mONO+31SJdQ0fqmpw8jd+x1ZmLhOd+gYPVaPHroeriFFzg2iQUCPRl2+QC44ALgo49kRxEX7bc9ofprAx/KDbd54UYK6psel4crJEQYG/FwVvgDDYHhLwKAKvTIXtk5ZXICbAefz4dFixbh3HPPhcuiNUBbtWJ+KAkEAsdHhxpxbAQAxQ7v/ZenRAyXCL7W6uFEiqiPfD5GtrWJZLN2TX+kCxShh49JwxdxACjLGoFnO9+HczI24ZStTwRubm6YXcPNoZtSuxg3zK0h4T42uT3WsZ+ZQdUpPfGfsxYjza3C7XDAr+uo9+vwaQJVdT5csvSHyPIVH7Ox5kMxMq9pMbtsYR/fDPk1dva/BG6nihSnCn9dDS45dSgqKiqQmZnZ6r6kJrP19fVIT0/He++9h5/85Ceh22fOnIny8nJ8+OGHTR7Tr18/zJ49G3feeWfotjlz5uCDDz7AunXrmtzf6/XC6/WGrldUVKBfv37Yd2cnZKY0/YvGeiCN+uPFsttojlhrz+PYh4vOvaH94psYIoiduvYfUD97MHS91Tdq8D7NfAsWQ86Hdv6fYBeOyy+H9uabssOIm/PpARHHSoimx0Wf9hj0MVcmOrSYOf5zO5St/4n8QEPkaUK7PJdj+Xw+fPHFFzjzzDPtmcwCcDw/Boq3IuL4RJzCdaRCm7VZVngxae65AMc8n5QsaL9cKyG69rNju+aYOwyKVtdypwpa7+wBEnfMHE8PhILIlQtbyxHamxM02V70d215f3E85tjnUekV6PdcNcrLy5GVldX8g8IPlqewsFAAEN9++23E7XfffbeYOHFis49xuVzizTffjLjtxRdfFD169Gj2/nPmzDl2uAp/+MMf/vCHP/zhD39s8LN///4280npY2bNdv/992P27PCED13XcfToUXTr1s3QslFkjMrKSvTt2xf79+9v87QCJRaPjXXx2Fgbj4918dhYlxACVVVV6N27pYKgYVKT2ZycHDgcDhQXR47lKC4uRs+ezVdq69mzZ0z3T0lJQUpKSsRt2dnZ8QdNCZGZmcmGxaJ4bKyLx8baeHysi8fGmtocXtBAag0at9uNcePGIT8/P3SbruvIz8/H5MmTm33M5MmTI+4PAIsXL27x/kRERESUvKQPM5g9ezZmzpyJ8ePHY+LEiXjuuedQU1ODa6+9FgBw9dVXo0+fPnjiiScAAHfccQfOOOMMPPPMMzjvvPPw1ltvYeXKlXj55ZdlPg0iIiIikkB6MnvJJZegtLQUDz30EIqKijBmzBh8/PHHyM3NBQDs27cPqhruQD7llFPw5ptv4oEHHsCvf/1rDB48GB988IFpNWYpsVJSUjBnzpwmQ0NIPh4b6+KxsTYeH+visUkO0uvMEhERERHFi+s2EhEREZFtMZklIiIiIttiMktEREREtsVkloiIiIhsi8ksJdTRo0dxxRVXIDMzE9nZ2bjuuutQXV3d6mPq6upw6623olu3bujUqRMuuuiiiIUz1q1bh8suuwx9+/ZFWloahg0bhj/+8Y9mP5WkY8axAYDbb78d48aNQ0pKCsaMGWPiM0guL774IvLy8pCamopJkyahoKCg1fu/++67GDp0KFJTUzFq1CgsWrQo4vdCCDz00EPo1asX0tLSMG3aNGzfvt3Mp5C0jD42//73vzF9+vTQypRr1641MfrkZ+Tx8fl8uPfeezFq1ChkZGSgd+/euPrqq3Hw4EGznwbFos0Fb4kMdM4554jRo0eL7777Tnz99ddi0KBB4rLLLmv1MTfddJPo27evyM/PFytXrhQnn3yyOOWUU0K/nz9/vrj99tvFkiVLxM6dO8Xf//53kZaWJp5//nmzn05SMePYCCHEL3/5S/HCCy+Iq666SowePdrEZ5A83nrrLeF2u8Wrr74qNm7cKG644QaRnZ0tiouLm73/N998IxwOh3jqqafEpk2bxAMPPCBcLpdYv3596D5PPvmkyMrKEh988IFYt26duOCCC8SAAQNEbW1top5WUjDj2Lz++uvikUceEa+88ooAINasWZOgZ5N8jD4+5eXlYtq0aeLtt98WW7ZsEcuWLRMTJ04U48aNS+TTojYwmaWE2bRpkwAgVqxYEbrtf//7n1AURRQWFjb7mPLycuFyucS7774bum3z5s0CgFi2bFmL+7rlllvEmWeeaVzwSS4Rx2bOnDlMZqM0ceJEceutt4aua5omevfuLZ544olm7/+zn/1MnHfeeRG3TZo0SfziF78QQgih67ro2bOn+MMf/hD6fXl5uUhJSRH//Oc/TXgGycvoY9PY7t27mcy2k5nHJ6igoEAAEHv37jUmaGo3DjOghFm2bBmys7Mxfvz40G3Tpk2DqqpYvnx5s49ZtWoVfD4fpk2bFrpt6NCh6NevH5YtW9bivioqKtC1a1fjgk9yiTw21Lr6+nqsWrUq4u+qqiqmTZvW4t912bJlEfcHgBkzZoTuv3v3bhQVFUXcJysrC5MmTeKxioEZx4aMk6jjU1FRAUVRkJ2dbUjc1H5MZilhioqK0KNHj4jbnE4nunbtiqKiohYf43a7mzQaubm5LT7m22+/xdtvv40bb7zRkLg7gkQdG2rb4cOHoWlaaBXEoNb+rkVFRa3eP/h/LNukpsw4NmScRByfuro63HvvvbjsssuQmZlpTODUbkxmqd3uu+8+KIrS6s+WLVsSEsuGDRvw4x//GHPmzMH06dMTsk8rs9KxISKyM5/Ph5/97GcQQuDPf/6z7HCoEafsAMj+7rrrLlxzzTWt3uf4449Hz549UVJSEnG73+/H0aNH0bNnz2Yf17NnT9TX16O8vDyiB7C4uLjJYzZt2oSpU6fixhtvxAMPPBDXc0k2Vjk2FL2cnBw4HI4mVSFa+7v27Nmz1fsH/y8uLkavXr0i7sMKE9Ez49iQccw8PsFEdu/evfj888/ZK2sx7JmlduvevTuGDh3a6o/b7cbkyZNRXl6OVatWhR77+eefQ9d1TJo0qdltjxs3Di6XC/n5+aHbtm7din379mHy5Mmh2zZu3IgzzzwTM2fOxOOPP27ek7UZKxwbio3b7ca4ceMi/q66riM/P7/Fv+vkyZMj7g8AixcvDt1/wIAB6NmzZ8R9KisrsXz5ch6rGJhxbMg4Zh2fYCK7fft2fPbZZ+jWrZs5T4DiJ3sGGnUs55xzjhg7dqxYvny5WLp0qRg8eHBE+acDBw6IIUOGiOXLl4duu+mmm0S/fv3E559/LlauXCkmT54sJk+eHPr9+vXrRffu3cWVV14pDh06FPopKSlJ6HOzOzOOjRBCbN++XaxZs0b84he/ECeccIJYs2aNWLNmjfB6vQl7bnbz1ltviZSUFLFgwQKxadMmceONN4rs7GxRVFQkhBDiqquuEvfdd1/o/t98841wOp3i6aefFps3bxZz5sxptjRXdna2+PDDD8X3338vfvzjH7M0VxzMODZHjhwRa9asEQsXLhQAxFtvvSXWrFkjDh06lPDnZ3dGH5/6+npxwQUXiOOOO06sXbs24jOGbZh1MJmlhDpy5Ii47LLLRKdOnURmZqa49tprRVVVVej3wdI0X3zxRei22tpaccstt4guXbqI9PR08dOf/jSikZ8zZ44A0OSnf//+CXxm9mfGsRFCiDPOOKPZ47N79+4EPTN7ev7550W/fv2E2+0WEydOFN99913od2eccYaYOXNmxP3feecdccIJJwi32y1GjBghFi5cGPF7XdfFgw8+KHJzc0VKSoqYOnWq2Lp1ayKeStIx+tj87W9/a/Y9MmfOnAQ8m+Rj5PEJtnvN/TRuC0kuRQghEtcPTERERERkHI6ZJSIiIiLbYjJLRERERLbFZJaIiIiIbIvJLBERERHZFpNZIiIiIrItJrNEREREZFtMZomIiIjItpjMEhEREZFtMZklIiIiIttiMktEREREtsVklojIoqZMmYI777wzpsccOXIEPXr0wJ49eyJuF0Lg2WefxYABA5Ceno6f/OQnqKioAABceumleOaZZwyKmogosRQhhJAdBBERNXX06FG4XC507tw56sfMnj0bVVVVeOWVVyJu/9WvfoUPP/wQ8+fPR0ZGBn7yk5/g4osvxty5c7Fhwwb84Ac/wO7du5GVlWX00yAiMhWTWSKiJOHxeNCrVy988sknOPnkk0O3L1++HJMnT8bKlStx0kknAQAeffRRvPHGG9i6dSsAYMKECbjmmmtw6623SomdiCheHGZARCTRe++9h1GjRiEtLQ3dunXDtGnTUFNTA6DpMIMpU6bg9ttvxz333IOuXbuiZ8+eePjhh0O/X7RoEVJSUiISWQB4+umnMXXq1FAiCwC5ubk4fPhw6Pr555+Pt956y5wnSURkIiazRESSHDp0CJdddhl+/vOfY/PmzViyZAkuvPBCtHbC7LXXXkNGRgaWL1+Op556Co8++igWL14MAPj6668xbty4iPt7vV4sXLgQP/3pTyNur6urixhSMHHiRBQUFMDr9Rr4DImIzOeUHQARUUd16NAh+P1+XHjhhejfvz8AYNSoUa0+5sQTT8ScOXMAAIMHD8YLL7yA/Px8nH322di7dy969+4dcf/Vq1ejtrYWd911F+65557Q7T6fD2eeeWboeu/evVFfX4+ioqJQLEREdsBklohIktGjR2Pq1KkYNWoUZsyYgenTp+Piiy9Gly5dWnzMiSeeGHG9V69eKCkpAQDU1tYiNTU14vfbtm1DRkYG1q5dG3H7eeedh1NPPTV0PS0tDUBg3C0RkZ1wmAERkSQOhwOLFy/G//73PwwfPhzPP/88hgwZgt27d7f4GJfLFXFdURToug4AyMnJQVlZWcTvKysrkZOTg0GDBoV+XC4Xtm/fjosuuih0v6NHjwIAunfvbtTTIyJKCCazREQSKYqCU089FY888gjWrFkDt9uN999/P65tjR07Fps2bYq4LScnBxUVFRHjcB9//HGce+65GD58eOi2DRs24LjjjkNOTk58T4SISBIOMyAikmT58uXIz8/H9OnT0aNHDyxfvhylpaUYNmxYXNubMWMG7r//fpSVlYWGKpx11lmoq6vDk08+iUsvvRRvvPEG/vOf/6CgoCDisV9//TWmT5/e7udERJRo7JklIpIkMzMTX331Fc4991yccMIJeOCBB/DMM8/ghz/8YVzbGzVqFE466SS88847odtyc3OxYMEC/PnPf8aIESPw3XffYenSpejbt2/oPnV1dfjggw9www03tPs5ERElGhdNICJKIgsXLsTdd9+NDRs2QFWj66/485//jPfffx+ffvqpydERERmPwwyIiJLIeeedh+3bt6OwsDCi97U1LpcLzz//vMmRERGZgz2zRERERGRbHDNLRERERLbFZJaIiIiIbIvJLBERERHZFpNZIiIiIrItJrNEREREZFtMZomIiIjItpjMEhEREZFtMZklIiIiIttiMktEREREtvX/c+dEYvYD2moAAAAASUVORK5CYII=\n"},"metadata":{}}]}},"663402ce22894caabfd4bb0692032b43":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"ce602f26c89740d18f02f74901ff0174":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"50a9631cc8af41acb9eefa76dd323a00":{"model_module":"@jupyter-widgets/controls","model_name":"SliderStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"SliderStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":"","handle_color":null}},"ebbce7ace3e646ee919d435722506319":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"5705a299262347d2b147eacd16078641":{"model_module":"@jupyter-widgets/controls","model_name":"SliderStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"SliderStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":"","handle_color":null}},"22a44308751f403dbb2e5b1cdb4c4340":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"246a0349dc5a41dba6810bc5aa892da7":{"model_module":"@jupyter-widgets/controls","model_name":"SliderStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"SliderStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":"","handle_color":null}},"ad71fbd1c0d84e29ad89bedfe8cf06d9":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"8665cd93eda94e9f94e0d8db446e38a2":{"model_module":"@jupyter-widgets/controls","model_name":"SliderStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"SliderStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":"","handle_color":null}},"64d395e3366d477c87426d2af543dce4":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"f0f6814a19f945f1984606291cba6c3e":{"model_module":"@jupyter-widgets/controls","model_name":"SliderStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"SliderStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":"","handle_color":null}},"9e3a3f13ccea4989813c67f8972fd99c":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"428ce04ec5224496a90025c8dda9df9f":{"model_module":"@jupyter-widgets/controls","model_name":"SliderStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"SliderStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":"","handle_color":null}},"5a211ecbbba44ca09d06db97efac8f5c":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"02ba8ede78d8409a9f8220c5082423c1":{"model_module":"@jupyter-widgets/controls","model_name":"SliderStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"SliderStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":"","handle_color":null}},"f83f4b8a33e64bb1a413872e6a463391":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"930779ea26d9482babc2875ba14b6e5a":{"model_module":"@jupyter-widgets/controls","model_name":"SliderStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"SliderStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":"","handle_color":null}},"74d2c8a324664807a60f25460b269b68":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}}}}},"cells":[{"cell_type":"markdown","source":["\"Open"],"metadata":{"id":"c2CN3ukuQ2SM"}},{"cell_type":"markdown","source":["\"Licencia
The following notes written by Sergio Gutiérrez Rodrigo () . Distributed under License Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional"],"metadata":{"id":"tYZjdh8TvE7-"}},{"cell_type":"markdown","source":["```\n","Departamento de Física Aplicada\n","Universidad de Zaragoza\n","Instituto de Nanociencia y Materiales de Aragón (INMA)\n","C/ Pedro Cerbuna, 12, 50009, Zaragoza, España\n","```\n","\n","\n","\n","\n"],"metadata":{"id":"j2H5UHGe1Uf8"}},{"cell_type":"markdown","source":["---\n","# **Óptica - Tema 9 - Redes de difraccion**\n","\n","---"],"metadata":{"id":"D7vYGeB21ZQU"}},{"cell_type":"markdown","source":["![image.png]()"],"metadata":{"id":"OLllv-xkRZpT"}},{"cell_type":"markdown","source":["$I_P=cte \\, I(\\alpha_P) \\, D(\\alpha_P)$\n","\n","where:\n","+ $I(\\alpha_P)=\\dfrac{\\sin(N k \\alpha_P d)^2}{\\sin(k \\alpha_P d)^2}$\n","+ $D(\\alpha_P)=\\dfrac{\\sin(k \\alpha_P a)^2}{(k \\alpha_P a)^2}$\n"],"metadata":{"id":"lEGel4zCRdKS"}},{"cell_type":"markdown","source":["# Slit array diffraction"],"metadata":{"id":"msMRElpxqPG9"}},{"cell_type":"code","source":["import numpy as np\n","def D(xp, yp, P, a, lambda_nm):\n"," '''\n"," For (xs,ys)=(0,0)\n"," '''\n"," k = 2.0 * np.pi / (lambda_nm*1e-9)\n"," alfa_p=xp/np.sqrt(xp**2+P**2) #sin(theta)\n"," tolerance=1e-9 # To avoid Zero Division Errors\n"," U=k*a*alfa_p + tolerance\n"," return (np.sin(U)/U)**2\n","\n","def I(xp, yp, P, N,d, lambda_nm):\n"," '''\n"," For (xs,ys)=(0,0)\n"," '''\n"," k = 2.0 * np.pi / (lambda_nm*1e-9)\n"," alfa_p=xp/np.sqrt(xp**2+P**2) #sin(theta)\n"," tolerance=1e-9 # To avoid Zero Division Errors\n"," W=k*d*alfa_p + tolerance\n"," return (np.sin(N*W)/np.sin(W))**2\n","\n","def diffraction_slits(xp, yp, P, a,d,N,lambda_nm):\n"," return D(xp, yp, P, a,lambda_nm)*I(xp, yp, P, N,d, lambda_nm)/N**2 #Normalized to 1"],"metadata":{"id":"1DGR2OI_oNnI"},"execution_count":null,"outputs":[]},{"cell_type":"markdown","source":["# Parameters (geometry)"],"metadata":{"id":"31WL-PawSmg-"}},{"cell_type":"code","source":["P = 1.0e-2 # m\n","a=1e-5 # m\n","d=a*2 # m\n","N = 6\n","cte = 1.0 # Amplitude (arbitrary units)\n","tolerance=0.0 #1e-9 # To avoid Zero Division Errors"],"metadata":{"id":"zeQjDEdwSplf"},"execution_count":null,"outputs":[]},{"cell_type":"markdown","source":["# Diffraction pattern at $\\varphi=0$ (both analytic and numerical)"],"metadata":{"id":"Hs2F_KgvDsaS"}},{"cell_type":"code","source":["def calc_diff_pattern_phi0(Xp=500,lambda_nm=600.0):\n"," m=2\n"," alfa_min_D=lambda_nm*1e-9/(2.0*a) # First minimum of D as a function of sen(theta)\n"," alfa_max_I=lambda_nm*1e-9/(2.0*d) # First maximum of I as a function of sen(theta)\n"," xpm = m*P*alfa_min_D\n"," print('1st Min. Difraction at lambda/2a=',alfa_min_D)\n"," print('1st Máx. Interference at lambda/2d=',alfa_max_I)\n"," print('gamma (width)=',lambda_nm*1e-9/(N*d))\n"," diff_pattern = []\n"," for i in range(Xp):\n"," #print(\"iteration\",i,' of ',Xp)\n"," xp=xpm * (Xp - 2 * i) / Xp + tolerance\n"," alfa_p=xp/np.sqrt(xp**2+P**2)\n"," yp=tolerance\n"," D_= D(xp, yp, P, a, lambda_nm)\n"," I_= I(xp, yp, P, N,d, lambda_nm)\n"," diff_pattern.append([xp,alfa_p,D_,I_,cte*D_*I_])\n"," return np.array(diff_pattern)\n","\n","diff_pattern=calc_diff_pattern_phi0(Xp=5000,lambda_nm=500.0)"],"metadata":{"id":"wPzGpwenEAp2","executionInfo":{"status":"ok","timestamp":1701809313022,"user_tz":-60,"elapsed":5,"user":{"displayName":"SERGIO GUTIERREZ RODRIGO","userId":"07959720391705098820"}},"colab":{"base_uri":"https://localhost:8080/"},"outputId":"07abca28-5dfb-47ee-df1e-670775531958"},"execution_count":null,"outputs":[{"output_type":"stream","name":"stdout","text":["1st Min. Difraction at lambda/2a= 0.025\n","1st Máx. Interference at lambda/2d= 0.0125\n","gamma (width)= 0.004166666666666667\n"]}]},{"cell_type":"markdown","source":["## Plot static figure"],"metadata":{"id":"-4fIGoHKPuTZ"}},{"cell_type":"code","source":["import matplotlib.pyplot as plt\n","\n","x=diff_pattern[:,0]\n","alfa_p=diff_pattern[:,1]\n","D_plot=diff_pattern[:,2]\n","I_plot=diff_pattern[:,3]/np.max(diff_pattern[:,3]) # Normalized to 1\n","DI_plot=diff_pattern[:,4]/np.max(diff_pattern[:,4]) # Normalized to 1\n","\n","plt.plot(alfa_p,DI_plot,label=r'$D(\\alpha_P)\\, I(\\alpha_P)$',linewidth=0.5,marker='o',markersize=0.5)\n","plt.plot(alfa_p,D_plot,label=r'$D(\\alpha_P)$',linewidth=2.0,marker='o',markersize=0.0)\n","plt.plot(alfa_p,I_plot,label=r'$I(\\alpha_P)$',linewidth=0.5,marker='o',markersize=0.0,alpha=0.5)\n","\n","plt.xlabel(r'$\\sin(\\theta)$')\n","plt.ylabel('Intensity (normalized to unity)')\n","plt.legend()\n","plt.show()"],"metadata":{"id":"T6Py4-VcDspb","colab":{"base_uri":"https://localhost:8080/","height":451},"executionInfo":{"status":"ok","timestamp":1701809313893,"user_tz":-60,"elapsed":874,"user":{"displayName":"SERGIO GUTIERREZ RODRIGO","userId":"07959720391705098820"}},"outputId":"8f593ad9-1dbb-44bd-9cf3-d614183596e0"},"execution_count":null,"outputs":[{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAjcAAAGyCAYAAAAYveVYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADeYUlEQVR4nOydeZwcZZ3/31XdPfeRTObKTO47IcckgUC40UAUDKKuK/EAUfDnwSrGZXdRQGEXosipoiyiqKtyqBhxYYUkBAiQZMhF7vuYZJKZydz3dHdV/f7o6Z7umb6nj3qeqffrlRc13dVVT1FVz/N9vt/P9/sohmEYWFhYWFhYWFhIgpruBlhYWFhYWFhYJBLLuLGwsLCwsLCQCsu4sbCwsLCwsJAKy7ixsLCwsLCwkArLuLGwsLCwsLCQCsu4sbCwsLCwsJAKy7ixsLCwsLCwkAp7uhuQanRd58yZM+Tn56MoSrqbY2FhYWFhYREFhmHQ0dFBRUUFqhreNzPijJszZ84wfvz4dDfDwsLCwsLCIg5OnTrFuHHjwu4z4oyb/Px8wPM/p6CgIM2tsbCwsLCwsIiG9vZ2xo8f7xvHwzHijBtvKKqgoMAybiwsLCwsLAQjGkmJJSi2sLCwsLCwkArLuLGwsLCwsLCQCsu4sbCwsLCwsJAKy7ixsLCwsLCwkArLuLGwsLCwsLCQCsu4sbCwsLCwsJAKy7ixsLCwsLCwkArLuLGwsLCwsLCQCsu4sbCwsLCwsJAKy7ixsLCwsLCwkIq0Gjdvv/02K1asoKKiAkVRWLNmTcTfvPnmmyxatIjMzEymTZvGb37zm6S308LCwsLCwkIc0mrcdHV1sWDBAp588smo9j9+/DjXXXcdV111FTt37uSOO+7g1ltv5bXXXktySy0sLCwsLCxEIa0LZ370ox/lox/9aNT7P/XUU0yePJlHHnkEgNmzZ/POO+/w2GOPsXz58mQ108LCwuxobjhdDQ37wd0H+eUw8RLIL0t3yywsLNKAUKuCb9q0iWXLlgV8tnz5cu64446Qv+nr66Ovr8/3d3t7e7KaJz3Nvc1k2bLIceSkuylJQTd0znWfoyxX3gGxvque0VmjybBlpLspicHVC9X/De/9DLoacAFNNhvlmub5fuZ18KHvQdl5aW1mIqntrKU8pxybakt3U5JCj7uHXncvo7NGp7spSaOuq47y3PJ0N0NqhBIU19XVUVYWOPCUlZXR3t5OT09P0N+sXr2awsJC37/x48enoqlS8vejf+dA84F0NyNpnOs+x18O/yXdzUgqfzn8F053nE53MxLDuUPwyw/B2nuhqwGAUw47L+XnDexz8BX47yvgncfAMNLU0MTytyN/o7GnMd3NSBr7m/bz1yN/TXczkoZu6Lx0+CU6nB3pbkrSONl+EpfmSmsbhDJu4uGuu+6ira3N9+/UqVNJO9e+pn209bUl7fjpJtueTaerM93NSBptTs+9S/dLmUyy7Fk09TaluxnD51Q1PLMMGvb2f6DArI/xc8cneM19IU+6r6fNXuz5SnfBuh/A37/pCV8JjKZ7PFLNvc1pbkny6HZ3k2XLSnczkoa3D5V5rNjftB9FUdLaBqGMm/Lycurr6wM+q6+vp6CggOzs7KC/yczMpKCgIOBfsnBqTqmt8Sx7Ft3u7nQ3I2l0uboozi6W9ho1XSPPkUePO7iXUxhqt8H/fAK8g0PJbPh/b8ONf2C9Mp997ln82P3P3Jz/S7h0FdDfyW7/HbzybaE9ON3ubsZkjRH/Hoah09VJfkZ+upuRNDqdnZTklNDl6kp3U5KGZmjY1fSqXoQybpYuXcr69esDPlu7di1Lly5NU4sCybRl4tSc6W5GUjAMA7tiR9f1dDclafS4ehiVOYo+rS/yzgLS4+5hdNZosa+v/Qw891lw9nsQp1wJt62HsfMByMxwYWi52GwuZo8vhmXfh3/6FagOz/7bfwfvPJqetieAblc3RdlF9Gq96W5K0tB1HZtiwxDYCA1Hr9ZLYUah2O+hAKTVuOns7GTnzp3s3LkT8KR679y5k5qaGsATUrrpppt8+3/1q1/l2LFj/Nu//RsHDhzg5z//OS+++CLf/va309H8IWTaMqV9YF26C4fNke5mJJU+rY/8jHxp76FTd5LryBU37Ka54cWboLPO8/eEpbDyecjI9e1SkG2jICOficUOPnfhRM+Hcz8Fn3hq4Djr/xOOb0xhwxOHU3MyKnMUvW55jRsAh82BWxc7hBgKp+akILNA2n4GQCG9ISlIs3GzdetWFi5cyMKFCwFYtWoVCxcu5N577wXg7NmzPkMHYPLkybzyyiusXbuWBQsW8Mgjj/DMM8+YJg08w5Yh7QPbp/WRactMdzOSSp/e5+l03HLeQ6fmFPsevvMonH7fsz1qAnzm9+AIDEe39bjo7FWobWvjbztrB76Y909w1ff6/zDgr/8PusXTrchugHvJtGVK652S/R6axeOW1qDYlVdeGfZ/RLDqw1deeSU7duxIYqviR+awlFNz4lDl9tzouk6uPZcut5yxcKfmJEMVNAW8bg+89SPPtqLCp34NucVDdlMUwHCAojGkZ7nsO3D8bTixEdpr4fV74IboCoiaBafuJMueZZoBJFl4J4r5yKe9cWpOijKLqOuqS3dTkoJZvPxCaW7MToYtA6cur3GTactEURR0Q17dTaYtU1rPTZ/WJ2Z9G8OAV+8Eb5jisu/A+AuG7Fbf7pnpzygdRUm+jRuqKgN3UG3wif+GzP6kgp2/h5otyWx5whHe+xYB3dBRFIUsW5a0E0Wv50bm6zPDM2oZNwlkJISlHKq8sXCATLu8uimn7hTTuNnzF6h5z7NdNAUuvzPobs9V19DVp9HjBJfuZt3++qE7FVbCh+4e+PvV70B/erUICO19iwLv9WXYMqQOS2XaM6WdJJrFy28ZNwlE5rCUS3dhV+3YVTsuXVBBahTYVbu0xptLc/mMG2HCGu4+WPv9gb8/8iOwB58VXjmjGFVRuHxaKapNY9nsEJWmz/8ylM/zbNftht1/SnCjk4ewBmqUuHU3DpsDh+oQV/geAbfuNsXgnyxcussUz6hl3CQQVVGltcZHQqcDYFckNm50Fw7V4THgDEGucdtvob2/ovK0q2HGNSF3/cfeWgzDxuZj7TjdITw3ADY7LF898Pebq0GQZ9qluaQfGO2KZxKlGeJ41GJB0zVsipxLZ4B5nlHLuLGICrfuxq7YPcaNxJ4bh+oQZ+CPEbfuHvC+iTCYu3pg4yMDf3/4nrC7L5lciF21c/XssahqGM8NwOTLPDVyAFpOwM4/DLu5qcAMxdGSif8zKuskA0h79d5k4jJcpnhGLePGIirchqfTkbX+hG7oqIqKTbVJeX0waOAQwYDb+uxATZvZK2DsgrC7v3GwDkNXefNAc2jNjT9X+Wlv3vqxEN4bt+7GptikFfb7nlGJPahezFALJhl472G6sYwbi6jwPrCyem6816cqqjh6lBgJ8L6ZfSDXXLDJL037yrsi/mT++Dzsqp0bqiZE9tyAJ+Nqen+NrPbTsNf8izXqho5NtUn/HsoclpIdy7ixEArZBcVmeSGTidtwD2huzD4r3ve3Aa3NjI9A2XkRf7L5WCO6ofLq7gbc0XhuAC751sD2ez8VZt0pIe5hHLgMj17Dptqk7GdGApqu4VAszY2FIMjuufEabzLj1t1izPoNAzb9bODvpd+I6mczx+aQaXNw4/mTUJQoPDcAEy+GCk+FdOp2eQr8CYAQ3rc4GCmaG/AkoGgClSGIFrfh6WfSjWXcWESFUCGNOPBqGWTGMAxURTV/raKaTXCmvwp5+XyYdFlUP9te04RbU/jz9lp0g+g8N4oCS28f+HuTGBWLhdFNxYi/5kbGgd8f2e9hurGMmwQjs0hMuDTiGDDLC5kKTB9a3Prrge2lt/evqRCZ+eNzmVpSwN3XzSE/y87KJROiO9+cj0PBOM/2odeg9VSMDU49Mk8yhBK9x4i/ns+m2KQ04MziBbeMmwQjexaDrC+kV48yEjC156a72aO3AcgugvNuiPqnvW439njuoc0Bi2/u/8OAHb+P/RgpRtawTcAkSsLr0wwNVfUMu6afZMSJWSaKlnGTYGQd/MFjuNlUm5RZDGZ5IVOBqe/hB8+Dt8p31WdDViMOxtaTjRxr6OG/XtlHR6+b56proj/vws97FuQE2PE/pl2SwehfDtSm2qT0bLh0FzbFJm3Wolt3+8S2smaEabqGXUl/X2oZNwlGVmvc16lKarwNNm5k7Fi92BST1vIxDNj2m4G/F90cctdgTCvNZm7F6NjDUgAFFX5p4bVwZF1M5041smpSNF3uIoWaofnEtrJ6p7w10dKNZdwkGFmtca+WSFVUKa/PX1Bsas/GMPA3UE0ZOj21BRoPerYnXAwlM2L6eY/biUO1U5KfSVGOg+eqa3wrhUfFYj9jattvYzp3KvAv2y/re6gZGqoi77Dkf33SGjcm8YLL+xSlCdkra8pqvOmG7hs4ZL2HXgPVtMbbB88NbC+6KeafH6xrZ8+ZTp6rrqG528W6/fWxhaamXQ35FZ7tQ/+ArsaY25BM/Gf9pr2Hw0T25SX8Qzayet+81d7TTfpbIBmydjpeZA1LjYSBw4spZ/1uJ+xd49l25HiWW4iR8UWZnD9hDCuXTKAox8Gy2WWxhaZsdpj/z55tQ4N9a2JuQzLxn/Wb1vs2TEaE56ZfUGxTbbgM+SQMZskYlvcpShOyuhq92BQ5B37/TtWUg/8w8dcQmXLGeGQt9LZ6tmddB5l5MR/Cqbmx+xUPM/Q4dFPzPj2wvfvPsf8+ifjP+k2rmxomZhGjJgv/0KLsY0W6sYybBCNrp+NFVq/GYHexrss1K/Z3FauqCY23XS8ObM/757gOcbK5k20nW3muuobWHo21B+piC0uBZ5mHktme7ZpN0Brj75PIYM+N6e5hAjBLSCNZBIS/VRNOMiRC3qcoTZi6hkgCkDVFM8Bzo6rSpdkGCBnN5rnpbfdoXAByxsDUq+I6TGl+BpdMLWXlkgmMLczhkmmjYwtLgadg4Lx/GvjbRN4b/4HRpsoZlvI3brwCeJnwX5pAVm2fWbCMmwQjq2dDdgI0NxLqGfyvz3RhtwP/C+7+rKbzPukpqhcHLr8sjQybHZcW5zWa1LgZfA9lHRiV/orUCop0E6nBBqqp3sMEYRajVN7gZpqQMSwlWwcTDF3XA9JsZTNuTN2p7nt5YNvfsIiRs23ddDQ3k5dZQ0O7i4b6ekZl53LHsthSyhk9CcYtgdPV0LAXGvZD6ey425UoND3Q+ybbMzoY73so05pv/pobGSdRZsLy3CQYGR9Y2ePgEOgultFADajjY6aMt74OOPqGZzuv3GNUxMmoXBvLZpWzcskEJhXlcf6kUbGHpbzM/dTA9v6/x92mROKfJm06AzUJyDjJkD1xAaxsKWmR8YUcCcZNgGdDUgPV3zNlFtcxh9eC1ufZnv0xUON/znRdH9Az2Oy4hzNwzLpuYPvA/8Z/nAQyRFBsFgM1ScgomvY3UGUcK8yE3CNWGpD1hbSp8riGgxFQ/dWM2UTDxLT30N8rEkdtG39aul2sO+Ap3HequZf3TzTGni3lZdR4GFvl2T77gSmypgJSwS3PjZAMDkvJfg/TiWXcJBhVlfCFNDSp4t7B8L9G02UTJQB/vYZpcPXC4dc929mjYeKlwzqcf+G+GWWFzB9XEH9YCmDWxwa2D7wyrLYlgoB0fklDGv7IaMD59zMyGm9mwmS9nfjIaI2PBONGN3TzZhMlAFOWtT+2AZydnu2Z13kqBCeIjEQMjLP9jJv96Q9NmTqdPwnIGB6WPStTN3Rftlu6sYybBCOjNe7vSpUV/1mxjJ2OKcvaJzAkBQSsJ3X0XA+7apvjD0sBlMyCoqme7Zr3oKtp2G0cDv4GqlkGkGQi5SRDHyQolsxANVM/Y45WSISUL6RZ9RpJQsYCaaZLqdV1OPSaZ9uRC1OuHPYhR/uFpeZVjGZmed7wwlKKMuC9MXQ49H/DbuNwMNPAkQpknWT4Z7zJdn1m6mdGzpuSImyKTbrS/cH0GjLXvlEVCSsUm837dmYHdPevuj31KnBkDfuQDpvKHctmUFaQxeicTC6bPoaygmEeN0B38+rwjjVMZF93aTCyezaknAibqJ+xjJsEI+MDqxt6gF5DRtG0P7LOGE016z/82sD29KuHfbj69l4aOvqob/dUOnZqCusPnPX9HTeV50NOsWf7+Fue1cvThG7ovhWlZWSwXkNKQbHk2VJm8vLL+6akCRkHRrfhDhgYZXwp/ZGxhojpBMXeLCmA6dcM+3DPVdfQ0ev2aWz2nO7gcEP78DQ34Km7M22ZZ9vZ6VlMM034F2KUkcEGuKwTxYB6U5J5wC3PjcTIONvQDT3AHS5jBV9/ZLyHgweOtFYR7aj3hKUAyudBQcWwD7lyyQTys+w+jc2Fk4uZWJw1PM2NF3/Pkr9RlmLMpGdIBoPDbrJOFM3i2UgGZvIQm6MVEiHjCzlYc2NX5V7XRsYZYzC9RtpmjUfWDmxPX56QQ5YVZFGSn+nT2BTnZbFwfMHwNTcAUz8E3uf/yLrhHy9OzDRwJAP/cgwg53sou4FqpuuT901JEzK+kIPjqDJeoz8yGqiD9RppLVmQ4JAUwNnWbs75aW76nLDlRNPwNTcAOUUe7Q3AuQNpq1ZsutBiggkW/pYxOcMsg38ysDQ3EiNlnZtBRfwszY14DNZrpO051VxwdINnO7sIxp2fkMP+fssJOno1n8Zmy/EWapo7hq+58RIQmlober8kIvsab7oeGP6WcRIl+z00U8FXef8vpwkpRWJBhH6yGXD+yNqpBhioqi096e6nqqGv3bM97cOQoFneigVljM7O9mlsPjR7LGMLMxOjuYEBUTGkLTQ1IgTF6iDPjYT9jMwFGM3kmbKMG4uIBJtRydjpeJGxuNZgAzVtA8exDQPb/gbDMMnPtjNpTJ5PY1OWn82M8pzEaG7As4hmboln+9hb4O5LzHFjYLAmBeSqN6UbOqrfkCTjeyg7gw3UdGKOVliYGs3QAmYbshk3gwcIm5Imr0YSGey5SZt36tibA9uTr0jYYWtbuzjdOqC56erT2XumLTGaGwhMCXd1pSUlfEjGm6JgIJlxI3kquOxYgmILoTAwzKHXSBIGhvxCxmAu/1RfY08r1G7zbJfMhoKxCTv0yztP0dLp8mlsNhxopL69O3GaG4CpHx7YPvZW4o4bJaYxUJPEYM+UrGEpmTFTRp85WmFhajQ90HOjoEjV6Qz2TMkYEx88MCqKgk6K7+GJjZ41miAha0n586E5JZQWDGhurp9fyZg8R+I0NwCTLx/YPp5648YwjCGeDZnCUpqhBdRfks14GwlYnhsLoRgiRlVsUnWqZnohk4Vu6EMGjpQbqP4hqalXJfTQ+Zk2ZpUP1LWpGJXL+KLsxGluAPLLPB4n8BQh7GlN3LHjQEUyD6phDM3KlCxrUXYGL6GRTizjxiIiOkNj4Smf9ScR2dMzwSQuf28KuGqHiRcn9NB17d0caej2aWw6et0cb+pMnObGy5R+nZChw4l3EnvsGJEtPDw4dGp5bsTDTBNFuXt0i4Sg6/oQIaNMnU4w40YmoSYEX34hpQNjaw00H/Vsj1sCmfkJPfz6/fXUtTp9Gpu/f3CW5q6+xGpuIFAEnYbQlD+yGTdDsqVGiOZGNi+4WSaK5miFhakZ7LmRMSw1+IVM69pLScAwjICBI+V6Df+QVIL1NgAXTyti3Ogcn8bmxiUTKciyJVZzAzDpkoGlGNIgKvYnLbqpJDIkW0qV33MjpYFqGTcWohBUjCrZC2kWV2qyCJZmm9KB8ahffZsE620AsjNVFk0o8mlsxo/KpbjAkVjNDUBWIVQs8mw3HoT2s4k9fgzIKCgerLmRqZ8JhmzGjVWh2EIoBi+cKZuQcXC2lKwMqVWUqlRww4Djb3u2M/IHjIME0tTRy+7THT6NzblOJw3tfYnX3ECg58l7XWlANk3KSKxzI9tSNoMTF9KJZdxYRGSIoFiVy7gZCZ6bwaTUc3PuIHQ3erYnXQK2xC/++O7RBk419/g0Ns9V19DR60685gYGRMWQUt3NYB2YbLP+YOFvma4vGNLdwyBVtNOFZdwkCZncxUNmVFjZUqKT0tDiiY0D2xMvScopFk4oZEpJvk9js3LJBPKz7InX3IBHEG3vD3cde8vjmUoDKnKFpQYnLowIz40qn+fGLH2pOVohGaqiSpVtE3ThTIkq+I6EbKnBpHRWfPLdge1JlyblFFkZKpdMLR1YW6ogi9KCzMRrbgAcWTDhIs92+2loPpb4cwRhsLtftll/0PXPJOpnghmisnmnBme8pRNztEIyZJtxDC6uJWOdm5EWlkpZKrhhwIl+4yYjH8rnJ+U0zd29bDne4tPY1Lf3Jk9zAzDpsoFtf+Mthchm3Axe5kU2HZyBMeSaZBsrrIUzJUe2ypqGYQwRo8rkDg+2HopZRHHJImUDY+Nh6GrwbE9cmhS9DcCOky0cbehKjeYGAsNrJ1O/iCbIN8kYvMyLbATrZ2Tz3AyeCKcTy7hJArLNqAYj22zDTHHiVJGyTvWkXxXfJOltAOZU5DK7vDA1mhuAykVgy/RsW56bhDDYcyMbwTzEqqJKNREevD5YOhlZPXqKkE0kNhjZFs4cicZNygrA+S9R4B/KSTAOu8Ly8ypSo7kBsGfCuAs8260noe10cs4TBtmMm2CeDZm0b8HWXZJtrDAMw8qWkhnZXI2DsanyVygGuTLeBpOS0GKA3iYPxi5I2qnaepys338uQGPjdus8vu5Q8nQ3/utjpSE0JV0xTV3uSuHBPDeyTRQ1Q7MExTIjW6czGAW5y76DfKXf01IjpfkYdNZ5tidclDS9DcC+s63sP9sRoLFp7naxbn99EnU3/sZNckNTwWb90qWCI7cHNZhnSjb9opm84MnrbUYwsmlSBiNjKrhdDXwVZBs4BpMS4yYF9W28TCnJZVx+YYDGpijHwbKJZcnT3Yxf4lnhXHfDyfeSc45+gho3kvUzsmctGoYR1LiRfaKYLtLeiieffJJJkyaRlZXFhRdeSHV1ddj9H3/8cWbOnEl2djbjx4/n29/+Nr29SXI7x4lsC0sORrYXMtjyC7KVRR9SIyUVS2ic8K9vkzy9DYDDBp9aNCFAY2O3q9yxbEbydDcZuTC2yrPdeBC6GpNzHkKLUWXyEA9e5kU2QnluZOpnwDwp/DF7bo4fP87GjRs5efIk3d3dlJSUsHDhQpYuXUpWVmydyAsvvMCqVat46qmnuPDCC3n88cdZvnw5Bw8epLS0dMj+f/zjH/mP//gPfv3rX3PxxRdz6NAhvvjFL6IoCo8++misl5I0ZIujDka2TjVY+qL0ocVUXF9Nvw7FkQMVVUk9lUt347ClYdY/8WKo3erZrtkEs1ck5TQjYWCUPSwVykCVeSKcTqJ+kv7whz+wZMkSpk6dyr//+7+zZs0aNm7cyDPPPMNHPvIRysrK+PrXv87JkyejPvmjjz7Kbbfdxi233MKcOXN46qmnyMnJ4de//nXQ/d977z0uueQSPvvZzzJp0iSuueYaVq5cGdbb09fXR3t7e8C/ZCPb4D8Y2a5vJNSfGEzSr6/tNLSd8mxXLgabI3nnAjp7Xfxtx9lBgmKDx9YmUVAMg+rdJC80ZRjGEKGmbO+h7GGpYCEb2SfC6SQq42bhwoX85Cc/4Ytf/CInT57k7NmzbNu2jXfeeYd9+/bR3t7O3/72N3Rd5/zzz+dPf/pTxGM6nU62bdvGsmXLBhqjqixbtoxNm4JnHlx88cVs27bNZ8wcO3aMV199lWuvvTbkeVavXk1hYaHv3/jx46O55GEhW9hmMDJ2qkM6nVSlSqeAYDPDpF9fzeaB7QlLk3eefk40d7L9ZGuAeLgl2YJigAkXgjfkl0RRsWZoQ1JsZXsPg4WHZSJYPyP7JCqdRBWW+uEPf8jy5ctDfp+ZmcmVV17JlVdeyQMPPMCJEyciHrOxsRFN0ygrKwv4vKysjAMHDgT9zWc/+1kaGxu59NJLMQwDt9vNV7/6Vb773e+GPM9dd93FqlWrfH+3t7cn3cCRrdMZjGyu1GAzRpl0U8FKoif9GT21ZWB7woXJO08/YwszGV9eEiAeLinI4JJBnyWc7NFQNhfqd0Pdbuhtg6zChJ8maEZfKnRTKcRM1W2TgWZoQcNSLt2VphbJTVSem3CGzWDGjBnD4sWL425QON58800efPBBfv7zn7N9+3ZeeuklXnnlFf7zP/8z5G8yMzMpKCgI+JdsZBv8B6MiV6w/6PILiiLNNQYLaSTdePN5bpSBYndJxKYa3HLJlADxcJbdxlcun5I8QbEXb0q4oUPNlvD7xkmwBQlVVT7jRnbPzeDrk8lDbDZiVm9dccUV/O53v6Onp2dYJy4uLsZms1FfXx/weX19PeXl5UF/c8899/CFL3yBW2+9lXnz5vGJT3yCBx98kNWrV5sqNVmmgTEYsr2QQWfFEnnfgs0Yk/qM9nVA/R7Pdtl5SfFkDKbL6eL3W04F6Gs0XeFnbxxOruYGPGtmeTmVHOMmqPdNMs+N7ITyEJtp7JKJmI2bhQsX8q//+q+Ul5dz2223sXnz5sg/CkJGRgaLFy9m/fr1vs90XWf9+vUsXRo8Rt/d3T3kBbf1Z0iYyVMiU0gjGLJdn+yx8FAhjaTdw9Pve7wYAOOTH5ICqGvrYdORpgB9TWOnk7cPNyRXcwOB15gk4yaY9032jD7ZCOUhlmmiaCZiNm4ef/xxzpw5w7PPPktDQwOXX345c+bM4eGHHx7ihYnEqlWr+OUvf8lvf/tb9u/fz9e+9jW6urq45ZZbALjpppu46667fPuvWLGCX/ziFzz//PMcP36ctWvXcs8997BixQqfkWMGZFLAhxKjSmfcDB44JLqHKfdM+YdmJlyUnHMMoijPwZUzAgv2VYzKZunUouRqbgAKKqCwX8dXuw00d8JPEbK6rURrL4VClr4mVBE/Wa7PbMRVodhut/PJT36ST37ykzQ0NPD0009zzz338N3vfpdrr72Wb37zm3zoQx+KeJzPfOYznDt3jnvvvZe6ujqqqqr4xz/+4RMZ19TUBHhq7r77bhRF4e6776a2tpaSkhJWrFjBAw88EM9lJA2Z6k+YqeJksgjm8rep8nhuQg2MSbu+U37e3BR5blTF4JvLZpLtGEg5z3Fk8LkLxydfcwOeasVtp8DVDQ17E76OVrAFCWUKnYbCqyuSQWgcquSELGOF2RjW8gvV1dU8++yzPP/885SWlvLFL36R2tpaPvaxj/H1r3+dhx9+OOIxbr/9dm6//fag37355puBjbXb+f73v8/3v//94TQ76cj0wOoMFcHJRtAifhJ5blJa9l1zw+n+onb5FTAqyV6TftyGTsagwd+uqjiT4EUJyrglsOcvnu1T1Qk3bjRDG1plWqJJVCi8uiIb4hs3uqHjUAPrPcnUz5iNmKfkDQ0NPPLII8ydO5fLLruMc+fO8dxzz3HixAnuu+8+nnnmGV5//XWeeuqpZLRXCGSKhcsyawpHsIFDJs1NyFh/Mq6vYS84Oz3bEy6EFBnGbrfGTzccCSzip8H/bD6RfEExeDw3Xk6FX0ImHoJWt5V8/TOQq2ZYqPXBZL+H6SJmz824ceOYOnUqX/rSl/jiF79ISUnJkH3mz5/PBRckP/3TrMjkLpZ9vReQ3+UfMksjGdfnX7xvfGr0NjCwAjjAHctmAFDb0svRTo/I2PtZ0iifB/ZscPckRVQcauV6WZ7RUMj+HspkvJmNmI2b9evXc9ll4RfBKygoYMOGDXE3SnRkStE0GBrSkI2Ua1JSTND6GiRJFB5QmTg1ehsIvgL45JI8ssYUJF9QDJ7lJSoXeaoUt56EjnrIL4v8uygZCUX8giHTexiyn7FSwZNCzKPW97//fVpbW4d83t7eHpWIeCQg04wq2AspG0ELpEnUqQabMSZNR+X1WjhyoWxecs4RhGArgOdnZrBiQUVqBMUQGJo6ndjQlOwGeChkusaUat/SgNnCazGPWm+99RZOp3PI5729vWzcuDEhjRIdFXlSNGUviQ6hU6VlEWumbLXltlpor/Vsj1sMtmHlK8RGkNfNpqq4tBTew3H+upvEhqZCpvNLMjCGQibjJtTyC7Jcn9kya6PufXbt2gV4Brt9+/ZRV1fn+07TNP7xj39QWVmZ+BYKiKIoaLocA6Psi9l5CSb0k8a40VPU6Zx+f2Dbf6BPAS5N5/F1h1i5ZILPU+NyG6zZeYr5Y8elLh3cS4JFxcEybWQaGEMhU+hN9krowho3VVVVKIqCoihBw0/Z2dn89Kc/TWjjRMWm2KTx3IyEbKlgyJTxFmzGCCT+GQ0wbs5P7LEj0BJEUHy0oZuGFiU1gmKA3GIomgrNR+HMTnD3gT0zIYcOVpJBpmc0FDJdY7DBX6ZUcB1zjRVRGzfHjx/HMAymTJlCdXV1QJZURkYGpaWlpqoSnE5kfyFHAjKlgqesVlHttoHtytQaN8EExXPGFlKcnZ0aQbGX8Us8xo3WB2d3wfjEZI3q+shMBZdtojikiJ8qz1I2mm4uL3/Uxs3EiRMBLGV3FEgV0hihxo1U7vAgAyMwpLbPsNBccGaHZ3v0JMgbWiIimXgFxf4UZmcyp6w4dYJi8Bg3Hzzn2T61JWHGzUgVFMsU4g+auIA8Y4WBufSZURk3L7/8Mh/96EdxOBy8/PLLYfe9/vrrE9IwkZFpRjVijRuJMt5S4rmp3wvu/mJ5KfbaAEEFxXabDXeqJ2P+y00kMGMqWEkGM82Sh0uwcgUg1/pZQUsySLRwptkya6Mybm644Qbq6uooLS3lhhtuCLmfoihoqcxOMClSDYyGntgZviBI5bkJIkZNOAF6m9QW8Kxv76W+o4/69t4AL02fW2f9/jqumdGbOu9NySzIyAdnh0dUbBgJqdIsezHNUJMomcLDwQxUmSoUB0t1TydRtUTXdUpLS33bof5Zho0HKxVcfGQLLQabFSf0GfWuJwUpN26eq66hs9fNc9U1AZ/vre3gYH37kM+TimobEFN3nIW20wk5rOzFNEMNjIqiSPUeymzcmC2zVt63JY2oiipNnNhsrsZUIVOnYxjGkFh/wqntN25sGVA+N7nnGsTKJRPIz7IPEQ4vmlDElJKc1AqKIdC48xdZDwPZw8M6Q/UoYIX4RcJsmbVxVdlav34969evp6GhYYjA+Ne//nVCGiYyMhXXCqfXMAzDVJZ6IpHNc5NUQXF3MzQd8WyPXZCw9OdoKSvIorQgc0joqSgniyWTbakVFANULh7Yrt0G590w7EPKHh4OlWkjk2haduPGbGGpmI2b++67j/vvv5/zzz+fsWPHSju4DQfpZv0h3MUGhrQdrkz3MOmCYn/vRIpDUuGw21Rc6fCgVi4a2E6Q50b28HCosJtUE8Ug2VIyYTYDPGbj5qmnnuI3v/kNX/jCF5LRHimQLU4c7IH1zqjMZKknEtk8N0m9T/56G3+vRYo429pNQ7tziKC4p89gy7FG6helUFAMkFcKhROgrcaTHq+5h70Uhdn0DIkm1DMq08KSKas3lSbMpguLuSVOp5OLL744GW2RBtnixMFmjDJ5NoIhWwpqco2b9GVKAfxhywk6ggiKt55s4URTZ2oFxV683htXNzQeHPbhzDZwJJpQz6hMqdKye9/Mps+MuSW33norf/zjH5PRFmkYCXFimYpPBUO2e5g0d7GuD4ReckthVIrFu8ANiyoYlZ05RDh82fQSxhVlpV5QDIHLTyQgNCWzlxRCi95tijwVfGXWKELorMx0EbOvtLe3l6effpp169Yxf/58HI7A+hmPPvpowhonKma6wcMllCtVpsE/GDKFpZIq9Gs+Cr2tnu1x5yekpkusjM51MG50zpDQU3FeDueNLUi9oBgCw3Ont8Kim4Z1OLPpGRJNqLCbTCF+2TGbZypm42bXrl1UVVUBsGfPnoDvZBrULTyEGhhlCtsEQ6awm07oWf+wZ5NpXCzTi8vtxqYO7VQdqoorXQPj2AWgqGDoULt92IczDCPoNcpCSEGxRCF+2RHec7Nhw4ZktMPCpIRS+Ms+o5LJc6PrYcSaw61NkcbifV7OtvVQ29I7RFDc2edmT23rkM9TQkYulM6B+j3QsA+cXZ7P4iRUHRhZGAkVikMhyyTRbM+oeVpiYUp0Q0dVQ3huJJhRhboGmWaMoTw3CUmz9XluFKhYOLxjxcmanadp6XINEQ6/faiZs23d6REUw4Co2NA8K4QPg5GaLSX7JEomhK9zc9VVV4V9yd54441hNcjCXITy3MiiuQlbX0OC64PwixIO6xpdvR6vBHjWVMrMj/9Yw+CaOaW8d3qocHj5nLHsqj+SHkExeHQ323/n2a7dBhOXxn0osw0ciWakhr8hgcU004zZDPCYjRuv3saLy+Vi586d7Nmzh5tvvjlR7bIwCeEGRhlmVOGEjLIQKhNFUZThGTd1u0F3e7b9C9elmIIcO9NLhwqHywqymFw8VGicMvxXR6/dGnq/KDAMeQtmQv97GKaeloX5MQwDuzq8ek6JJOaWPPbYY0E//8EPfkBnZ+ewG2RhLmQX+plN4Z8MwukZhnUPz/gJZdMUkgJwaRo229B7mGG3o6VzYCyZBY4cT62bBKSDy2RwDyac58YybsTAbILihPk5P//5z1vrSklI2MqhEnQ6Znshk0G4ezgs75t/FlAaPTcN7T0caeiivr034PP2Ho2j59qHfJ4ybHYYW+XZbq2BznNJOY0Mkwyd0MVCZehnRgLSCoo3bdpEVlaa3L8WSWMkGDdmeiGTQShBscIww1Jndnj+qzqgLLUrgfuzdn8d9e3OIcLhf+yup6mzL32CYgg0+s4MPyV8MDK9hyOxnpZMmE0XFnNY6pOf/GTA34ZhcPbsWbZu3co999yTsIZZmINQeg1ZFrQLV9ZeFiFjuIEj7ll/Xwc0HvJsl89N+Urg/lwyrYhDzTlDhMOfWDiOdcft6RMUw9BifjOWJ/Tw3uUJbIgdWg0ZlmJkGDcyVC8WXlBcWFgY8LeqqsycOZP777+fa665JmENszAHoR5YWWZUZnshk0E4AzXusNSZneA1/irSF5ICyMuys2DcqCHC4crRuZQXZqZPUAyBxs0wdDehDG1ZlicIJSgetuhdABRFwUB8wbjZ9IsxGzfPPvtsMtphYVLCpUrL0KmGc6WK3tl4CRdajNs7ZRIxMYBb17CHqFDs1tOc0TdqAuSWQNc5j3FjGAldokKWOjBhRe+SeFBD4Z0omimkEw9muwbztMTClMheXMtsL2SySLj3zSRiYoDGjl52nx4qHG7uclHX1pM+QTF4DBmv96a3FZqPxXeYEIa2NFmLBJ/1q4qKlm4DNcnI4gU32/pn8vfqFsMiaWnEJmGkGDfBGFan6vXcOHKgeGbiGhUH7x49x6mW3iHC4T9vq6W9d6jQOOUEhKYSKyq2qXIsTxBKF+bVFMmMLLqicPrFdGCelliYklBhm2Fn2pgEg+B6FO93MhO3cdPV6EltBs8Ckbb0Fu5aPGkUk4vzhgiHVy6ZRH62Lb2CYgj0bA2zmN9gFOTwoIbqZ2SZREHo/kQWXZHZ9IuWcWMRFs3QEi9GNRGaHvqFNJOLNRnEbaB6U8Ah7WJigGyHwtIpxUOEw+UF2ZQWZKRXUAyB/4/O7EzooWXRvoXqZ2QZ+MMhy+KgZvOCD6slhmFI8WIlCxn+3+iESSOWwLNhNldqKol7YDSR3gbAretBBcWmmUXmFEFhv/eobhckUEMiS9gmZLkCWUI2YZbPkOUemi1bKq5e/Xe/+x3z5s0jOzub7Oxs5s+fz//8z/8kum1CI4tITPay6LoRvDLqSMCm2OLzvpkoUwqgtdvJlmMtQ4TD9e291Lf3pVdQ7KWiyvNfVzc0Hk7YYWWZ9YcTFMtyfaGMbVm8b2ar9h6zcfPoo4/yta99jWuvvZYXX3yRF198kY985CN89atfDbnu1EhEJmtcduPGTC9kKonrGTWMgbBUViEUTUl8w2JkW00TRxu6hgiHn6uuobPHlX5BMQwYNwBndybssLK/h7K8m+FCNrKE+MPpF9NBzErAn/70p/ziF7/gpptu8n12/fXXc9555/GDH/yAb3/72wltoKjIJIQLhkzuYjO9kKkkrhlj+xnorPdsVyxMaM2WeJlTkU+GLSOIoHgCL+53pF9QDANrTIHHOFxwY0IOK4uw32x6jUQTybiR4R5qumaqexhzS86ePcvFF1885POLL76Ys2fPJqRRMiBLHZhQqKokL6RhrhcyGYTSRsXVqQaEpNKvtwHIcqh8ePbYIcLhsoIsSgvSXKHYi3/4LoGiYpsqxyRqRBg3IYZbWWoVhdJnpouYn6Zp06bx4osvDvn8hRdeYPr06QlplAzI8sCGQhbPTbgXUlEU6x4OxmRiYvBUKHaoJh8Yc4o81YohoaJiWVLBzVYALtGEC39LE5YymaA45rDUfffdx2c+8xnefvttLrnkEgDeffdd1q9fH9ToGanI4mqUvTZDuBfSe41memHjIWR1W0XFpbtiO5gJPTdtPU7eqDvHFVN6h3hp3G6dx9cdYuWSCen34Iyt8tQHcnV7Fh0tnT3sQ8oiRjXbwJhowmVlynIPzaZfjHm686lPfYotW7ZQXFzMmjVrWLNmDcXFxVRXV/OJT3wiGW0UEllWzQ6FLGu+hJ1RSeKdCkXMz6i/mDivDAoqktOwGNl/to19ZzuCCoebu12s219vPlFxDKGpcCtG2xSbFP2M2UIaiSai5kaSe2gm/WJcpUUXL17M73//+0S3RSpURUXXxX9gw9ZmkGDgD+eZkaXTCUXMz2jzMeht82xXLDKFmBhgSmkOlfmFQYXDo3McLJtYZg5Rsb/u5uxOqFoZ1c/CVX6V6T2UXnMTzriRYKzQdXPdw5hbYrPZaGhoGPJ5U1MTNpu8bsVYkSUVPBSyxInDdTqyDByhiPkZ9a9MbBK9DUCmXeHjC8cFDTs5bCp3LJuR/pAUDMqY2hn1z8Jl9MkS/h4Rxk24eyjJWGEm71vMT1Oo2GBfXx8ZGRnDbpAsyFJcKxSypLqHc4dLLwqPNdYfsOxC+ov3eXGFExSbp6+NW1SsE8YAlygVfKQKimWfRKWLqMNSP/nJTwDPjXjmmWfIy8vzfadpGm+//TazZs1KfAsFRZYZVShkeSHDCRllWXE5FDFXKPb3Nvh7IdKMpus41PQu3hk1FQtjFhWH82rEXWXaZBiGgS3IEhqyEE5QLMtE0WxE3SN4qw8bhsFTTz0VEILKyMhg0qRJPPXUU4lvoaDIMqMKhSxi27AzKknSbEMR0zOq63D2A892QSXklSSvYTHS1edizY4zTB1Tbu5sKfAYhfv+5tk+szMq4yZUlXCIM+PNhJhNjJpowoa/Je9n0kXUxs3x48cBuOqqq3jppZcYPXp00holA7Kk94VCFs9UJKGf6PcwXPtjur7mY+Ds8GybyGsDcLypE3d3K89V13DHshkB3zV3u1i3z1NRefB3aSEgY2pHVKLicIUmZdH2hRNNy8BIqFBsNmL25W7YsCEZ7ZAOmURiwZDl+sIJ/WQYOBKWguq/HpL/AG0CKgozqSgrDpoRVZyXyRWVpebIloJAwzDKNabC6VFkCWmE807JwEgILZoNeZ+mNCNLel8oZJltRKocKvo1hhVMx/KM+ouJTea5sdsVbr5kctCwU5ZD5WtXTjVHSAr6RcUTPdt1u0FzR/xJuIFflmVeDMOQX1AcpqyGDPfQbFjGTZKQxbMRCmkExYQRFEswKw4nmI7Nc/PBwLbJPDduXScjRBkKVVFwaSZ7Tr3//7yi4ghEMlBFf0a9yByWiqSbkuUemgnLuEkSMsz6wyHDwA+RBcWi38NwWoaon1F/MXF+BeSVJrCFw6fH6eJ/Np2ivr13yHearvCzNw4H/S5txBiaCldoUvaSE7KgE6FYqHUPE45l3CQJ2R9YGQZ+kF/ol5ACcC3Hoa/ds20yrw3A2bZu3jvSGHSJhcZOJ28fNsnyC15iXCE8UqaN6M9oNIg+kUrIJMMiJqISFO/atSvqA86fPz/uxsiEDJ1OuA5FFhey7JVDEzIwmlhvA1Ccl8EFpcGXWKgYlc30vCLzCIoBxi4Y2I7ScxNu8VPR+5lIeK8xmOdD0zRcLvOnwrv73KBDb28Q72KfhubUgn4nEjbNlpBryMjIQA1VlDMGojJuqqqqUBQl7AJuXjTNEkaBHAp4g8j3W3RkrxyaEL2GiTOlAFQV/uVDM8jNHFohPceRwecuNEmNGy9eUXHrSTi7yyMqtoXuiiMJikU3wCPhnWTYGDBuDMOgrq6O1tbW9DUsBry1iI63HB/ynaZr2AwbxzuGficSJe4SX8mY4aCqKpMnTx72igdRGTf+Dd6xYwf/+q//yp133snSpUsB2LRpE4888ggPPfTQsBojEzIU1zLbEvbJIFzlUBmWXwhbgTlaA9yklYm9aLoWUlBsV204o8hISjkVVR7jxt3jERWXzQm5a7jlF0aC5iaYEe41bEpLS8nJyTF9P9Xn7gMg05455DuX5sKlucjJyEl1sxJKh7OD/Iz8YR1D13XOnDnD2bNnmTBhwrDua1TGzcSJE33bn/70p/nJT37Ctdde6/ts/vz5jB8/nnvuuYcbbrghpgY8+eST/PjHP6auro4FCxbw05/+lCVLloTcv7W1le9973u89NJLNDc3M3HiRB5//PGA9pgBGWZU4fQashB2VXBVfJd/RM9UpGfUMDzeBYD8sZBfluAWDh+nW+PJDUdZGcRD49YM/mfzCb794QJzeW8qFg5UKj67M7xxI7kuLBKDU6U1TfMZNmPGjEljy6LHcHv60mDGjU23obgVsjJM9HzGQZ/SR1bm8K+hpKSEM2fO4Ha7cTgccR8n5pFr9+7dTJ48ecjnkydPZt++fTEd64UXXmDVqlV8//vfZ/v27SxYsIDly5cHXXUcwOl0cvXVV3PixAn+/Oc/c/DgQX75y19SWVkZ62UkHRnS+8Ip/GUhbJ0bCZaYCFfdNqpntPkY9LV5tk3otYH+KsQHgouGa1t6qT7eZC5BMQxaIXxHyN1gZK9cD0MzM70am5wcsT0dXmSu7xMP3nDUcCUuMRs3s2fPZvXq1TidTt9nTqeT1atXM3t25HVS/Hn00Ue57bbbuOWWW5gzZw5PPfUUOTk5/PrXvw66/69//Wuam5tZs2YNl1xyCZMmTeKKK65gwYIFQfcHz2rl7e3tAf9SgQwzKk2XuyQ6yD8rjpQtFdG4MbneBqAox8Gy2cEFxZNL8lg4scBcgmIIFBVHyJgKZ4DLUpIhHKHeQ6H6JoOwK9QbyH0PYyFR9zVm4+app57itddeY9y4cSxbtoxly5Yxbtw4XnvttZgWznQ6nWzbto1ly5YNNEZVWbZsGZs2bQr6m5dffpmlS5fyjW98g7KyMubOncuDDz4Y1sJbvXo1hYWFvn/jx4+P/mKHgRQDYxg9iiyMhOUXhtVZmFxvA2C3q9yxbEbQsFNBViYrFow1V0gKPKLi0ZM82xEqFYczUGXIyoyEDAtLGoSuwGx5bpJDzCPXkiVLOHbsGP/1X//F/PnzmT9/Pg888ADHjh0Lq5UZTGNjI5qmUVYWGMMvKyujrq4u6G+OHTvGn//8ZzRN49VXX+Wee+7hkUce4b/+679Cnueuu+6ira3N9+/UqVNRt3E4yBDSCOfVkIWw2UQyCIrDVGD2fh8WATw34bApKi6zZnB6jUWvqDgEsnsXIzESvFOiY8b7E/PCmQC5ubl85StfSXRbIqLrOqWlpTz99NPYbDYWL15MbW0tP/7xj/n+978f9DeZmZlkZg4VcSUbGTqdcPU1ZCHs8gSqisstfsZb3AaqYQxUJs4rh/zyxDUsRdhVExs3FVWwb41n+8yOkKLiiNlSgnsXIyGDBzUSZjQORCeuXu9//ud/uPTSS6moqODkyZMAPPbYY/ztb3+L+hjFxcXYbDbq6+sDPq+vr6e8PHgnOnbsWGbMmIHNL+1z9uzZ1NXVBWiAzIAMxk24gV8WwtVuUhG/iF+4yqgQwSXechx6+8XE/lV1TYbbrfP4ukNBl1jocxv8fVetuZZf8BLlMgwjXVAsRV8aLiwV5v1samqitLSUEydOJKQdN954I4888khMvzFDG+IhZuPmF7/4BatWreKjH/0oLS0tPr3L6NGjefzxx6M+TkZGBosXL2b9+vW+z3RdZ/369b76OYO55JJLOHLkSMBKxocOHWLs2LHDLviTaGSYbYQL2YwEZFjZfVjp/P56GxOHpJq7XazbHzxb6khDN7trW82XLQWB/0/DiIplX7k+EjJkng7miiuuQFEUFEUhw5HBjEkz+OQnP8nmzZsD9nvggQf4+Mc/zqRJkxJy3rvvvpsHHniAtra2sG370pe+FFMbwhlv8bQhEcTc6/30pz/ll7/8Jd/73vew2weiWueffz67d++O6VirVq3il7/8Jb/97W/Zv38/X/va1+jq6uKWW24B4KabbuKuu+7y7f+1r32N5uZmvvWtb3Ho0CFeeeUVHnzwQb7xjW/EehlJR4ZOZyRobsIhhYE6nHto8mUXvIwOky01d2whs8rzzJctBZA9OipRcSRBsWwD/2CkEBQbhi9byjAMduzYwQ9/+EPOnj3LocOH+OVvfomqqlx22WWsXbsWgO7ubn71q1/x5S9/OWHtmDt3LlOnTuX3v/99yHbu2LGDRYsWpa0NiSLmXu/48eMsXDjURZ2ZmUlXV1dMx/rMZz7Dww8/zL333ktVVRU7d+7kH//4h09kXFNTw9mzZ337jx8/ntdee43333+f+fPn881vfpNvfetb/Md//Eesl5F0ZKgcOtKNGxlmjMPyvgkiJnaEyZYalZPFFTOLzZct5SVAVHww6C6RwlKyY1PlEBR7PRuHDx+mo6ODyy+/nPLyciZPmszlV17On/70J5YuXcr3vvc9AF599VUyMzO56KKLhhyrurqaK6+8kuzsbGbNmsXWrVt5+umnuf766yO2Y8WKFTz//PNBv/O2bfHixWHbMPj877//Ps8+82xU54/UhkQR88g1efJkdu7cOeTzf/zjHzHXuQG4/fbbOXnyJH19fWzZsoULL7zQ992bb77Jb37zm4D9ly5dyubNm+nt7eXo0aN897vfDdDgmAUZYuEjQVAcDhky3uLWTUkgJgZw2EwsKIaoVggPJygeCSiI70H1Z9u2bdhstiH12RRF4eqrr/aNrxs3bvQZGf5s3ryZK664guuuu45du3Yxe/Zs7r//fn70ox9x3333RTz/kiVLqK6upq+vL2LbgrUh2Pn/6z//i8cfeTyq80dqQ6KI+Y1ZtWoV3/jGN3jhhRcwDIPq6moeeOAB7rrrLv7t3/4tGW0UEinSiA0Dm2o+wzFVyBBajCQoDkmAmLgqoW1KJPXtvTS094UUDHc7dTYcrDenoBgG6W6CVyoOt3CmDESqxZTs97C+vTekID1R+Jdc2L59OzNnzvRVWPa/9oyMDN+SAydPnqSiomLIsVatWsWnP/1p7rzzTqZPn87KlSt55ZVXWLBggS+q8uijj1JZWcmCBQuYPn06r7/+uu/3FRUVOJ3OoCVXBrctWBuCnf/VV19l3vx5UZ0/UhsSRcyp4LfeeivZ2dncfffddHd389nPfpaKigqeeOIJbrzxxmS0UUhkGBh1RrjnRlGFrxwat+dGgOJ9AM9V19DR6+a56hruWDZjyPd7ats53NAT8vu041+pOETGVLglNGQgGuMm2oni9/66O2Yj5di5Ls519vHyzjNMKcmN+ndlBVk88Il5Ue/v7Uu3b98e1CMDcPDgQWbNmgVAT08PWVmB4dTTp0+zadMmHn74Yd9ndrsdwzACvCZ79uzhkUce4cYbb2TNmjX84Ac/4JprrgEgOzsb8OhpBjO4bYPbEO783733u1GdP1IbEkVcdW4+97nP8bnPfY7u7m46OzspLS1NdLuER1XETyPW9cju8HCp1KIzeME+EdENHYcax+JzguhtVi6ZwIv77SEFwxdMHEOfq8mcgmIYEBW3nIC6PR5RsS2wW5Y9PBwpoy+W9zAWY8NLfXsvz1XXsHLJ0IVXk8H27dtZsWLFkM+7urp4+eWXWbVqFeApl9LS0hKwz/79+wF8gl/wGERLlixh3ryBa9+zZw/f/OY3AaisrAyo4t/c3Ax4FqiM1LbBbQh1/guWXMDcuXOjOn+kNiSKmKcD999/P2+88QbgWbjMa9h0dXVx//33J7Z1AiOL5yaccSPDNYZDhuuLW1AsiOemrCCL0oLMkINSUW4W508aZV5BMQzobkKIiqUPS0VYoDfZFYrLCrJCCtIThXcSeOzYMVpbWwOMA/AsEvnVr36V7OxsX/bvwoULhyxG3dbWhs1m873Tzc3NPPzwwwGLiBqGwYEDB5g5cyaapvGLX/yCa6+91vf9nj17GDduHMXFxQHH9rbN33MzuA2JOH+4NiSSmN+YH/zgB3z0ox/l0UcfDfi8s7MzajHRSEAaQXGkWLjg3qlwSKObijUsFSAmLoOCsYlvWIqwqzbcusm9bxFWCJe93lSkBXplWj9r27ZtgKcgbV1dHYcOHeK5555j+VXLeeONN3j55ZcpLCwEYPny5ezduzfAc1JVVYWmaTz00EMcOHCAlStXMmnSJPbt2+crqHv8+HH6+vpYunQpS5cupby8PCCjeOPGjQEhIv+2KYpCVVWV77PBbQh1/v379nPq5Kmozh+uDYkkrunA7373Ox588EFuueUW01UGNgsjYWCUwbMRDlUV//riEhS3nIDeVs+2ib020eCw2XBrJr+HEYr56UZ4z4boRFqgV4ZJlFe7t337dgBmzJjBuHHjuPjii/nZz37GR6/7KLt37w4oszJv3jwWLVrEiy++6Pts2rRp3H///TzxxBMsXLiQiooKXn/9dSorK/nIRz4CeLwiK1asYOfOnVRXV/Pggw/6liDq7e1lzZo13HbbbUPauH37dqZPn05+fn7INoQ6f0VlBTesuCHi+SO1IZHEZdxcddVVbNmyhS1btnDllVfS0NCQ6HYJjwwDf6RYvwzeqXCoyCEojjmkIYjeBqCurSd8tlSfxtaaJvNmS0FEUbHs9aYiXZ8M9abA44FavXo1hmFgGAZut5vGxkbeffddvvPv36GoqGjIb+69916eeOKJgErp99xzD42NjfT09PDss88yZswYtm3b5tPD7NmzJ0B/48+zzz7LkiVLgtbOWb16NQcPDg2LDm5DsPNvqd7C9t3bI54/UhsSScxvjHcWOHXqVDZv3kxBQQGLFy9m69atCW+cyMjgRo6UpSH7ar2qoqKZPaQRAd3QY19+QRC9DcAftpygo1cLubzC5mMtnGruMufyC16yR8PoyZ7tIJWKI4WHRSeaSZTowv54ue666/jKV75CbW1t1L8JZ1w4HA5++tOfJrwN/ssvRDJu4mlDPMScLeU/mBUUFPDqq69yxx13cMMNNySyXRYmIBp3scydjizLL4TVMyjK0Iw3gTw3n1xUyV8PZoTMhrpqZhnHW+rMmy3lpaLKU1vI3QvnDkD5QObJsNYHE4CI4W8JQvwQ/4T3jjvuiGn/P/7xjyG/u/XWW5PehnDnH04bYiVm4+bZZ5/1CZ7Ao0v4yU9+wsKFC3n77bcT2jiL9BJxYJRI6BcMGdzhBuEHDu+s2K70dwWGMeC5yS2FfHOLiYtyHVSOzgmZ6VKcn8WssbnmzpYCj4ds718922d3Bhg3soelIunCZFjKxiL1xPzG3HzzzQHiIC+33HILzz77bEIaZWEOIs2opA9LSbD8QqSBY8isuPXkgJi4ogpMHg5xam7sYZ5Rh2rDJcLK7mGWYZB9+YVIHmIZPKiyE8uq4KkiKs/NT37yE77yla+QlZXFT37yk5D7KYrCv/zLvySscRbpJZJeQ/ZYuAxZGpFm/TbFFniNAultAGpbuzjT6hEUB/POdPRqHDjbFvJ70+AvKh6UDi6752akCIqlxgCT2TbRGTePPfYYn/vc58jKyuKxxx4LuZ9l3MhFxFm/4MsTROowZehUo6r+qmvgdX4IpLcB+NuOWpq7XSGXV9hw4Bz17SZefsFL9iiPqLjlONQHVioe6YJi2bV9MmDGcSAq4+b48eNBty3kJqr6EwKHbQzCLx3hFduKTFTr9vh3TIJ5bq6ZW8rbp7NCCoavm1dB9Zk95hcUgyc0FURUPCIExWEW6JVd2ycLZgtLyfvGWAybaNzFInc6ss+IIbKgOOAeGsaA5ya3BAqGrkhsNgqz7UwvzQ8ZciorzGbimGxzh6S8hFghPJqwlMhGuGZoYQdGmyq3ts8iOUTlufEu5BUNg5dlsBCXaNzFIhs30SxNYEZ3ayzEZKC2noSe/lLvFQtNLyYGcOnhq/dm2Oy4RRAUQ6Cn7OxO4Au+P8N63/oraYtaxThSoUkFS1BsdgzM512MyrjZsWPoeifBkH0WPNKQ3V2sGZrpXshEE022lO8eChaSAqhv7+bYua6QguG2bhcnmjrNLyiGQaLinb7NSAa29x7aENO4GekL9Fokh6iMmw0bNiS7HRYmJKK7WPBU8GjCUmaLI8dKxFmx/xIaAWLihUH3Nxuv7ztLfXtfSMHw3z+oo6Ur9PemInsUFE2B5mP9lYpdYHNE/JnoWX1R6cIE7mcgOg/wkGKaImFgOpGLyZpjYSYiDYyiZzFEEkzLQKR0fptiG+h4/VOQBciUArhs+hgqCnNCCob/+fwJFOTYxRAUw4DHTOvziIqJbGCL7tmIKqNP4H4GxJ8kRULYOjeD2bp1Ky+++CI1NTVDVgV/6aWXEtIwi/QTyV0senEt2euHQHT3UNM14SoTe8nLsjNv3OiQIafxo/IozXeYPyTlpaIK9vb3oWd2QnnoNXq8iO7ZiLSGnSzLL0QimIHQ1NTE7Nmzqa6uZtKkScM+x4033sgFF1zAd77znWEfy+zE3LM///zzXHzxxezfv5+//vWvuFwu9u7dyxtvvBGwLIOF+ERyF8sQlpLduInG+2ZgQMsJv8rEYoiJAdy6hiOMLsxmUzFEMsD9w4FBVggPhugeVNmzMoNxxRVXoCgKiqJgt9uZOWkmn/rUp9i8eXPAfg888AAf//jHE2LYANx999088MADtLW1JeR4Zibmnv3BBx/kscce4+9//zsZGRk88cQTHDhwgH/+539mwgRBXL8WUREpm0h0d3FcK2YLRqQ4vm/gEKx4nxenpmNXww+MiJTxFqZScShEH/yjqqclkoEaAcMw2LFjBz/84Q85e/YsR44c4ZnfPIOqqlx22WWsXbsWgO7ubn71q1/x5S9/OWHnnjt3LlOnTuX3v/99wo4J5gxLxdyzHz16lOuuuw6AjIwMurq6UBSFb3/72zz99NMJb6BF+ogkKBbdXTwS6txEwjfrD9DbiCEmBmjq7OGD0+3Ut/cG/f5ch5P69t6Q35uOrEKPqBigbo9HVBwB0d/DiGEpwcNugzl8+DAdHR1cfvnllJeXM2nSJC6/8nJeeOEFli5dyve+9z0AXn31VTIzM7nooouGHKO6uporr7yS7OxsZs2axdatW3n66ae5/vrrI55/xYoVPP/88wm/LrMRs3EzevRoOjo6AKisrGTPnj0AtLa20t3dndjWWaSViCENVe4ZowxEk0Zs+OttQJg0cID3jjZyutmzvEIwnquuoaPXFfJ7U+I1Lv1ExeEQ3YMaTUafyNc3mG3btmGz2ViwYMBL5w1RXX311ezcuROAjRs3snjx4iG/37x5M1dccQXXXXcdu3btYvbs2dx///386Ec/4r777ot4/iVLllBdXU1fX1/CrskwDDHXlvLn8ssvZ+3atcybN49Pf/rTfOtb3+KNN95g7dq1fPjDH05GG4VG5PS+iPUnBF81eyRobiLhCWloA2GpvDIoEENMDLBoYiFtfV0hs6FWLpnAi/sd4mRLgce43PMXz/aZHTCqOOzuoq/xFik8HLVn6r+vgM6GBLYsCvJK4f+9FdNPtm/fzsyZM8nJyRnyXUZGBg6HJ/3/5MmTVFQMrRK+atUqPv3pT3PnnXcCsHLlSlauXMnHP/5xFi70GMaPPvoojzzyCMXFxXR3d/Pkk09yzTXXAFBRUYHT6aSuro6JEyfG1PZwmC0sFbNx87Of/YzeXo+L93vf+x4Oh4P33nuPT33qU9x9990Jb6DIeGPholYOjab+hOjGjdleyEQTVRpx6yno7RcYChSSAsjOsHHJ1OLQyy8UZFFakClOthQMWoZhJ4xaFnZ3Gd5DNYJuKqrr62yAjjMJbFliGGyYbd++PahHxsDg4MGDzJo1C4Cenh6ysgKf29OnT7Np0yYefvhh32d2ux3DMAK8Nnv27OGRRx7hxhtvZM2aNfzgBz/wGTfZ2dkA0kdaYjZuioqKfNuqqvIf//EfCW2QTHiFcMJWDo1gmIku9NMNPWwF5pGAqqjoDfsGPhAoJAWg6Rp22e6hv6j47E6YMwKMmwh1bqIirzRBLYqBOM65fft2VqxYEfCZgkJXVxcvv/yyb7mj4uJiWlpaAvbbv38/AIsWLfJ9dvDgQZYsWcK8eQNlA/bs2cM3v/lNwCMf0bSBsF5zczMAJSUlMbc9FGb0HMZV5wagoaGBhoYG9EHrtsyfP3/YjZIF0YVwhhFeAS9Dpyq75yZSp6MoSqBxI5jnprm7j12nOvjUvODLK9S399LQ3ifG8gtesgqhaCo0H4W6PRi6O+zuUryHiQjdxxgeShX+7+CxY8dobW0NME4ANE3j61/7OtnZ2XzjG98AYOHChUOymtra2rDZbL7/X83NzTz88MMB+h3DMDhw4AAzZ85E0zR+8YtfcO211/q+37NnD+PGjaO4OHy4M1bM1pfGLDjYtm0bc+fOZezYscyfP5+qqirfP2+8z8KDDEI4mcNSkYSMMhCpw7EpNozGgwMfCJQGDrCjppkjDV0RBMVusQTFMHAftD6U9vChFuHfwxEg7Pe+h9u2bQNg7Nix1NXVcejQIZ577jmuvvJq3tzwJi+//LKvXtzy5cvZu3dvgPemqqoKTdN46KGHOHDgACtXrmTSpEns27ePkydPAnD8+HH6+vpYunQpS5cupby8PCDCsnHjRl+ISmZifqK+9KUvMWPGDN577z2OHTvG8ePHff+OHTuWjDYKi+gpmpGQYeFM2VcFj4SCgnau37jJHwv55eltUIzMqchnVnlBWEFxfpZAyy948fegtZ4Mu6vo/cxIEvZv374dgBkzZjBu3Dguvvhifvazn3Htx65l+87tAQ6CefPmsWjRIl588UXfZ9OmTeP+++/niSeeYOHChVRUVPD6669TWVnJRz7yEcDjmVmxYgU7d+6kurqaBx98kMzMTAB6e3tZs2YNt912W0Kvy4zPX8xhqWPHjvGXv/yFadOmJaM9UiH6jCoSNlXwCsVE5w4XOeMtEmrbaQxnl+cPwfQ2AJl2hatnj5VLUAyB96LlRNhdRa9QHKnOjej495GrV69m9erVQ/bpcnWRoWYM+fzee+/lzjvv5LbbbvOJru+55x7uueeegP28HiHwGDf++ht/nn32WZYsWRK0ds5wMVsfGfMT9eEPf5gPPvggGW2RDtEFt5FQEDvsFk1YSvQ020io5w4MPKGChaTAIyh22CQcGMf6aRdbInhuBO9nIi2cKQORBn4FJWg/c9111/GVr3yF2traqM8VzrhxOBz89Kc/jfpY0WLGPjJmz80zzzzDzTffzJ49e5g7d64vJ99LNBUSRwqqog4RXMuE6ILpaNzhiqJI7TZXG/ajeftdwcTEAC5dx6HGnRdhXrIKYcw0jKYj0HYa3E6wD53ZgyTvYZhUcNEZ7sB/xx13xLT/H//4x5Df3XrrrcNqSzjMJiiOuVfYtGkT7777Lv/3f/835DtFUQJSzkY6oq+aHQnRZ4zR1CASfXHQSKgN+we6XgHDUh29Tl7f28BFE0NnQ7ndOo+vO8TKJRPECk+NrUJvOoKqu+Dc/sAUcT9ET1wYCWu8RTPwm9H7ITIxP1H/8i//wuc//3nOnj2LrusB/yzDJhDZNTeiX180HhkVsQ24sOg6av0+dBTIr4D8snS3KGYO1Lex50x72Gyo5m4X6/bXC5gxtRAdUAcvjzEIS1AsPgqKUOu7BkN4zU1TUxPf/va3KSsTryNMNaJ3OpEQ3riJsLwE9M+KdUmN9pbjqM5OdAUh9TYAk4tyWDh+dNhsqKIcB8tmlwmYMVWFrvR30v6rtg9C9DXeohX2i0pUHhl5Lz9txGzcfPKTn2TDhg3JaIt0iD74R0L069P1KDw3MguKz+xAxfD4pQQMSQHYHQqfPn9i2HCT3a5yx7IZYoWkAMrno6N4Omn/VdsHIbp30TAMYZeoiQojfkGxRfzErLmZMWMGd911F++88w7z5s0bIij2lny2EH/wj4To1xfNjFH0awzLmR0oBp5hUUAxMYBbiy5bSsh0/qwC9KKpqN21UL83pKhY9MQFzdDEuzcWpieubKm8vDzeeust3norsNy1oiiWceOH6ILbSIi+Kng0qeAiFyqMGBI9+wEqYCiKsGGpLqeLl7adYeKo0pCeGU03eGztIT53UXgPjxnRx85DPXoaNGdIUbHo/YzsqeAG4ZexkQEzep1iMm4Mw+DNN9+ktLTUt7KoRWi8acSyInqnKnu2VNgUW12HMztRMdByxqRn0cEEcLKpk+O9LTxXXcMdy2YE3aely8W6A3WoqhJyH7Oil81DOdqfmXpmR0jjRtRnFCxBMfRPogTuS81ITE+UYRhMnz6d06dPJ6s9UjEiBMWiu8MjzKhETucPm2LbfAycHagGGEVTUtuwBDK2MIOlU0rCioVL87O5YnqxeIJiQC+fi8/8DpExJXqFYjBfpo1FbJjRMxWTcaOqKtOnT6epqSlZ7ZEK0bMYIiF6hxRthWJR72HYbLB+gaoK6EWTU9eoBGOzKXzpkqlhw03ZGXa+fNlk4UJSAHrpLBTv/ChExpTIz+hIIKqwlILwqeBmI2Zf4A9/+EPuvPNO9uzZk4z2SIXomhTZiSYVXOSBI6y7v3+gVAFttLjGjVvXyLCHv4c2RcWpuVPUosRiZOSiFlR6/vCKigchelhKegwipnpb2VKJJ2bj5qabbqK6upoFCxaQnZ1NUVFRwD+LAUQeGEcC0aSCiywoDmvc9Ic4VAyM0RNT16gE0+Ny89t3a6hv7w25j6bDLzceCbuPWdF0DbV4ev8fTmjYN2SfkaLXENWAs4yW9BBzttTjjz+ehGbIich6DVE7kliI1nMj6v+LkMaNrsNZz+K3av449Mz8FLcscdS397CxuYmcjMyQYuH6NicN9Y0UZoUWHZsVAwN1zHTgH54Pzu4cktkmuvYtGrwTRVHr4UQKSzU1NTF/7nzer36fSZMmDetcN954IxdccAHf+c53hnUc0YnZuLn55puT0Q4pURFX6DcSMhiiWn5B4IywkNfXfBScHQCoYxcIe30Ao3PtXFoevvrw+NE5VGaHr2JsVnRDH/DcgMfjtjhwH5Gf0WjxThRtiGncDOaKK65g6tSp/PrXvwbgRw/+iI+t+NiwDRuAu+++m8svv5xbb72VwsLCYR9PVOJaTlfTNNasWcP+/fsBOO+887j++uux2eR48BKFqqq43K50NyMuovFqiE7Uxo2gs+KQ2VJ+1W7Viiphrw/ApiisumYWNjX0zDg3K5N/Or9CTEGxoaMWz8CnOA1SqXgkhL9FLslgEFjHxzAMduzYwac//WkAuru7efbZZ1nzypqEnG/u3LlMnTqV3//+93zjG99IyDFFJObR68iRI8yePZubbrqJl156iZdeeonPf/7znHfeeRw9ejQZbRQWkQXFI8VzE8ldLPKsWDdCVGD2SylWKhalrkFJQMcgjF0DeATFbkENON3QUTPywOu9adg3RFQ8EowbmWqGHT58mI6ODhYv9rjgXn31VTIzM7lgyQUB+1VXV3PllVeSnZ3NrFmz2Lp1K08//TTXX399xHOsWLGC559/PintF4WYR69vfvObTJ06lVOnTrF9+3a2b99OTU0NkydPtqoTD0LkTifkwCgRUVUoFrhTNQhxff6zf0ErE/sT6Tl1qCouTcx76JtkeNf+0pzQsDdgH5H7mWgReaI4OFtq27Zt2Gw2FizwFGTcuHEjixYFTjI2b97MFVdcwXXXXceuXbuYPXs2999/Pz/60Y+47777Ip5yyZIlVFdX09fXl8grEYqYjZu33nqLhx56KCAzasyYMfzwhz8cshzDSEd0QbGo4r1o0YksUBS5EGNQ75uuQ90uz3bheMgtTn3DEojbrfP4ukNhM6Gcbnhx6wkhs6V84WH/tb8GhaZEFr1Hi8gG3OA6N9u3b2fmzJnk5OQAcPLkScZWjA34zapVq/j0pz/NnXfeyfTp01m5ciWvvPIKCxYsYOFCz7Pw6KOPUllZyYIFC5g+fTqvv/667/cVFRU4nU7q6upScIXmJGbNTWZmJh0dHUM+7+zsJCNj6KJuIxmROx3N0KQPS0WzYJ/InWpQ46bpCDg7PdtBSvmLRnO3i3X76wFCZkKdaOqmrSP8Eg1mxVeuoNJvZl+7Dc7/ku9PkRMXoiXaieJbp96iy9WVghZBriOXK8ZfEfPvtm/f7gtJAfT09DA2a6wvZfz06dNs2rSJhx9+2LeP3W7HMIwAr82ePXt45JFHuPHGG1mzZg0/+MEPuOaaawB8yyN1d3fHdW2xYNYxLmbj5mMf+xhf+cpX+NWvfsWSJUsA2LJlC1/96lejigWOJGyKTeiB0YwltRNJ1BWKBfW+BTVuAkJSYq4E7s/oHAfLJobPlppZVkBPfoGY2VLelevL54NiA0OD2qGeG1Gf0WiJdqIYj7GRbAbXudm+fTsrVqzw/V1cXExrS6vvb2+ijn+o6uDBgyxZsoR58+b5PtuzZ49PClJZWYmmDRi4zc3NAJSUlCTuQgQj5qn5T37yE6ZOncrSpUvJysoiKyuLSy65hGnTpvHEE08ko43CoqAIO6OKZuAXHemXXwhm3PiX8JdAb+OwqdyxbEbYTKj8rAyWzw29ariZ8a2YnZEDpXM8H57bD84B74TIHuJoEfk9hIE6N8eOHaO1tTXAc7Nw4UKfQQPQ1taGzWbzeZWbm5t5+OGHfWEs8DwXBw4cYObMmWiaxi9+8QuuvfZa3/d79uxh3LhxFBeLHXYeDjGPXqNGjeJvf/sbBw8e5M9//jN//vOfOXjwIH/9619HdE59METudEZCKng0iCwoDpoK7u+5GSu+5yYa56JDteHWxZxkaIY2sLJ7Zf/9MgaKMILnGRW1n4kWoY0bv1uzbds2FEWhqqrK99ny5cvZu3evz9tSVVWFpmk89NBDHDhwgJUrVzJp0iT27dvHyZMnATh+/Dh9fX0sXbqUpUuXUl5ezn/8x3/4jrlx40ZfiCr5lxfF2llpIO7Ra/r06axYsYIVK1Ywbdq0RLZJGkQWFI+EVPBokEpQrLkHBsXCCZA7Jj0NSyDRCIp7XTqv7jkrpKDY57kBqPSr3le7PT0NShMiZ0sZGD4jfPv27UyfPp38/IGq4PPmzWPRokX89c9/BWDatGncf//9PPHEEyxcuJCKigpef/11Kisr+chHPgJ4PDMrVqxg586dVFdX8+CDD5KZmQlAb28va9as4bbbbkvthZqMmDU3mqbxm9/8hvXr19PQ0DCkANgbb7yRsMaJjsizDcu48SD0PRzsfWs8CK5+gWHlouA/EoxoBMUH6zs53WiIKSj2fw8rBomKRxAie1BhICy1evVqVq9ePeT7u++5mzvvvJNvfv2bqKrKPffcwz333BOwz7ZtA/d8z549Afobf5599lmWLFnCRRddlMArCI1ZJ38xj17f+ta3+Na3voWmacydO5cFCxYE/IuHJ598kkmTJpGVlcWFF15IdXV1VL97/vnnURSFG264Ia7zJhuRq2paxo0HkcWaQxYG9RsQf7wnl7cONqShVYmlKMfBstnhBcULxhUxvTxXSEFxQNZi6Wyciicj9cz+94T0RA0m2v5RVVSpF6D82HUf4+Yv30xtbW1U+4czbhwOBz/96U8T2byImLEmWsyem+eff54XX3wxQLw0HF544QVWrVrFU089xYUXXsjjjz/O8uXLOXjwIKWlpSF/d+LECf71X/+Vyy67LCHtSAaKIq6gOBbjxjAMUz7ciUB0z03AffEzbt53TeFPf95F9feWpaFlicNuVyN6Y0ZlZ3LJ1BwxBcX+hRhtDnZpkzhfPUSFXsd//mMr9/zzpelt4DAJWWhyECJnnkarSfn6v3ydwszodKt//OMfQ3536623Rt02mYl5ap6RkZFQjc2jjz7Kbbfdxi233MKcOXN46qmnyMnJ8S0oFgxN0/jc5z7Hfffdx5QpUxLWlkQjul4jmhdSURSpZ1QiGzcBeg3wGTeaobDHmEx+ptxFGr3YVcGXX+gf/Ovbe9mtD/R3vSffT1ezEka0ldBFD0tFQuTJoVn7/5iNm+985zs88cQTCRm0nU4n27ZtY9mygdmjqqosW7aMTZs2hfzd/fffT2lpKV/+8pcjnqOvr4/29vaAf6lC9IExmgrFIl9jNCiI26nqhj6QaePsxqjfB8AhYxzdZDGtzCNqNGvnFIn69l4a2vsihmd6XTpvH24QMozjb9w8vu4Qu4wB42aG+1C6mpUwovUQCy0oFnSCGwtmzJaKOSz1zjvvsGHDBv7v//6P8847D4fDEfD9Sy+9FPWxGhsb0TSNsrKygM/Lyso4cOBAyPP/6le/YufOnVGdY/Xq1VGtxZEMhM6WijIVXHbjRuh0fv9U8LpdKP0h0l3GVABqW3oAc3ZM0fBcdQ0dve6IQuEdp9o5dq5DeEHxrtNtdOlTfd8tdpxIU6sSR8iV6wchej8jsmcmEmadHMVs3IwaNYpPfOITyWhLRDo6OvjCF77AL3/5y6iLE911112sWrXK93d7ezvjx49PVhMDEFlQHM3SBCD2jCoahBYU+8+K/fQ2JzJnobphWmlemlqWGFYumcCL++0RhcIXTRlDl7NLSEGxf3i4clQ2686W004uBXQxsfcAGAYIPHBG67kReaIoPYY5J0gxGzfPPvtswk5eXFyMzWajvr4+4PP6+nrKy8uH7H/06FFOnDgRULram4put9s5ePAgU6dODfhNZmamL/8/1YgsKI62QrHoM6pIiHx9Ad43P+PmqGMGiqKQkyG25qasIIvSgsyIQuHi3CyqxheIKSj2Cw8bgE1VOaRO43z9A/LdzdBeC4Xj0tvIYRCtcRNsoijKxNGsRe4SSgIvL1H3Na25vhkZGSxevJj169f7PtN1nfXr17N06dIh+8+aNYvdu3ezc+dO37/rr7+eq666ip07d6bMIxMtoguKLeNG7OsL5rnpMTI4nTEJVYEDdR0+HYqIz2m0one7ahNWUOzvQe11ulEUhYO26QM7CF7Mb0hGXwj8BcVeKUQqFoW0iEyiw1JOpxMAm214k6+oPDcf+chH+MEPfhCxKFBHRwc///nPycvL4xvf+EZUDVi1ahU333wz559/PkuWLOHxxx+nq6uLW265BYCbbrqJyspKVq9eTVZWFnPnzg34/ahRowCGfG4GRB8YoxUUi+qdigaRszR8xk1XE7ScAGAfk5kxtojTbQ2cbOrmmY3HWDxHjfp+m4nali7q253Ut/eG9cp09xlsq2mOuJ8Z8U+V7nHpKOAxblz9O9RugzniLlgcdeKC38rnNpuNUaNG0dDgqdOUk5Njak2L0+mkV++N2Ean00mvIZ7o3ak50XQNmzb8/kPXdc6dO0dOTg52e8yBpQCi+vWnP/1pPvWpT1FYWMiKFSs4//zzqaioICsri5aWFvbt28c777zDq6++ynXXXcePf/zjqBvwmc98hnPnznHvvfdSV1dHVVUV//jHP3wi45qamoGMD8Ew8wsXCd3QcaiOiPuJLLiNBim8b36z+93GVHIybBRmO+hz6xgM6BlsiGXcPPf+yagExe8dbeJ0S5fwgmLdgJwMGyezZkL/GNhXs5X0BN0TQ7Sp4Kqi4tJdvr+9sgWvgWNmetw9ZNuzE7af2XDrbnRDJ8OWkZDjqarKhAkThj1+RmXcfPnLX+bzn/88f/rTn3jhhRd4+umnaWtrAzwd45w5c1i+fDnvv/8+s2fPjrkRt99+O7fffnvQ7958882wv/3Nb34T8/ksIhNttpTsQj/RvW8e42ZAb7OLaWQB44uycWtwQ1Ulde4zQhpw1y8o538PZ0UUCn94ZhnHW2uEFBT7VygePzob3TD40rIqGp4bTSktGGd2gKAhNxhUgTkMg/sZRVEYO3YspaWluFyuML9MP2+deosrxl+RsP3MRm1nLV2uLiaPnpyQ42VkZCTEoRG13yczM5PPf/7zfP7znwc8y7L39PQwZsyYIengFuIzpHR/CESuHBoNomdLKSgBxs1uYxoXAE2dLpq6+vjbzloumiem8H1UTgYTinIjhppK8nOYUS5ohWI/Yf++s+20dDvZeKQRVZ1OqV5NltYFTUfS3Mr4GVJoMgShPMQ2m23Y2oxko9k0srIiP3vR7mc21D4Vm2IzXdvjNo8KCwspLy+3DBtJiVboJ7JnIxpEvj7DMLAx4LlpU/JpyRhLbqYdMOjq0+jqcwsbenNpbmxRzPAcdhVNUO+Gfx2YbpebbqdGd5+boxl+4bUz4oqKrcQF8YnWQE015muRhSmQvUJxtOthCS0oRkdpr4XuJgCOOmYytTSfj1dVkpfpIMuhkpNpx6bahPTcnG3v4XRL5ArFHT0a++vahK9QbFMU8jLt5Gba6S2pGtipX1MlooEa7dpSovYzI4FoQ4upxnwtsjAFss+oohYyCurVgP57WPeB7++d+lSON3axZmctiyeOoqwgixuqKoVdYuLlnadp6nTyXHVN2P3W7ztHQ3tPxP3MiP97WF6QxZSSXD5eVcmmXj/9UO02Yd/DaAdG2YuFikwsiyynEvO1yMIUaIYWVQ0RUTvVkVD2XTd01DO7fH8fUD31URTgQH0nZ9p6+NvOWmEraS+bU0JZfnZEofDHFlQyJi9DSEExeLyH9e29HG7opKXbybr99bgyCjjJWM8OdbtQDU1IbZi1cKb4ROt9SzXma5GFKYi6QrGgMyqd6Oq6iJ7Or57d4ft7vzqN66squPWyKWTYFAwDXyq4iGGpvCw7M8sLIwqFKwpzGF+UJaSg2Mtz1TW4NJ3ROR4j7aKpYzjkmOX5UnOitp4S8j2MJfxt1jWMRjrSeG5uvvlm3n777WS0xcJEyL5wZrQzRpHRNZfPc9OSWcHBDs/gXlaQxVUzSynKyeCGqkphBw6X7sYejaDYJn6hyatmluKwqdx93RzKCrLYc7qdLc6BFcLVpmNCvodRr2EnaD8zEpDGuGlra2PZsmVMnz6dBx98kNra2mS0yyLNRJsKLmqnY9YXMpHobadQ3Z6Vv2tzZqMoA0vAvH+imXOdnlRwVVHRdPEG/4b2Hg7VdUYUCrf2aJxsjryfmfnztlP0uDTW7PT0txk2lQ+Y5vtebToi5HsYSyq4iNc3Eog2xJ9qYm7RmjVrqK2t5Wtf+xovvPACkyZN4qMf/Sh//vOfTV9MySJ6RoLnRnrjpvmo7wXPnbyEgiwHH6+qBCDTrvrCUqJ6bt440MDZtr6IQuG/7zhLS1dk4bGZcbkNFAaM0+XnlVGXNQ3d5vHGqY2HpX4PRQ1/x4qI2jfd0E25ikBcLSopKWHVqlV88MEHbNmyhWnTpvGFL3yBiooKvv3tb3P48OFEt9MixcSSLSWiyz8W40bEgR9Abxowbl5rqaCzz+2b+X+8qoLcTDs3VFViU8RMBV86dTTji3IjCoVvXDKRgmybsIJigEumjaEoN9NnnL57tInGbo1TOR7djdrVgN5Rn84mxkVMldAlN24URRGyr5HGc+PP2bNnWbt2LWvXrsVms3Httdeye/du5syZw2OPPZaoNlqkgagFxYLO+mN5IaPJGjMlzUc9LVftHM+YGRCW2nysmT63xrr99cIOHLmZNhaNL4ooFB43OpfS/EwhBcXed+udI424dZ11+z0GTIZdRTegNtezYLAK6H6VqEUhlkmUiP1MLIj6HppVvxizceNyufjLX/7Cxz72MSZOnMif/vQn7rjjDs6cOcNvf/tb1q1bx4svvsj999+fjPZapIhoU8GtF9Kk9LRC+xnPdvk8Fk0by5i8DN/M/5rzyrGpCstmlwlby8el6djVaDJtQBd8YDyvspBsh41lsz0LCv/TonHkZNionHs5AKphoAtYqTja91D2ZV5A3Jpa0qSCjx07lttuu42JEydSXV3N1q1b+epXv0pBQYFvn6uuuopRo0Ylsp0WKcYwDGxRDByidjoG0aWgCsvprQPb45bw3tEmNM3wzfzX7a/H5db5r1f20drtFjIs1dTVw85TkSsPN3T00dAeuZKxGfFOMN46eI7mLqcvrPjGwQbcmsHrbeOAfs/N2Q9CHca0RJsKLuokKhZsik3IWkXSVCh+7LHHOHPmDE8++SRVVVVB9xk1ahTHjx8fbtss0ohOlEXuBBX6Se+5OV09sD1+CTPL8snOGJj5r1wyAYddpaXbyWt764WcMW4+3sjJpt6IQuHnqmvo6HWLLSjWDfALKy6bXYbNprC0ai4UjkcB9LrdoLnT2cyYGQnFNKNFURQhsxbNmpwRc4s2bNgQNCuqq6uLL33pSwlplEX6ibr+hCpmp2PWFzJhnPIzbsZdwKajjTR2Dsz8ywqymF6Sx+icDJZOKRHSc1M1voCpJXkRhcIrl0wgP8sutKB4dnk+FYXZvrCiv+ett2whNgMMdw807EtzS2Mj6n5G0ElULJMGUXVF0iyc+dvf/paenp4hn/f09PC73/0uIY2SDRFnxdJXKJbZuNF130rg5JXBqAm4dCNAUAzQ2OWks8/NluMtQt7D7Awbl88ojSgULivIorRATEGxlz1n2nBqA4Jif8/bFtdUVAw0BTj9fnobGiPRhocVRREyZBNLPyOqd0r4VPD29nba2towDIOOjg7a29t9/1paWnj11VcpLS1NZluFRNQHNpZsKRFn/VIbN+cOQF+7Z3v8ElAUphbnMW7UwMwfoCQvg7xMOxdPKRZyxujStKgExTJQOSqbvAy7L6zo73kbN+8Kj+YGArVWAhCToFgXrx+NNtUdxB0rzJoKbo92x1GjRqEoCoqiMGPGjCHfK4rCfffdl9DGyYB3xmFDzk5YVcRU+Jv1hUwI/nqbcUsAOFDfQZ/bM/OfW1kIQHOXi0yHyuZjLYwvFm9i0tLdx+G6dlbM7g3rlalv7/UJikX13hyq7/Sl7nvvX1OXk5wMG682lnCVakfXdOE8N9FOMkTVx8XkubG84AklauNmw4YNGIbBhz70If7yl79QVFTk+y4jI4OJEydSUVGRlEaKjKjZRNEyEtzFwnHKb4Ab7zFuSvIzMAzDN/MHGFeUTWevm0umjRbSQN1V28LpRoPnqmu4Y9nQCZcXf0FxuP3MTEleBs3dSsD9qxyVRa9b56rzxqPUTEev3wtNh6G7GXKKwhzNPEj9HhJb4oKqCuoFj8E7lUqiNm6uuOIKAI4fP86ECROEtaRTjaiuxmgZCe5i4UI2p7Z4/qvYYGwVAMcbu7EpBM78O524NJ1NR5v5+OLCNDU2fmaU5ZGfoUYlKH5xv9iC4hNN3WTY1UDPW7cLTfek93+k9DyPcQMevdX0q9PY2uiR3biJNtUdxJ0Im/UeRmXc7Nq1i7lz56KqKm1tbezevTvkvvPnz09Y42RAduNGVVQhPTfRaor89xfCoO9u9szeAUZPAIcnDFOYZUdRAmf+U4pzOdHUxWXTijEM8WrAZNoVrp1bEaWgOEu4kJS/N210jgM1yP071dLDstllKKfnou/+k+eL0+8LY9yYNdMmUcQy8CuIWcvHrGU1ojJuqqqqqKuro7S0lKqqKs8aGEHc2IqioGniudWSiaiC22gR1XiLNgUVBmZUQhT98xeUFk31bZ7rdJKbaQuY+Z9t76Wrz827R5q5dqFYAz+AZug4JBYU+1d+bex0kjPo/tW199LZ52bd/no+Nn0evl7GvwyAyYnlPRSRaCu9A9hUMT03ZjVQozJujh8/TklJiW/bInpEFdxGi6jGjWEY2NXoorJCicL9xcRjBoyb4twMbLbAmf+s8ny2nXRz+fRSNKMlla1MCG09fby2t54Lxk+N6JVxu3UeX3eIlUsmCOPB8R/4i/MyUNXA+ze7vIBtNS2eJTRybLhyi6H1rMfA1TUQwPCTvVJ4LGEpkT03ZgxLRdWiiRMn+l6yiRMnhv1nEYjsnhuRX8hYPTdC4D9r9/PceGvaeOukANQ0ddPV5+adI01CGuCH6jvYXdsRVeXh5m4n6/bXC1Wl2D902tg59P6dbPbcv3X761FUFb3cs4gmzg7w6m9MjlkHxkShI2k/Mwgzet/iKuL3yiuv+P7+t3/7N0aNGsXFF1/MyZMnE9o4GRD5gY0GUV2pMa0KLsq6Nro2ULwvv8KXMVPf3oum6Vw0ZUyAqHb+uAIy7CpXzCgT0gCfWJzNovFFUQmFi3IyWDa7TChRsfcZrW/vxa0PvX8L+u/fstllnn6mbO7Aj2s2p6HFsWNWvUaiiCkVXNBsKbMSs3Hz4IMPkp2dDcCmTZv42c9+xkMPPURxcTHf/va3E95A0RE1bBMtI6E2gzAGasN+cHZ6tsdfgLce8XPVNbR0u8jLtAeEZA43dNHt1Nh4qFFIz43DZvCZC6ILM9ntCncsmyFMSAoGntFI92/d/nqPAV42Z+DHp8QxbqT23MRY50bE99CsxPxUnTp1imnTpgGwZs0a/umf/omvfOUrrF69mo0bNya8gaIjvXEj6PVJWTnUT29jVF7g2/Yusuiv1wA4f+JoHDaVK2eK6blx6zoOW/R6DdEGDu/A+OFZpdjVIPdvkuf+eT03RtEUcOR6vhTIc2MZNx5klzCkmpifqry8PJqamgB4/fXXufpqT8phVlZW0DWnRjrCDIxxIur1xZIKLsw1+g1oxvgLfO7+1/fW+eqh+LP3bDu9Lo23DzWKV8sH6Opz8eettdS3R05jd2sKj649ENW+ZsGr13h9Xz2aMfT+7TvTTk+/50ZVVDRFgXHne75sr4XWU2lodWzoSFwpHEn7GUGI+am6+uqrufXWW7n11ls5dOgQ1157LQB79+5l0qRJiW6f8MhujYsaL9cMTb6y6DWbPP+1Z6GXz/dd38XTxvi0Gf5cPHUMdlXhqpnlYlzfIE41d/H+8ZaoRMJt3W7WH6gTSlCs657yAxdPLSLDZht6/6aNwd7vkfMNjBMuGthBAO+NrsvtuYkpFVyU8LcgxPxUPfnkkyxdupRz587xl7/8hTFjxgCwbds2Vq5cmfAGio71wJoT6YR+bbXQ2j9wV56PYXP4rm/9/gb0IJ6bnada6XVpvHWw0fzXF4SywgwunlYalUi4ND+by6ZHJz42C17Pzfr959B1fcj9+6CmjV7XgOdmiHEjiO5G1AlSNMSSCm55bhJL1MsveBk1ahQ/+9nPhnxuLZoZHGEybUYYMbmLRRD6eb02ABOXejxT/XOX8ycV8fcPzg6Z+V8xo4R1+xr40Kwymo3AgVMEbKrCrZdGrnEDkJ1h55ZLJgspKD5/0mhe2T30/l05s4TX9tV5KhTj9vQz4y4ARQVDF8JzIztSavsEIWbjBqC1tZXq6moaGhoC1hVSFIUvfOELCWucDFieG3MSi7tYiNDiyfcGticsDfBMvX3onE9z461uC1B9vJk+t8abBxs5b7rJry8I3S4Xv9t0klsvjZwFZegK//3WEb56xRxhDBzvrP/tQ424Q94/j0fni5eWevqZzHwomwt1uzy1bnrbIEu8dcNCIcwyKP3EUoFZiH5GIGI2bv7+97/zuc99js7OTgoKCgJunGXcDMWyxs1JrO5iYTw3igrjlwSU7l8wrpC3D50bMvO/ek4ZL22vZdnscs64xNGieKlv7+Gd5mZyMyKv9l3f7uRcYwOF2XnCrAzuNcCrxhey8Ujj0Pt3Xhkvbjvt8dwoDPQzEy7yGDcYnhXipy9LfeOTgKIoGBhRT0rMQMz9jIDCfrMSs+bmO9/5Dl/60pfo7OyktbWVlpYW37/m5uZktFFohBGj+iHa7CgeYqkcavoZVXczNOzzbJfPh8z8gBnjpmPNvpm/P+8eacKp6R5Nh2DPKEBRroOrZkanuRk/Ooclk0YLpbnxhk43HWvGrQ3V3Gw81Iir33NjU2wDA6OAuptoMP17GIRYihSqioqmi3V9ZiZm46a2tpZvfvOb5OTkJKM90iGEGHUQsi9mB5IV8Tu1ZWB74sVA4Ixxdnk+2Y6h2TafvXACJXmZfPZCMZdNURWDby+bGVWYKS8zg08ujryCuJnw6jUumlLE3IrCIYbZsjkD9YsCBsbxYmVMRYvp38MgxFIJXcTrMzMxGzfLly9n69atkXe0AAQRow4i1lVeRXSlxlpcy9SdziC9DQTOGLfVtOAKMvMHBLxzA+gY2G3R3UO7asOlmfgeBsGbJt3n1rHbhk421u2vR9OMgQrF9F9fYSUU9htCp7eC5kphq5OHiMkZsfQzAffQYtjErLm57rrruPPOO9m3bx/z5s3D4XAEfH/99dcnrHEyYFNswnludHSpV+oFyYwb/0ypfuPGv47P1JI8TjR2D/HcPFddQ2NHH89V1zBjSspamzDcbp0n1h+OaqVvlw4vvH+SSaPLhPHeeD03bx86x+H6Tp6rDtQWrVwygZe2n6azz01jhyvwGZ1wIeyuAXcPnP1goLifwIjo2YglW8qm2AISdCyGR8zGzW233QbA/fffP+Q7RVHQNLEG8mSjqiYfGIMQ62J2Ign8vEhTOdTZDWd2eLbHTIO8EiAwLLWntg2npg3JtvEfHFt7nClv+nBp7nb5vFGRRMI1jT20dzYNMRDMjPc9nFycS21rzxDjtKwgC5uqsvlYEzkZcN50f+NmKez+k2f75LtSGDemfg9DEHM/Y3luEkbMYSld10P+swyboYgoKJZ9vRcgoA5MJEwtZKzdCrrbs93vtYH+gbHf6Bw/OofcDHvYwXHT0aaUNTlRFOU4ol7pe0ZZPvMqC4QSFOuGx4O690y7L+V7MMW5GeRl2lk2e2xg+HvSZQPbJ95NQWuTj4jGTayp4KJdH5hXljCsEay3V5x1WtKFqQfGEIwE4ybW4lpmfYEDBKP9YmIgIBX8YH1HxMHR36MjCna7GvVK34XZmVx9XqkwISkYMFDHj84mL4hxCtDY5aSzz+2pQu0/MBZPh9xSz3bNJtDcKWp18hCxL40lFdym2ITLljIM86bmxzyCaZrGf/7nf1JZWUleXh7Hjh0D4J577uFXv/pVwhsoOkLUSBmEd8YoM7GsaWPqTjWImBgCNTflBZn9s/uhg2NT/+C4p7Yt6U1NNG63zuPrDkW1GKbTbfDKrjNiLZzZP8k41NBJr1sLapyOLcwkJ8PO1XPKA79QFJh0iWe7r72/7o3YiOjZkF1QbOaJcMyteuCBB/jNb37DQw89REZGhu/zuXPn8swzzyS0cTJg6oExBLEsKgnmdUtGIhZ3sSkNVM0Np9/3bOePhdGTfF95F10EONbY7VuDaDBlBZ7BUUTPjVdzE81imIfqu9h7tlWshTP7JxmlYYzTlm4XHb2uoPeWiZcMbJ8UPzQloqBY9oUzdUPHpppzIhyzcfO73/2Op59+ms997nPYbAMXtWDBAg4cOJDQxsmAsA+s5J6bWDCtgXp2Jzg7PdsTlnpm6/1ohoaqel7vsaOy+NDs4MXuWrpddPa6hPTcxKK5mV85mhllucJpblRFpSaMcTpnbAEXTy0Ofl0Bupt3ktjS1KAgXiq4YRhRD/4iprrHol1MNTFnS9XW1jJt2rQhn+u6jsslRz2FRCLkA6vH5rlRUKSuamxaz83xtwa2J18e8JW/gep0adjV4Pdz1th8inMzmTq5JWnNTBZezU00jM7N4JJpeUJpbjRDw6bYKCvIYv64oUX8ALIdA/V7hnhQS2ZCTjF0N8LJTaBrYNJZdjTYVPEmirF4wUWdCEsTlpozZw4bN24c8vmf//xnFi5cmJBGyYSoD2wsrkbvmi+yYtpaRcf93sNBxo2/O/x0ay/rDwQP32TbxStuFw8O1Y5LsGxO3dA9Fc51HVUNPnE4cq6Td480Bg+3Behu2qBudxJbGzuxlpwwrQc1DLF4wU07iQqDZmimDUvF7Lm59957ufnmm6mtrUXXdV566SUOHjzI7373O/73f/83GW0UGhFFcLFqbrydjlkt+OFiSne42zmQKVVQCUWBVfj8O9Xi3Axfmf7BHGvsoqmzj2alkZXnJb3VCaO+vZeG9j7q23uj8sb0unQ2HTvHJ+ZGt78Z8Hpualt7aQlRz2fO2AI29TSzbHYZNX1Hhh5k4qWw72+e7ZPvQkVVklsdPbHO+kWs9i5zvwiSeW4+/vGP8/e//51169aRm5vLvffey/79+/n73//O1VdfnYw2Co2Ixk2smhubYhOu04kFU7rDa7d6qs+CR1sxaAbsnfXDQLpwMM3GzPJ8Mh024QTFz1XX0NHrjlog/MGpDo6e6xBOUKwqKsV5GSEFxSeauul2Br+3AEy61G9nc+luYu1nRFynT3b9opmNt5g9NwCXXXYZa9euTXRbpMS0IY0wxOu5kRVTem4CQlKXDfna26nWt/eiaToXTQkuKK5p6qbLmwq+OJkNTiwrl0zgxf32qAXCS6eW0N7XIZSg2PseNnY6ycm0DakwDVA1oZCa5u7QnpuSWZBdBD3NnrIBug4h9FepJuZ+xvLcmA4zG28x/1+fMmUKTU1Dq5m2trYyZYqAC9QkGVFrF8TquTHd4J9ATHl9J0LrbWCgU32uuoaWbhd5mfag4Zj54wrJsKvMrSwUauAoK8iiND8z6hBTSW4W88YVCBOSAk+SRnOnG7ducNGUMUENs0N1nfQ4g2dSAR5Dxqu76W2F+j3Ja3CMxOy5EXASZebBPxHEmnySSmJu1YkTJ4Ius9DX10dtbW1CGiUTIi6GFkvJcBCz04kF07nDXT1waotne9REGDV00PN2qstml4XU2wAcbuik26mxt7ZDKFH4mdYuGjqcURfl63IabK9pEqqIn2Zo/HXHGVq6nSGN0yWTi3CEub+AR3fj5fjbSWhpfMTq1TDlJCMClucmfUQdlnr55Zd926+99hqFhQPuUU3TWL9+PZMmTUpo42RAxPRo3dBxqI7IO/YjogEXC6Zzh5+qBq1/ocsgXhsY6FTX7qtH042gIQ2AD88qxenWuWx6qVAd8R+3nKCjR4t6IcwtR5s51dwl3MKZn148gdd2tYcMp+2tbaOnvwZOyJXd/Z+R42/BxbcnvrFx4F9oMhpURcWli1VuJJZK6CJi5j4jauPmhhtuADyD9c033xzwncPhYNKkSTzyyCMJbZxFetAMjUwlM+r9TefZSDCm80z5z75DGDfeGdWl08bw+80nQ87svXVSRBO+f7xqLH87nBm1hubDs8o50npcOM2NEsG5fsm0Yt450hRacwNQOhvyyqCz3rOIptsJ9ozg+6aQeDzEIj2jXkSc4EaLmT03UZtc3pW/J0yYQENDQ8Bq4H19fRw8eJCPfexjyWyrRYqIdUYlors4FkxXf8JfbzNpqJgY/D03DeiGEVKT8faRRg7WdfDO4WahFu0ryLEzsSj6onylhdlML80VS3Nj6Lz4fi1NXX0hs7y217SGrF7sQ1FgypWebVeXJ9POBMSjuZG5nwHxlrLxr4RuNmJu1fHjxykuLk5GWyxMQiwrZoMJPRsRiNVQMVXGW18n1G7zbI+ZDgVjg+7mNVCXTC4i024L6bm5bNoYbDaFhROKhBo4alu7ONPaF7WGprNHZ39dm3Cam4unFJNhC33/PjSzBJs6oLkJ+Wx7jRuAY28mtqFxEnOdG8H6mZGAmT03caWCr1+/nvXr1/s8OP78+te/TkjDLNKH7NlSBkZsy0uYKeOtZjPobs92kBRwL94Z1ZuHGtB0PaTmZtvJVvpcOrtOtfPxWeIMHGt2nKa50xW1hmbDgUbq27uF0twYhsGGg00+z1uw+7f5eDN9bs/9nTXNM/jblSDd+uQrBraPvQlXfTd5DY+SWCuhi9bPxEO0i2yaBTNrbmJu1X333cc111zD+vXraWxspKWlJeCfhfjEmt4n2owqriwNswimj74xsO0/YA3Ca6BeObOUaaX5IbUmV83yzPwXTRgj1MCxbE4JpQU5UWtoVsyvZEyeQyjNjW7oLJ5YRIZdDem5+fxFExmTl8HKJRPCD/6FlVDcb9Sd3gq96V8oNdb3UMR1+mTHzJ6bmI2bp556it/85jds2bKFNWvW8Ne//jXgXzw8+eSTTJo0iaysLC688EKqq6tD7vvLX/6Syy67jNGjRzN69GiWLVsWdn+L2JF9RhXrC2kqQeDR9Z7/KipMCW3ceAeOXqeGwxa6/ZuPeWb+O0+1CWWg5mSqzC4vjFpDUzE6h3FFWUJpbgDePdLky3YLhk1V8Mo0Ik4yvKEpQ/MIi9OM7B7ikYBUyy84nU4uvvjihDXghRdeYNWqVXz/+99n+/btLFiwgOXLl9PQ0BB0/zfffJOVK1eyYcMGNm3axPjx47nmmmusGjsJRPYKxWYuPBWWttNw7oBnu/J8yB4dclfvwPHavnqOnusKKUhdfl45qgLnTxTLc1Pf3s2Rhu6oNTRt3RrHmzqF0tyAp8hiliO05ua56hrOdXgExxEHf5PpbuLy3JglPJwkRBMUS+W5ufXWW/njH/+YsAY8+uij3Hbbbdxyyy3MmTOHp556ipycnJDanT/84Q98/etfp6qqilmzZvHMM8+g6zrr169PWJsSjewPrKqoQmXaxOqZMg1HNwxsT/1Q2F29A8fMsjyyM0IPjhsONuDWDLafbBPKuFm7/yx1baGziAbzvx/U0dLVK9TaUuDR1Lg1PaTnxr9IY8RJxqRLwftem8C4ictzY5bwsAVgbs1NzILi3t5enn76adatW8f8+fNxOAKLvT366KNRH8vpdLJt2zbuuusu32eqqrJs2TI2bdoU1TG6u7txuVwUFRUF/b6vr4++vj7f3+3t7VG3b6QSjyZFKM+NiV/IsBz1M+CnfTjsrl538Y5TrbjcoQXFK5dM4OWdZ1g+Z7RQ93Dp1CJOtOVGraG58YKJ/O9Rm1CaG4CLJo+mq88dst3r9g8UabxgdoTBP6sQKhfD6WpoPAjtZ6CgIkktj4zsHuJ48Ka7i9I/SeW52bVrF1VVVaiqyp49e9ixY4fv386dO2M6VmNjI5qmUVYWOKssKyujrq4uqmP8+7//OxUVFSxbtizo96tXr6awsND3b/z48TG1MRGIpoCXfbVekToPH7o24LnJLISKRWF3NwxPRtikMTnkZIb23IBHsqEKNivOzlA5f8KYqDU044tyKYlhLSqz0OvWw2qmVi6ZwOgcB519btp63JHfQ//QlL8nMA1YmpuhiGbAmTnEH7PnZsOG9L4Q/vzwhz/k+eef58033yQrK3inddddd7Fq1Srf3+3t7Sk3cEQLS8m+5otmaKadbYTkzE7PwofgERLbont1953pwBnGc/NcdQ2NHX2s3dfDly8J7v00I+c6e/jgdAf17b1RGSyNnZ6aONHubxbePtTI0XOdIVPYywqysKsqm4810U4jF1REeA+nfgjefsizfWQtLPxcElodHZbnZiii9aVmDvGn1eQqLi7GZrNRXx8YT66vr6e8vDzsbx9++GF++MMf8vrrrzN//vyQ+2VmZlJQUBDwzyI8sq/WK6TnJoaQlD8Vo7LIzbSH9NysXDKB0bkOelwG5zp6htvKlPHe0XPUNEWvoXmuuoaOHrdwmpvJxTnkZIS+fwDFeRnkZdi5YGJx5Pdw3AWe8BR4ygpo7gS2NjZiroSuijXwx4NNsQmlXzRziD9qz80nP/nJqPZ76aWXoj55RkYGixcvZv369b61q7zi4NtvD72420MPPcQDDzzAa6+9xvnnnx/1+dKFgoJhGOZKKQ5DrGu+CDnbiNFzk3bvm399mwhiYn+ONHTS11+eP5jnpqwgC5uqsvt0O7kZtSwZNycRrU06VePz6XE5o9bQrFwygRf324XT3Hg8b6HvH0BLt4sMu8r2k21cMinCe2ize56fvX/11Lo5/T5MXJqElkcmnn7GbaTPGIuVeJZssali6RfNrLmJ2rjxXwU8kaxatYqbb76Z888/nyVLlvD444/T1dXFLbfcAsBNN91EZWUlq1evBuBHP/oR9957L3/84x+ZNGmST5uTl5dHXl5eUto4XLwiMbM+BIOJZ7Vea7aRRHrbPCuBg2fJhVHRD9DFeZm09rjCz/xzM3DZHSyZHDq13GxkOlSunFkadYiprCCLUgE1NxWjsuh2usPevwlFObT2uFgyeUx0A+O0qz3GDXhCU2kybmTPltINPeZ1l0RbP8vMfWnUxs2zzz6blAZ85jOf4dy5c9x7773U1dVRVVXFP/7xD5/IuKamJuAB+cUvfoHT6eSf/umfAo7z/e9/nx/84AdJaeNw8Rk3iGHcQGyF64Tz3MRovEGaReHH3vIUXoOYQlIANc3dZNjViDN/NdNg87FzfGzWcBubGpq7ejl4tpePz4lOQ1Pf3ktDR59wmpsjDZ2+hTFD3b/Gzj56XRpbT3SxaFwU7+E0v+SLw6/Dh+9NUGtjI9bwsCieby/xTGitEH/iiGttqURz++23hwxDvfnmmwF/nzhxIvkNSjDeVGkHjsg7C4hoL6SZZxtBOfSPge1pV8f001HZjoCFFYMxvSyPMYU6V88RR4+283QzpxuNqNeKeq66ho5et1BrSwGMH51D5ejssOG0aaV5HGno5KLJUWhuAPLLYGwVnN0Jdbuh/WzIBViTSTxi1LSHh2Mgnn7GrtgtL3iCMGerJEO0OGqsCOe5iXHVcy/xxNCHja7Dodc8245cTyG2GGjsctLpdIcsAgeQ5VBx6wq6QM/ojNJc5lQUxqS5yc8ST3PT49Zw2MI/q2dae+nsc1N9ojX6sM10PyP5yLphtDB+zDwwJoKR4rkxq9xC3ifLRIj2wMaKcHVu9NiNG1VR0zNrrN0G3Y2e7alXgSO2kEpJXgZ5YbKlAE42dVN9vIXX9p0dTktTisOh8LF542LT3BSIo7nRDR1FUTh+ros3DzWEzfKaU5FPht3GxVNKon8Pp18zsH1k7TBbGx/xDIwi1QyLx3gTLSPMzAaqOVslGaIJ4WJFNM9NPHVu0iaaPvR/A9szPhLzz891OunsC++5mVGaR6bdwaKJyUkaSAZtPX2s3dcQ01pRbrfO4+sOCbG+lFfLUByFcXq8sZtup5stx1qifw8rFw+sTXZ0A2iuBLQ6Nsw8MCaCeIw30aq9x6NfTBXyPlkmwqaKlcIYK6J5puLJYkhbp+MNSQHMWB7TT+vbe9E0nYumjAkbjjnV2ktPn87Wk03xtjLlHKxrZ3dtR0x1a5q7XazbXy9ErRuvcdMYhXFaNaEQh03lkqkl0Rs3qg2m9ovT+9qhJrrlbhKJmUMaiSAuz41gdW7AvEJvy7hJAaJ5NmJFtOuLNxae8mtsrYH6PZ7tysWQVxrTz5+rrqGl20Vepj1sOGZuRQEOu42q8eJ4biaMyWTxhPBG22CKchwsm10mhO7GOzBG47k5VNdJj1Nj07GW2AzwmR8d2D7w6jBaGx+W52YooqWCmxl5nywTIfsDK5rnJt5YeMqvMcBr89HQ+4Xgw7NKfStGh+NYYxc9ToPtNeJ4btyajj0eUbguRraNd2CMxnOzZHIRDpvCZdNKY+tnpl8Nan8G54FXIMWCeek9N3GsuyR78kkqsYybFGBTbLh1ecNSommK4o2Fp9xA9U8Bnxm93sYrRn19Xz26YYQdGAEWjh+Fw2Zj/nhxUsGPN3ewraYtphBTa7fO2gNnhQhLaYZGe4+GWzcihhX31LbR49J490hzbANjViFMvsyz3VbjSQtPISPCcxNjqrtomhszI++TZSJEC9vEilljrqGIp1NVFTW1BmpfJxx/27NdMA7K5kb9U69eY+mUIjJs4VcEBzhY30Gv02BHTfNwWpxSygszuHhKSUwhptKCbC6fHlsoK13ous7bhxpp6XZGDCteOq0Yu6py+Yyy2PuZmdcObB94Jc7Wxkc8WYui1bmJNbtLNC+4mbGMmxQgWqq07AjhuTmyFjSnZ3vGcojBgPRe3/oD56Ly3CyZVIRdtTF/XP5wWpxSbIrBly+bGlNqd26Gg5svniBEOrhmaCwaPwZ7hAKMANtrWul1abx7uCn2fiaNxg2INzGKhXj6GbtiF8oLbmYs4yYFiFZ1UqTZUTzE67lJqYG67+WB7TnXx/RT7/UtmjCKTLsacXDcU9tGr8tg5+mWeFqaFrqcbn6/qSamtG5dV/jvt48Ikwq+7WQrukFE4/RDM0uwqQpXzCiLfWAsrISKRZ7t+t3QcjLOFqcG7yLEIqAZWuxrS1kT4YRhGTcpwHI1mot4ajOktLiWq2dATJxdBBNjq0rsnTFuPNyIpkf23FxfVcGEojyWThVn4cy6tm7eOdwSk36mocPJu0fDF8QzC5qhcfHUUsZFWHoBYPPxZvrcOhvj8dwAzLpuYPtg6rOmYkGkwX8k1Lkx80TYMm5SgEiaGzMvhJYo4plRpbTTObIeXF2e7VnXgS22JeC8npt5lYVkOyJrbrLsNlyaIcyMGGB0ro0Pz4otrXtiUR6LJ44SQ3Nj6Lg1Ii69ALD8vHJUBa6aWR5fP+Nv3Oz/39h/n0JE6kvjrXMjyvWZHblHMZMgUnqfpmvYVVOsp5o0NEPDrsR2jSktrrXvbwPbc26I+eea7qnAvOV4M64oPDf/2FvHqeYe3jvaGPO50oWm69hjzERx2MQpkKYZGm8faqK2pTuip2nDwQbcusFbBxvj62dKZkHRVM/2yXehoy6OFqcGkTJPR8LaUmbGMm5SgEgPrNtwx1V7wszuycFouhZzimbKahW5++Bg/5ILWYUw+fKYD6EZnuubWZZPTkZkz801c8pQFIW5leKkgjd1u1h3ILZqw6ebnbx/skmMsJSuMbO8gKwoPG/LZpf1C4/HxtfPKArM/WT/H0agcW0yRPJsjIQKxWZe68syblKAUC9knJ4bMz/kg4nHgEuZgXp0Azg7PNszrwV7RsyHcOue69txqgWXW4/oudl4uBGXprOntj2eFqeFMXFUG55ZVsC8cflChKU0Q2P36U7cUXje1u2vx60bbDjQGP/AeN4nB7b3vBTfMVKASBPFePpSkbz8Zg9jW8ZNChDJlRrPopKi4Q3bxELKDNSAkNTH4zqEZng61UnFueRkRjHzn+OZ+YvkuYmHDLtDmPfQrbuZVhKd52blkgmMznHQ1afT0t0X3wnL5njCUwCnNkPb6fiOk2REGvzdujuu8LcoE2Gz6zPN2zKJEGkZe7fujjlkIyKx1tdIyeKnrt6BWiMZ+TDlqrgO450x7jvTTl8UnhvvzF8kz008i2Aeqe9mz5nYMqzShWZo7DvTiUuLfP/KCrKwqypbjjcPTzfl773Zuyb+4yQRkQZ/b3g4FlRFFSYsFc/1pRLLuEkBIqX3jQTPTTykZImJw69BX5tne/bHwBFfsTlv2K1iVFbERRdhQLMhkucmnkUwq8aNZlpZrhhhKV1j8pi8qDRTgG+BzbmVw1j8dK6/cWPO0JRIg783PBwLsnumUoll3KQAkV7IeDU3si8Oalftye90dr04sD3/n+M+jFcwfaShiz6XJqXnxmZTuWPZjJiqDRflZXPx1NHCVCg+UNeDMwrPG3g8WR29bvbUtsV/0uLpUDbPs127DVpOxH+sCHjXP4uVlLyHCcIbHo4F2T1TqcQyblKASA9svNlSNlUslX+s2BQbLt2VvBN0Nw8U7ssrg8lXxH0ob6p7cW4GeVmOKDUbGfS6dSGq99a399LQ0RdzW51OePNgnRDX6NbdjB+VR24UnjeAiUU5ZDtsw/PcAMz9xMD2rj8N71hhiNdDLJqgOJ7EBVHGCk2PvaRGKrGMmxQgkqsxnjRpSMHgn2aSfg/3rQHv/795n4ZhzIi89/Bkcze9UXhuPJoNhSP1HULoUZ6rrqGz1x1zWz843cHRxnYhrlEzNI429NDnis5z09TlpKPXNTzPDXiePS8f/BGSlBEznH5GlMHfbcitXzT79VnGTQoQTXMTjzUukrs4HpK+Ppj/LHkYISkY8L6NynaQH+XMvzgvg0y7jQ/PKh3WuVPBjReMJz/LHrN25pJppYwvyhRGc1NekE1eVnT3b0ZZHpn2BHhuRk0YqK3UfAxObRne8UIQbz8jVOap5AVR4/FMpRLLuEkBIhVmikcEB2JdYzwk1XPTchJq3vNsl8yC8vnDOpy3U61r7+VYYxdrdtZG/E1rj4s+F6zdf2ZY504FLl0jnq4ry2bHLcgz6jbcnGjqi8rzBnC8sYtTLd1sO5mAxU8XfHZge+cfh3+8IMSblWlX7eIYN5InZ8SjKUollnGTAkRKBY9XJJaSVOk0YlftyQu7ffD8wPb8f/ZUjB0G3k7Ve5RojjaxKAeH3c6VM4uHde5U8Ictx+ns1WMOL1Ufb+NUS6cQYSm37qYoN5P8KD03DpuCYZCYOuGzV4Aj17O996+ehVwTTLwDv0ghfrPXgRkulufGQijiFYnJ7rlJWlhK12D77zzbigrzPzPsQ7p1N81dHkPz+qoKbr1sSsTfnOt00uc0WHfg7LDPn2yWTC7ErkQ36Ptz4eRibKoR8+/SgWZonGnpo8cZnefmoiljKMnP5PyJCVjZPTNvoIBkX/tA7aUEEm/IxqGIU4hRdizNjYVQxOu5EUVzE28KatJmjEffgPb+arDTrobCccM+pGZorNlxlpZuF3mZ9qhSn2eW5WG32bl8RtGwz59s3jxYj64rUQ36/uw+3YlTc8f8u3Sg6RpjcqPX3Byu76TbqbG3tiMxXuKqlQPbO34//OMNYiR4bkRakiYeLM+NhVDIrrkZTgpqUtZS2fabge3FNyfkkJqucdWMcmw2JWovRW1rL31O2HDQvCtCe7lq9hjKCnJiFgbfUDWOorzYhcjpQDd0GjtddPZFZ4xdNHkMdpvCgnFFiXkPJ14KoyZ6to9tgKajwz+mHyNBcyM7bsNtaW4sxEF2zU28KahJoaNuYAXwvHKYvjwhh3Xrbt440IhuRF500cu8ykLsNjuXTje/56bX5UaN4x5mOxzCzPoBSvIyo6owDbDnTBs9To09tR2JeQ9VFc6/ZeDvbc8O/5h+jIRsKdmxPDcWQhGv5ibpqdIJIt5ONSns/AN4B9uFnwdbYtrlNtxcOKmYTHt0pfsBDtS109Th4v/2RM6sSjev7auloc0VszD4/3afo6mrRwhBcWuPk8MNnbR0O6MyUC+bUYJNVVg4YUzi3sOFXwBb/6r0O/7gWfssQcQ7yRgJnhtFUYRIQLE0NxZCEe8DK0otH9MsDKprgSGpRV9I2KE1XeOVXfV09bqjSgMHcNhUQEXH/J3qhVNGM6EoL+bw0ucvnER+lipEWGrT0SZcms7onIyo2vvO4UZau51UH2tJ3HuYWzwgLO5p9hSaTBDxVkIXRds3HIQJ8VsVii1EIl5XozBhKbPUnjjwCrT2exCmLYPRkxJ6eJcOKNGlgQNcObOE/MxMPjzb/KngfS5XfM+oTZzu7ryKAhw2lbuvmxOVINxhU9ANUEhw2Ob8Lw9sv/+rhB3W8tyEJqllJxKItbaUhY+kCFITTLyFmYQJS5mlaujmnw9sX/T1hB/+golFlORn8vGqyqj231PbjtMN7x5pSHhbEs3Gow2cau6LObz0XHUNHXEs25AOdp1uR4tBM/WpRePIybBx2fSyxHo2JlwEped5tk9XexbUTADD0twIMIkaDqJ4p9y6JSi2QBzPxrAWzhTghTSF56Z2O9Rs8myXzIKpH0r4KTYcbKC5yxl1WOqKmSWoio0lU0YlvC2JZvKYLLLssde5WTa7DFVBiDo300pzyYpBM/X3XWfo6nPz3pHmxHo2FAUu/MrA3+/9NCGHjTc8bFNs6Lr5Q6fxlpwAz0RRBO+UKfrSMFjGTYoQxbOh6/FV1RTFXWwKzc3mXwxsX/S1YVckDoZT01FjCEttO9GC0wXvHTW/5+ZAfRsuTY25Xs26/fXoBkLUudlT2xZTtpsBoCgoJOE9nH8j5JZ4tvf9DVpODPuQ8Q6M8RoMqWY4mUTCTBTN4gUPgWXcpAhRBn+IrwMRJU7s1t3pFcG11cLelzzbOWMSUpE4GDPK8qgYlR11WGr5eWWoip3zJxUkpT2JZEZ5LnPGjopZGLxyyYS4FtxMB+PHZJPliN5zc9tlUygvyERVbNS1dyW2MY4sWPL/PNuGDpt+Hn7/KDB7SGO4DCeTSJSxwm24Tb28hHlbJhmixFHjxaGKURbdpbvi7lRVRR1+iua7j4P3/9P5XwJH9vCOF4LtJ1upa+uNOiz1f3vq6Ow12HDI/Msv9Lmd2OOYFZcVZFGU4+C56hrq2xOX1pxoDMNg7+kOWrtdUd8/r+j4rQPNvLjteOIbdcGXwZHj2d7xP9DdPKzDuXQXDtWRgIaZk+FkEolSy8etu019Dy3jJkXYVJsQno14EcVz49JdOGzxvZDDvsb2s7Dtt55tRy5c+LX4jxUBl6ajKjEUgFcA7OgCGOC7zzSzv647LmFwc7eLdfvrTS0qdutuNENFiSGsCKCiYGBLzj3MKfLUYgJwdQeGVuPApclt3AzHeBNlomgV8bMAxNHcxItDdYhj3KSr03nvJ6D1ebYv+DLkjon/WCHwZuSVF2QxqTg36rDUDVWV5DgyuHBKYcLblGjG5KnkZWTGJQzOz7KTmxl9uCcduHQXk4ryGVuYFfX9A5hRlk9lQR6XTk/A4pnBuPhfwPvubP7FsLw3sntuhjOJEkVzA+bWQFnGTYqwq3YhsqXiRZQshuG4Uh2qA5cWpwHXUQ9bf+3Ztmd7Book4K09caShk5rm7qjDGuv21+N2w3PvHzd1yAbgdGsXTlfsC2cCdPVCR2+fqUXFLt3FoboeGjr6or5/AGfbeznV0sdbh5O0PtioCQPFJp0dHmM9TmTX3AzHeBMlW8rsWMZNihBFJBYvZrbg/RmW58Y2DO/UxkfA3W80nP8lyCuN7zgR8F6fU9Pp7nPT3RfdM7dyyQTsagYdfb2mDtkA5GdBXmZWXN6XMbnZZGcYpvfc6JoNhdjCUgrQ0wfdzr4ktQy47DsDSzJseRo6z8V9KFH6jHgYTthtWP2MhQ/LuEkRoWb9x9uOc6jlUErb0trbyvt17w8pKjic2gyh6NP6eK/2PZyaM6HHDYdhGGyr30ZjT+OQ71xa/ILiUKG3g80HqWkPYxA0HoGt/dVdHTlwyTfjOr8/9V317GzYOeRzl+6iq9egq89NlsNGbmZ011pWkMX00gJyMoauJN7h7GDTmU0pDavqhs7ms5tpd7YP+a6hs5u+OD03nX0GHX1D12v64NwH1HWldkX0mvYa9jftH/K5S3NRVpDDhKKcmMJSGXYVw7ChM/Q+NfU0sbVu6/ALiRaOg8X9C2q6umDjwyF3dWku3jvzHr3uxHoCg629ZBgG79e9T0tvS0LPFYnDLYc51nZsyOfDSVwI1c+c7TzL7nO74zpmvHS7unnvzHtCTswt4yZFOGwOnHrgAK8bOrvO7eJg80H6tCTOtgZRXVdNu7Od052nAz5PRhx897nduHQXexr3JPS44ajrqqO1t5Wt9VuHfDcsd3EQQXGvu5dDLYfY3rA9dCbVuu8PZEhd8i3IL4/r/P5U11XT0N1Ac2+g7sGludh4qAW3bjC9LI9bL5sS9TFbujUaOnr526BQyPb67Tg1J0dajwy73dHy4zfe4nO/eoeFD/03X/t94H3MzVQpyMyIy/syrjAPh10P+O0fqvfyT0+/yqVPPMMtz24ZdtujQTd0djTs4GjbUXrcPQHfuXQXJ5v6qG3tiSkslZdlJ8PmwGEfasC8X/8+bc42znYlIBvuslUDmVPVv4RzB4PutrdpLy7Nxe7GxA7IwQb/2s5a2p3tVNdVJ/Rc4XBqTg40H2D3ud1DDP/haG5CTYS31m+ltquWtr62uI4bDzsaduDUnCmfgCcCy7hJERlqxpAXsr6rnoq8CqaMmsLpjtMhfplY3Lobt+5mUekiTrafDPguJleqrnuyf+p2w8lNcOh1OLMdDr0GR9bDqWpoOUFdew2XVl7Kma4zSbia4BxvO86C0gUYhjHk/3miO51THaeYNmoaFbkVNHQHKYB3chMc+F/Pdl4ZLL09rnP70+nsJNeRy+yi2UM8Ri7dxQUTS3DYo1+XyEumXUU3+gvC9WMYBu3OdpaMXTLkeUkmv9y8Ba1rGorax//tqQvQAbX3uul0uuPy3DR36XQ5AzU397/2Fu7eSgw9kw2HT7NmR/LfxYbuBsbmjmVq4VRqOwINGJfuwu22oRBDthtw1axSinKyh9QqcukuDMOgqqSK420JSBPPL4dLv+3ZNjR4/e6gu53uPM0llZdQ3z30PhnE70HKsGUM8QSfaD/BwtKF6IaespDOqY5TTBk1hYrcsTQ07vf0hcfegsNrcR17i4zj78CxN+H0No/31tUT8ZjQf32DJsIdzg7yHHnMKZqTmHsYBYZh0NzbzNKKpZzqODXkO7Mjr6LLZHh0EIEPbH13PeW55RRmFrK9fjtTR01Nejsauhsoyy1jVOaoIS7coF4Nw4DmY3D2A6jb5XmBm49D2ykYHGrKzYGu7oHjAfbcHGz6d3CUTqJv33oyxy6AiZfAmGlJqcwL0NTbxJisMZTmlHKu+xwVeRW+74ZTxM+hOoZ42Oq76zlvzHmMzhrN6Y7TlOf6eWU0F7z6rwN/X/U9yMyL69z+1HbWUplXSXleOXub9gZ859JdvHWohR5nJmt21jK3Mvrsp/njCumuz+AGv1BIh6uDgowCsu3Z9Gl9GIaRdK1EXVsPKG4wHBhaDti6Wf3qfh6/cSEA+Zl28oh9+QWAqSUF7O0N9Nxgb8PoqsRQ3KiOJr771z3csHBcoi4nKGc6z1CRV0F+Rj47G3YybfQ033cu3UVRThbZOdFnuwHsONnCuQ4XW46f49ZFA583djdSmlNKUVbREE9f3Cy93VPWoP00HH4dDq+F6VcPXIPmwq7Ysat2X9+X4dXqDJNgHtTWvlZGZ45mbO5Y6jrrGF8wPiHnGkJvO5zaAqe3Unt2M/Oba+lpq6HWBmN7B/oGV1YmDpcbtEEhwtwSjzC7ZDaMXQBj50P5PMjI9e0SbBJV3+UZKyryKtjbtJcqqpJzfX60O9spzCwk05bpM5C97/5wihSmCsu4SREZtowhD2xDdwNzxszBoTrodHWmpB1nu84yNncsiqJ4Cgv6rc7r1t0er0bLCc8M5PjbcGIjdMaXWdJkszFG06C3mZK6LppqP6Bia//LnlsKky6FWdfB9GsgKzGVcb2eGUVRKMspo767PsC4gfiFjMHuU2tfK6MyR+HW3Xxw7oPAH2z+OdT3h+PK5w3UCRkm9d31LChZgEN1DEkZ9WpuNN2IWkzs5URjF01dffzNzyg6132O0hyP+Lkws9DX4SWTh9buwNA8xQ0Ndx6qrZONhwf0Ux19bjLweG5iMd4A6ttc9Dg132/r23v7NSp2dHc+tuwabCmQFzR0NzCvZB52xT7kmXJpLho7NFx9XTEZqAbgdBv0uQOfiYaeBkqzS1EUxRfSGXb4OSMHrr4P/tK/avgrq+Drm32DdENPg++5KcoqoqW3hbLcxIi4M9RAz4233oqiKJTklNDQ3ZA448Yw4MwOj/f1yHrPBK8//Nyem0NhVzc5wO5BxThdgCOYd6PrnOdf7TbY+XvPKVQ7SuX5MPlymHw5jspFQzw3Dd0NzCyamdJisA3dDZTleO5Zjj2HHncPOf3hSBHqFFnGTYoIFid26S7fbEbBI5JLdjnrxp5G5hXPA6Ago4B2ZzujM0dB3S5cu1/AcWw91B0Ie4wuI5NTRimFFVMZWzHRY5hkFqB216Bnj0fV3dDXTkv7ccZ0NUPzKYp7Gzlns1Hh7Xi7GjzLEOx9yZN9MfkKmP/PMHvFsKr2NvV4vDbg6VQTGSsenMVgGIYndKAoOGyDauC0nIQNqz3bigornoAEzXTane0UZHiMQe8s1tvRuDQXLrcan1NMAZdbp8vPKGrubWZ8vmegKM4upqmnKenGTXXNCQx3PlkOlQx7AV16I3mZnv939e29GLrORdPGxLWMwnnlRZxpqfd5bh5+fS+G7ukGs9VcXLYeijIT42EIh9sIXZKgvqOLjl7P4BjLbcyyq0GDPS29LUwb5fEMjckeQ3NPc2IMjbmfgq3Pwsl3oLUG3ngAPvIg4DGKS7I961GNyhxFa1+r75zD7ecGv4etfa2+Z3JM1pigIu2Yqd8LO/7gWUurfWiYUsOj6VBsmWQUT8eVlwsF0yGnGOxZuPrqcWSVgtsFzk7oaYHWU9TVHKKUFlRl4E4puhtObfb8e/sh7Bn5aFMWe7zg066GzDyPZyrLU78o255Nt6vbZ2gkC69XGmB01mha+1oHjBsB6hRZxk2KGBxH1XQt4AUflTmKtr423wOcLPwNqlHdrbTs+k9GH1gLbTW47Hbs6qBOJyOPt/umsc09lb3GJPbqkzhLEaCQdVrlwFc/6tvVUbMeZ8UlZNk9Oo+W2veYNWYWZBVR3H6aw4f+Br0uOPku1GyGvv5MGM0JR9Z6/mUVetZbWnSTx9sRI009TRRnFwOeTmCwWHM4DHaHd7u7yXUEupOdmpMMxQ4v387/b++8w6us7gf+ee/OujeLBEIghD1kiYLgwEFF0QqOVmmxav05qtVSqVZbW4odThTEVduidaIiQhUXAiIIBtmEEQIkjEASMu5Icvd7fn+8uSu5iYAJI57P89wnue993/eec+57zvme7zqEvnvk7dB1RJuUIVqgAk2b4vA6wnUOqAF8wWP11tAw6ZtPjrWeWoZ2Ggpowk2po5SeqUfvpHw81AfsiGAa2VYzQWGjIbAPg157Lv+1ci92jyZ8HYs/UYhdFW6qG+rD2qm1+/cjgolkJJlITTCwz6dQ4fJQWOY4Zq3Q0eIJeLDoI2W36C24A24SDJpQv2jzfjw+6N058ZgcwvU6RdM0NKHeX0+iQZuUMhIyqPJUtY1woyhw1bPw4hgtzcE3L8Cgq6Hb2VR7qumb1hfQJsY99j3hy77vxNh0oejwOkg1pwJgMVjwBI8zOsvrgi3vwsY3NP/BeGQNgh7nUttlMGkJydB3orZo2bsYkT8h3C/9+5dizDkXDJHf+YMNB/ht8RYseOmvHOAMXQmDlFJG6nbSSxdx9FZ8Ls1nceeXoDdDr4sRuf3RdbsYjJbwIqO9hZvodrWZbdR6a8Na8O/ju3iikMLNCaKpHdXlc4VX36BNHFXuqnYVbvxBPwZvPax5HjbPI7VqG5V6PXg1ocuvKBgRkHs29B0P+WMppCe/eD4SQXLHBfn88yvNoc0TUFlRVMnYfpr62aw34w16w8KNw+fAZtImiERrLu70POh5JZw3FYKNq5UdH8KOjyKrI48D1r6svXpeBBfcDz3OPeo6VrmrONOqORy0tW9I09+w1lMb7vygTRzV7mq6bHpHM+kBWLtqvjZthMPriNGcpJnTqPXUhoUbv3r8mhuzQY8QSkz6fr/q5+2CMh75aAdCDXD9RXZGdhn5vevRGp6gAxHIxekOkGVNhGAAe4M/rLVBHFv+l2gsejNC8YeFuIagExFIJtVmZGR+OqXbEvCodTy0YCsf3nNeW1Uphip3FRkJGdz+2lo+336EMYPsDLrGERZu6r0egmoi/TunHJMAl2g2oNMpHLZ7qXB6yLZaEEIgiPhKZCZksrFiI7RVcuyMXnDhQ1pEIAIW/B/c8VWMCcNmsmH32sOXfF+ThkkXa+Kv9daSkxQxPRsUw7EJUI4yKHhJ8yFqGomkM0LPC2HAldBvQjg/VXVNERmKEtbGJhuTqfPXkWJK0eoY5/vvf28LAB7M6LufxQeH+vKGXzNx9U9w8ukkBfYsh12fAo0L4aAX/65P0JetgNVzYdA1ZPb9EZWpwfbzKyLiMBx6btLMaRyuiwhgp/q+UiCjpU4YiqLERAjUemtJtaSG32ckZMTNy9Im+D1QuIDqt39CxqJ74bM/QPkW0oIqtXo9KHrodQneC6ZhuvkT+L8vNKGi20jufDPiR5KblsBDEwaSlxYZcH/7zqbw/2a9OcYWrgo1xulMr+gjIZN6g+Zzc/nj8NtCuOUTGPozLXtviL3L4dUJ8MoErdMfhYd+nb+OZGPEadesN7dZno2m9Qv524TITMikav8qWPbXxiMKXP3PNvMnAm1iDAkyoK2oYiYO1Y/Pf3y+2rYEA3pMWMxaO6tCRUFh+v+2E1QFKnrmb2jfTSc1HxgV0JOebOLMvDQUoN7r498r93LJwAwSDKZjcrSN5uL+OSSZCTtNB6lDBBMx6nVMHdcXo7Ch09fR4Gs/x5tqTzXzVtfw+XYtAd43xV5eK4ikShBKEJPOcNQ5ikLcdn5PEo16jtR5+ddXmqYkWiMEkGJMweV3tUEtohj9a+h6lvZ/bSnB//0GXZT42dRk6w16v5dzcWtmKYj4+HwnFdvg/f+D2UO0bMvRgk2XoTDhKbi/GKbMhxE3xyTejNYQA6RaUrF77OH3qho79hWWOQhEDV8v/HwEL0yJaHOL3FYq8ifBNf+E+3dryRLP/j9I7oxDp8MWDGoLv/WvkDHv51S9/0tY8STYY6OY2oqmi6iQC0OI08HnRgo3J4mmE2OaOS1mkmpKiaPkOzusP+hnZ81ObVUjhBaC+NF9MLMvzL+F6v1fkxGMDDIJXYbhHvYzmFYENy7A23c8FmtslMhBe2Qie6mxMz4/5azwsdrGFTVoprdQNJFf9Tfzpk+zpFHrjVMHRcHVZTDFF96HmLZTG1TSekQ+3/c1vD4J/vMjyra8TUULydZCk3G0xiZk7wdttfF9NnoLaaZCNBNugoKqZTMiOW3O+y3knw9oK6Hi2mLqfK07jrsDbopqilpMmFfliRVuQrbwEJ6AB49Pd1xmqetG5GI2mBk/SLu/y+di64FYQUaoRh5eGF9lX+OpOaow1VJHaYtROzM/LySoGtArMCo/g6nj+mLRWwgIL0dcXhZsLMXr1x1T/pdo1u2to87rDufy0RsaUNRE8jISybZasBrTUAzxJ/+gGqSopug7TZ0un4vi2uIWw2Wr3FW8UxCZKEQwiX+vjkS95Xcykp6UfMwCXLbVQkqCAV9Aoc6rPaehKKIQiqKE/fviUVFfQVld620rhGB37e7IZKc3wHVzoXEyrN25iNTSb2Kuif5OT9AT1u4eD00dipsKcCEteDz8QT87d32If97PNHPa1vci/VVvguE3wh1fUXvTIkr6jYOE+Jr0eON33LGtkTte+zb8f4/GZ21svyxC8qsApi9qFHD1RsgaCFfMhPt2YL/6RdJ6X6pttgtYhMBbXwHL/wazBsPr18C2hRDQ2uSg6yAV9a0HgahCbfVZPuKO+EyBtt9V9DPzfX/DE4EUbk4g0ROO3RM76LS2Wdo+5z72Ovay4uCKVjP9fn3oa+rs+1j5xQPw/Cj498VaZlyPtiKp1uvITOoC5/8O7v4W5fYvofclkKw9xJ5A7AP75c5IBzHrlbAPwhldbXE7ZbRmw+GNmKRCZFg0s01TVKGybP8yKhsq2V5fBiNvg1+v17QeGX3C51UdXs+Wz+5j7VsTqdv6rpZrJ4qmqw2IFW6iTWbHQ1Mzl9PrxGpu1MoEvCQuuI2GUP26ngUX/SF87vaa7VQ0VLDswLKWk/0BKw6swOlz8m3Ft3E/b/rcNNUmeYIe3F79cWlulmyvpMELH23VcufYvXbmfhWbu0cEkllZ0lyA8QV9rDy4khJHCaWO0ha/44vibUx8+X1GPjOHO15f0+zzgv2lmpko0cRvxvUh22rBpCSjKg3srqyjIeAGYT5+s5TBjFACYR2q2x8A9JTVaoO8WZeMYqiPe+0/ln3Elc9/xuAnnuYfi7fFPUcVKssPLKeyobJZmH6I3UdqQEQ0FyKYgKrUhxcJmw7acTYEj0uASzQZQDWgomk2mmqIIeKn1ZQ6Xx1ry9eytWpr/JxNjeyo2UF5QznL9y+PPMtpeTBxDgDVBj2Z3/wTdn8RvibZlIzLpwmN3oA3xufoWDEbItrYpuYTaEULfngLq+ZdTd2CW1m5f1nkeEI6XPAA/HYbTHwOX9YAvjr4FSWOkrjCuhAClVin6KYa1KaUOSKLoud+FonTf/zaoeH/vyxq0teEAJ2O2k69SL38KfjdLpj0IvQ4HwM0/sIC9iyF926Cp/tT9fE0Cvd+xtryteH2jsf6ivXYvXaW7V8WVwg/4j4Ss4gCTfMe0sA19Rs7FZHCzUmiIdAQs9qAiBd8UwqrCjm/6/kMyRzCjpo4kQB+D67Nb+H/8lHOev0G1M1v46yJihIyJMCQG3COvZ+UezbDJX+CTpqzX8iZEbSJ0aw3hy+75+2N4f8v6h+7F1K8ThmtuYnnHN3SiqrUUUqeNY/ROaPZbd+tdTa9AYbeAHcXwHWvQNYgNpnNnOt2M7K8mM0f3wMvnQtb50OjlqPaXU1GQqwzQaolItx4ArH1+76EBzg1CB/ciXJgLQqgpuTADW9qKzAiK90xOWPoYe3BXnvzdO2grZpTTCmc3flsqtxVcQXZlvJLhAaoqroGXG5xXEm2GnwBgkED6/ZXUuH0YPfaEQHNbyLZpMNiVFADKaiKs5lpamfNTjbvSea2F+u4872FLZquHvjfhzhqeqO6u7NkzybmLIuNZqsP2lEDKaQmGsP+JplJ6SiGerqmJTCgSwJpCceW/yWan4zIw2QQTBrWlc0HqgmoYNQrDMlNBSDRZAbUsI9PiIN2F/9duxV/fS9EMJF/rdnCiqLmAkCps5QvC1WmPFfD7K9WNvsdgmqQV1aVht8nGnWAHhTBox9rfdvlDtDgD1LlOvas5Sa9jkBQR51PK3tTYRgiUW9N2VK1hbM7n815Oec1T2vQiCpUimuLGZMzhp62nrHP8sCJMOZeqvV6MgN+eO8WOKz5mURrpj1BD2bD8fdDiz7iNNxUawPNTSgc2gRv/4y6ly8gULaOszxeVMCVkg3jH9WEmov/GDY7FdUUMShjEOd3PT+ugNoQaCDJkBRzLMWU0qJW9oMNEdORxaCLcVSfNDwXY6Nc5gkICss0odOsN4cDUMKOveZkGPYzuPkjMq7+FzXn/1bLmRMuWDWbCt9kzKJpjPxyFlu/mQXe5mXyq37K68sZ2XkkaZa0uIKs3WNvNn5bzdawUCw1N5IYdIouxvbcVBMQb/J3eB0kGZMw6U3kWfMimSKFgIPr4KPfwsy+7Pp4Kv33fQtCpY/Pz16jUUuWd9Vz8LtdiKtfQskagKKPnRhTLanhB7apZsPljWiSZkw8I+a6ScNzMTY+PaFOGW22aepsCy2vGIvtxfRL74dO0ZGTnBObIl6nhzOuwXvbUgJj7sWaPYTsYJAavQ5RuV3Ls/H8SNj0FlX15c1WG9Erqu+ruYnGr2pJylBVWHS3FtIOpGKg9tqXYrZYOFx/mJzkHHSKjr5pfdnj2BP3nkW1RQzMGAhAT1vPZhmB3QE3CfrmYfKJhkQaAppQvKyoknqf9rsdq89GotmAEAb21zr498q9bC4rw+/XBnGjQU+i0YgIJKPqXOGJOMQb69cxd3kDQaFnd4WXX8z9qtn9FxcW43AbQBhQfRnoTDU8s6Q45hy/cCACsYkOGxrMoG9gX3UDq/YewtnAcZulPtp6GG8gyKJNZfxuQQF+vxlbgqYlAjgzLw2EEbu7ntlfRMo2df6nqD5t8lO9ndGZK/jNvE3N7v/ympUs+AaE0LGs0Mutb3wR83mtt5Zqhyb06oAXp4xApwAofLlL05TWNvhQVcHuymPPfeVw+wkGDeytsgOxaQNCZFgyqPbECjdCCKrd1XRO6kyyKbkx6q65cB39LPdK7dV8X6VxM7DnjiBVVbVoyNcmQvnWmEWGN/j9NDcWgyU8zjQ1u0FkXBUH1sFb18PLY6FoMcUmI/18fkjuTL9zfkvRDa/A6Lu0nD1RlDpLybflY9QbSdAnUO+P1eQ19XsDbWwP+VQ2jYR9YP6W8P+PXds8ArR7RuT7p87TFpTR2ql441ZGp4FUDfsJ3LsZblwIg67BrzfhUxSsqiDrwDqq1r6ImNkP/ncPlH4d1nTvte+ld2pvFEWhd2rvZuNRPM0UNBFQ23ih2B5I4eYEEuqULT0YnRI6NRNuShwl5NvyAc10leT34lzxmDah//sSWDcXPA4OGfR0DQTB1p2uY37LwSseh1s+hjNvBIs1rskGiMlULIQIP9Avr4jsI5Rg1MWN2uieHtspo7VA0WGEIXSKDhU1ZjXrD/oJqsHw6qtXaq+4exiVuvbTY+A1cPsK+Pl8stL6UBES1Kp3w8JfUbvoV6QVLoJAZMVr1BnD/ittpUoVQmjtaUjQhKvNbzdW0EjmuL9SZY3dOyr6N7QYtAiWphNH6J6h1VIPaw9KnaUx54SibJqSZkkL/4bOBh9CaL/NsYQRQ6NDqiEBFB/13gD/Wb0ToWrP6di+nXjm+qEgzKDzsWJXZDfoOl8dC9ZVERpOgt5siu17+O/qWJX+gx99hurp0vhOD0KPijdmuwM/Hu07orAYklH0boQQuHwefAHDMScoDBF68tbvq8XltSOCSaQnmcLP99RxfTFiRdW72LA/4kOxqWIPqlcz34pACorBid3ti9HuNPgbmL/+MAhNeFF9Wawo2R5Tv11Vh1CDWkRNslnP2H5ZWIw6RNCCSgNCCEx6HXqdQu+sY89mnZNmAWGik037LZo69UPs8xKioqEinHQPtOcvnklmj31POJN6ojFRi86Lzv2kKKhn34qu2yjtgLsG/nsVaVV7ww6333di1Cm6sDksntmNA99i+/o5nK/8qDHySKMspRNdx/0dfrOZruffz+E4fl8Or4MUU0q4zfJt+c3aoaV+aNAZ8Af9McJIhdNDY0AUJh1xM1/PnhwxU+2v1gSp0FjakgY2rH3T6aDXRfCTV9h/22fknX0nZA1EAbICASqCbtjwmhaYMXsIfPEX9uz/Kvwbhuac6O8JZSVvSvRz4wl6mmnMTjWkcHMCCeVdaeqMFiKe5qasroyuplQofB/euJbe8+9gz+qZUBVR5ztMSaTknY/upg/hN5sxXPwwFlv3GBNXvNUGxPqkREdz/eOTyGZ4j14TP99M006ZaIxoEFpSW0ZrGQD2u/bT3RpRraZb0nF4Hc38UkqdpfSw9tDCgPr8iJ43zGfvhH9AXiRcV22oQr/4Ppg1BL5+VstbQcSZ8fuqwyGyAaq9Zg9pn/8lrLFB0cNPXiFzwFUxv2Fof5ZQYkGAPGteswHzcP3hmK0bEo2JWkK+qImjaYRGiOjf8GCtGwEY9fEF0tbItlrITrai6LTvdHl8gILNYuChCQMaJ2IF0BGIckx/dW0Bqi/ifCh86ehM1fz1o4h2RwiBR9QgApqAfccF+ajeLHTmIzy0QNtYcfOBagIBbdWdaIponQZ1SUNBex4afA3oxPFHadx2fk9Meh2l1fV4hAsanYmj2yBZn4qir8Mf1L5z2Y5DoARBmDDrFWxmI8JvQzE4I06gwOyvVqB6I/ljRMCKYnTw4PuRlfuzX25AbdRM5aRp35uZZEIEk0Bfz0G7E7+qw2TQkWg6dud3pzuAqpoodzmaaRBCGHQGAiJWONzr2EtPW0QYzrflU+KMfUaFENi9dtIt6eFj3VK6xew7VO+vJzkhA34+H3IbUwa4a0h64yfU7dG0WJ5A202MDk/UImr/N/DaJPjPODIPrONIaPFjzaXh8kexTJiJ/pw7wWhBp+i03C1NhLwSR0lMO3Szdmu2f1s88zdE+qE74A4Lb9PeiZj2ky3xn9szutrCE7FPhYUbD5JgSMAT8NAQaAjnKIomxZgSa3oDSr219Dj3d/Cr1fB/S+nd/2r2JEYJKY4D1H89C9Pnf8L08sWw4kmUyu1kmNNjNHlVDfGFt+hxxhf0yWgpSQSLwdKqcBOT6K9mLw2r52BcNQvDk71h/i9h9xd09fs5aGgc+PPOhYnPs+cX79Lrspla+u7GJHxNV16h/ZaaEs9UFG0j1ivxVxvQvFN+uqUKb8Dbqr9HVmJWjI231FEa1mqE6JzUmfKoiChf0Icq1BhhKTOxE9WpXRE3fwS3fIK754VYQt9bVw5L/gTPDIIvZpDsa8Dlc2m5N+IMFMdCkjGJ+u0Lsb/7c1IPNfolGBPhhrdgwI9jBgDQIojSLGkxJsh8W34zrUz0ijhEbkpuzKaKoRXjs0uL6PHg4vDrwse/5eNtuwioAcwGI4oCXdOOb/Kw6BMICA91Xg8NUS4fIUHJpNcjAkn4hCOstZizsgDVp014o3ulA3pQTQRwh/1S/luwEdVvAxQSjDoemjAQnT8DnamaQKMQMfXdVQQDiViMSoxAnZliBnTsOeKguqEuxhn3WMm2WkgwmvH4fXiCLtRAEqVVsWYHAzZ0RmekXO8vR/hTAc337NmfDUf1ZqMzV8Q4gc4tWI/q0/rYHRfkAwoikIxXuMK+FFsOH0IEE9EDT/1E81uzJpgQgSTqA07+8uFGPB79cW9M2C87BUU141fd7K6uxGaycesrBTHPyy2vFJCgj/j3hUxS0YKzxWABQYyGMbR1SzQ9bT3jjzMWK0x5H3po0YJK0Avf/hs+uBOPp6bNTBoOdzW2XV/Af8bD3PFa+gigUzBIlbULXDkL7t1ASe+x9EjrE3NtT1vPZma1g3UH6Zoc8ecy6ozodfqYqCKf6otb/jRLGjWemhitxqo9Ee3QM9cPa7Ee5/WNtP2D728NL4RrPbVxc581jXoLqkHcQbeWVFRRIPcsMia+RPWVTyKu/peW6VjRU2wy0sfnh4qtWrTVi2PoueAuSpb8Udtyx++hyl0VEykVommCxPbeY+77ckoIN88//zw9evTAYrEwatQo1q5tfdv69957j/79+2OxWBg8eDAff/zxCSrp9yPFqDmd2b32WFWqEFC9Bza+QcL612l4dhg8O5zSL2eQf2BjzAaVOlt3kgdeg+POVZrZafgUyry1dE2JdbDMs+ax3xVZcVS7q2NWXCFCq7joje1CyaYAzu/b/CGPZvpVA8P/P7igEIGI6+QXonNS57BPTUyHjKJXaq+YjKYljhJNaxOFoiiaSc1bC3ljqJg4m05XPqtt3xCKpfE4YNXTpC24C/t7N+Hcu5wU3fdIrV+5k+Rlj1K/6C7s/jrNryC5s5ajp99lgKYyV1DCprC9jr30ssUKLRaDBVWo4YlDFWqzFTFAD1usacodcPPZ1mqeXtLEbKcmMHfNTlw+F9VOHULA7orjy2VS2yBQFS+bysoI+DVBUKeLDGJdbBZUfyp+nZ3piwrZsL+SoKoABhRg1vXDuaBvJkFvNnpzedgv5dGly1G92sQYElxSLAkgFPzCz8KNByl3VyACNsx6fYzT5W3n98RAMkGlAW+wgUDASIPv+PfXMSoJ+ISboOLVhDA1VpDw+Y2g+CmrdVNY5sDDIYLeLIw6zfdsbL8sDCIZxeDCEwhSWOZgcWExqmoG9Jh0hPNBadqpSn791gaCahB/QAA6LKaIY+lj1w5BUZNQDHWs3HuABq8RIcQx+0xBoyAozBx02HlqyXpW7KxnaVGsNnh5URVvr3aE+2G1Rxsbmk5Weda8mOdvt313MwE82ZRMg78hPMmW15dHzFsWK9z4AZx5k/ZWCNxb5qF++gf0G17TNpY9Tkx1VXiXPoL6yf3oF9ymJQQNkZpH+oRZVF/2NzjrFjCY2e/cT541L+YeOck5HKo7FH5f56sjQZ/QzIyXb8sPRwBGa2Wakm5Jp9ZbG97BO3qRaNIRTnYajyeviwRoeAIqWw94cPlcLS6EIVbTf6juUIxQBtoY2dmax+Fe52m5eqYVcWDEFHKzYjXx2TX7KN/1P3jtKng8j+rPHyT921c1TZgvNsCltTQCpxonXbh55513uO+++5g+fTobNmxg6NChjB8/nsrK+KGIq1evZvLkydx6661s3LiRSZMmMWnSJAoLC+OefyphNaXgdB7Afngjtp2fwmd/1NSoT/WBOWfCorvJKV5KmUuz0e83Gsnz+8GaC2f9Em76CH6zmV7n/549ijYwhGzETdXPoc0jvUEvftWPoigt7uJq0BmodldjNVmZ/UVRTLKpx68d0mqdbhoT0bp4Ayqfbyun1ht/tQGaM2Mox0m8DgnaIGH32sOdqMRZ0ky7A7H28AOuA3Tr+SO4/g0twmrYz0GnTQ4ZaoCqA6tpWDWTxFlDYcEdWpSVK36+nBg8Ti2HxBvXwgujSN63GqdOwaMoWPpOgF99DTnDYi4Jbd4H2mAfL9V9tGatvL48djfxRqwmKy6fC1WoOH1Oalw6pr4TL4pFIaCqPPjBGurcmvBmdx+fT4pB0QOC8vpq1KAmdI6NEnBn/nQYBGzojHa+LKrkjnc+CZuk0hojnJ68bijCn45irMXu9rN852GCihsRTMIYpQmcdcMwVF8ndKYjPPj+VoK6alR/GmoTrUW21UKSIRXFUIcKqKrC/prmUYVHi99vQVXqG7UjSowJDOC8PpkI1UxAcXPrfwtQdV5QE9FHmfq6pych/GkoRju/fmsDD/wv4k/UPUNrt+ennIUI2FAMdkqrG5j95VrUgGYmiN41SkutYAHFT4B61GAiSWbjMftMgSYI6hr9otbuO8jLy+PnO1laGGDWck0giPYJiybflh/WbKhCxeF1xF0gRQsJR9xH6JQYtSDSG7V91Sa9RJreQo1epzkafzRVMx+veAIqd353gs6AT5tsVzwBL56H9eP7sa+ehc4TpXXu1B8mvgD3rEc34iZ0BhN+VfOBCe3/Fo1O0ZFsTA77Au2q3RXeMiKaHtYeYef+MlcZucnxNdmpZi2Rn8PrINWSyrR3I4vE0DPREtlWS0xy1D/M3/Odwk1Ock44J1FTs2KIPml9wj6M1XodtoFXo7/9S5i6FS57HPIvQKfosQVVanQ6RMBDsHIHhuV/1zRhj3aFF0bDwrtgzQukHNnNkbJ1WJRTf3ODk17Cp59+mttuu41bbrkFgJdeeonFixczd+5cHnzwwWbnz549m8suu4z7778fgL/+9a8sWbKE5557jpdeeumElj2GPcvh8CZtWwHVD756TXPgsWt/XeVYHQepNTXuGFsff3DO8wdYlZRMTpczUbr0w3Sm5iAWnbgkNyWXjZUbGZY1jG1V2+if3j/uvXrZerGrZhdJxqSwEHHLKwUsb7KSu3xEA4mji/liaz2vrYh8Fko29V2M6plGwV7Ndv3RZjs2y9f0SMnnulkfE1SbD1rXnlfL2FwXxfZiRmTH33Opu7U7JY4SMhMy0Sv6uP47Ock5rK9Yz/Cs4ZpjYWgQ6NQPJr0Al/wZNrxOp/WvsiVYgwAUrxO2zNNeoIVSZvaFtHxtXyuDBXwuqDsCR3ZAeaH2ezaSHlTZkNYFw+DrYOyMuKmA8235FNUUYdQbsZltbD/kYsq/C7C7o1aqSoBbfuTgzxf1ZXv1dhauNvGTzYub3UuXcID5PRdz8QArM/5XCURWfzOuGsghu5t/flWCUBP4YvcO1KA2sZzfp7lvztFgMerBryOor0X48hq1EAPCn5/R1YZBMSIUFU/AT8B/ENWnba4XUrtnWy3YLCbqgkkoBju3v/05qk6bFA2GiBA+tl8WwpeJPmUbHmcWBlQQRszG5kK4LmhDMe4CFFITTTzSJHrvWEi3pFPl2Y1QzZgNzX3K/jBhAIuf2ozOXEmlux6dQRPUL4wS8mZPPpMrn6/GkLSb0uo0DLYaRKAHALNuGB5uK5NeRzCYhGJw8vzXxeGIq39cHVt+s06PX+hQDC6EOx1L4rH7TIHW9gadQgBBvVqLCEaE5o/uOY9f/PsbatwBRDCRT3Zu4I8LNuFL3Mz8FeUIsbHZ/cwphcya1Jd+XTX/ml+9sY5PCmMFplvOy+K8wUWkmlOx6C3N/XwUBYZNJjurN3tX/I3EA43bubgOwfK/ay9rV8g+A9Ib+6Gi0zacdJVDVbHmYxjlQ5hqMlJkMtIpKGDAVdr+bT3Oi+mP3VO6s8+xD6/qJd/aXHgDGJgxkMLqQsbkjOGA6wDDsoY1O8ekN6FTdNT56ih1ltIzeRgXPrmM0urmCfBGDynl5jG9uev17UTrN0LPRGs8P+UsrpyzCoB6r8LsZVu57YJebCz18Ks3PsETiNWYTP9xPzI7H+SMzDNw+pxxA0bSLGk4fU68QS/F9uKI8JbaHc65U3s11NBn+/sUlS4j/+AW0j1R84NQoXK79gKyjUaKDHqs6MCYDkmZWgh9UidtR3iDpfFl1v4O+xkkNheITwQnVbjx+XysX7+ehx56KHxMp9Mxbtw41qxpnuALYM2aNdx3330xx8aPH8/ChQvjnu/1evF6I84DTqcz7nnfm52L4dt/tXqKCXBYkjVtTBTVIoVCNZ+1an++VfuxxeAlUBEkuLc3YkUpUNrsXjrzEaaZHwOhI+BqKTOmisG2ERAEnENBxE/V/emmIEv3LcBXcz4QGVCjk021xrM3nMmofywFQPhTmbd5Db4qCxBfU7TgGz2Ltj4NwQQCdS1lew1gsG0CFIJ1/RDB5hM/gM5ymGnmv6F6O3GvJ555ciA6HmNg2gecp+7jArENqxL1nfb92usoOCgy+a93HG96EvF8mYP6aUvmUIHBuhmULwi4BoG6Ks4pBl5b6eL1NY8jVBPB+n5x76R6cvj64Aa+PgiqL/J73HFBflhr9s+vSlB9GRitmwg2aLs/Rwskx8KZeWkUb01Fn7CPYN0AFIPSbJLtnp5IiTMHg20zwm8FYcRi0MWo3Z+dPJybXq3HYC1EAKpTm8ybChLdU1M46E3GYNuM6tb2ypn5k6E0pc5tRJdUg+rJpSHg/16bWpbXmNAnHsDvHIYapNm9sq0WAr4MDLb9YDqi9R1i0yGc0dWGSUkgqJowpBQifBmAQmqCMeZ+T1w3lKnvuTGkbANh0JyMae7HNrZ/Jz7cmYEhaTfBuv5U1x17jpswipYYUGdwhSO3pl3ahzO62njt/87hx3NWIVBQvVm8U/Q/VG8WQsRX4vsaenDP/94ABAHHMOJNGa+squT1TdtA/zXB+l6IQPy+CkFMGb3oUz8Uv7qKS3Qb0Id2x3aWaa+j5IivO89bu1BScyWVG7vDRifQpD8qfq0fohBwDAeaR2GCwJBSCKxE9WXyG+8ncb9PMTjRJz0NqplAK/mH1u4OsO7ASvy1o8PH7rgg/6ie1zO62pgyqhtvFBwAFLYfrue387YRcMX/bWZ8WIQ+cQ+K8VFUdzfu8cVvd8VYiz7hKbR5YBjxd2brgsE6GJT+dK7rxHnsYZiym8G6EvopBzAommDVLRBgaVIiE+vqwH0w7o7p0RSYz2HUiB+gcFNVVUUwGCQ7O1Ztn52dzc6dO+NeU15eHvf88vL4JoZHH32UGTNmtE2BW+M7dkj1CCNlIpM0RwbFaibLRBd2iDx2qt05guZoGcYV1EJfgy2HgqreLohAMiLYmoOsjoBzMChqeJCLhwim4Ks5F9TIJDbjqoFHPYFkWy1Mu7QPMz8vRvVm4fOfR0uCDYAI2AjW9UcEW3N6NRBwDgElAGrLdVQ9uYiADRFIafkcdBTaf0whOuYKwSjdjvBrgLKfZCV+wjlVKJSIzqxUB7NMHc4qdTAqOqj1gNqa746iCTWKH9SW6xh052kr9UDLvzPCSMB1BggdISvyNcNzeGhCxNdpxlUDmf6/bdpvKAwYdM0FkqNl6ri+vL22tDHqR6FbWvO2nz35TK6c04AIJmhRPjTP3zG2Xxadk1Mod50BCBBmks2GZpO6tlptQNHXI4Ip6HVKXN+Ef1w9hKnvuUE14mm2d/mxkZWSSNGRc0FNQOjiDfQw7dJ+zFwSCPed0b3Sm7XpE9cNZeo7KoqhLvz8zb5hWMw5k4bn8scPkqh3DWzsgwrn9Go+2P9hwgAWbTqIz5cB6MiN0+5Hy2PXDGHqu36CjbqDZLOBey7WVuxndLXxzPVDmfrOZq3v+FNbHWdEMJmAawAIA61NF4G6/t85ZoEeX+0YtqlmbmcUXTnCeP06LtZtYIhub+yiI4qgUDggstgg+rBGHcjq4CDK6AQ+d6v9K17faY5CwDUQRd+ACLY8hoiAtXHMar1fBRvyCXoiG1pe1C8zpq9+F3+7eghldjfLi6oIuAa2Uu7Q9/UK950Wy+5PJ6iaG9M6tOQE3Dhm6bwcDCYxjzzmcTEAZnwMUPbTW1dGD6WcrNpD1IoKTIqDdJwRATUO/1hSyqIRZ7X4eXty0s1S7c1DDz0Uo+lxOp1069YOu6kO+xlvHc7hi2I7AfR4hAkHSThFEk4SqcfC0e9lrP+OQUKjtQc6cpKJpnPBRf0yeeWWUawoquSO19dr6s4oAWLGVQNjfGmOhtDg+fTnxYgoIemOC/LDnfu/q0uY8eF2VMFR1U8r+3c5ACuIwFFsTNl4Hx+wUh3CSjXkSyTIwk6OUk2S4saCj3oScIgkSkRnPMRxHlSPQnAQxmYC5TXDc3j6+uE8+vH2xp3VY8tuNet46/YxYaGywunh+n+uoTQq39qUUd3429WxflA3jcln8wE7CzZqfg9/uvL4tDagCapTRvXgjYIDdEoyxlWnn9HVFrM7/JRR3eJG1P375pFhc5xJB8//rKV79eLlxnv9uYWyTxqey47DTl5eWcLt5x/bs9mUmT8dxq/f2kBZbQMPt/B991zclw37alleVEVemoVZ1zcv+6ThuawrrWlcaWvtEE8we+HnI8L9rKV7ae2e12q7Hy2ThueyaFMZy4uq4rb7pOG5pCWaGssUGUOmXdon3I8BHv5gi1a3JouLvDQL7/7qXNbsqeJ3721pdMg+ujErWhgpoxNzg5czN3g5IOhKFdlKLValARDUiwRqSWa/yMZHnMVZa4JN+JyjEfL1RzWWhgT5EKFxFLSNMbVnHVD1zT4/Fl65ZVRc94FQ35+zbJc2zgKgO66yxz/JAMHmIoEXE5tEbzYFNa0wUe58Cipp1JGhOEnAixk/ZsWPBR9JOj/Trjr2+rcVijjemMM2wOfzkZiYyPz585k0aVL4+E033YTdbmfRokXNrunevTv33XcfU6dODR+bPn06CxcuZPPm+CnDo3E6ndhsNhwOB1Zr2+3WLJFIJBKJpP04lvn7pEZLmUwmRowYwdKlS8PHVFVl6dKljB49Ou41o0ePjjkfYMmSJS2eL5FIJBKJ5IfFSTdL3Xfffdx0002cddZZjBw5klmzZlFfXx+OnvrFL35B165defTRRwH4zW9+w9ixY5k5cyZXXHEF8+bNY926dbz88ssnsxoSiUQikUhOEU66cHP99ddz5MgR/vznP1NeXs6wYcP49NNPw07D+/fvR6eLKJjGjBnDW2+9xcMPP8wf/vAH+vTpw8KFCznjjOMPDZVIJBKJRNJxOKk+NycD6XMjkUgkEsnpx2njcyORSCQSiUTS1kjhRiKRSCQSSYdCCjcSiUQikUg6FFK4kUgkEolE0qGQwo1EIpFIJJIOhRRuJBKJRCKRdCikcCORSCQSiaRDIYUbiUQikUgkHQop3EgkEolEIulQnPTtF040oYTMTqfzJJdEIpFIJBLJ0RKat49mY4UfnHDjcrkA6Nat20kuiUQikUgkkmPF5XJhs9laPecHt7eUqqocOnSIlJQUFEU52cU56TidTrp168aBAwfkXlvtiGznE4Ns5xOHbOsTg2znCEIIXC4XOTk5MRtqx+MHp7nR6XTk5uae7GKcclit1h98xzkRyHY+Mch2PnHItj4xyHbW+C6NTQjpUCyRSCQSiaRDIYUbiUQikUgkHQop3PzAMZvNTJ8+HbPZfLKL0qGR7XxikO184pBtfWKQ7Xx8/OAciiUSiUQikXRspOZGIpFIJBJJh0IKNxKJRCKRSDoUUriRSCQSiUTSoZDCjUQikUgkkg6FFG46ODU1Nfz85z/HarWSmprKrbfeSl1dXavXeDwe7r77bjIyMkhOTubaa6+loqIi7rnV1dXk5uaiKAp2u70danB60B7tvHnzZiZPnky3bt1ISEhgwIABzJ49u72rcsrx/PPP06NHDywWC6NGjWLt2rWtnv/ee+/Rv39/LBYLgwcP5uOPP475XAjBn//8Z7p06UJCQgLjxo2juLi4PatwWtCW7ez3+/n973/P4MGDSUpKIicnh1/84hccOnSovatxytPWz3M0d955J4qiMGvWrDYu9WmIkHRoLrvsMjF06FDxzTffiJUrV4revXuLyZMnt3rNnXfeKbp16yaWLl0q1q1bJ8455xwxZsyYuOdOnDhRXH755QIQtbW17VCD04P2aOf//Oc/4t577xVffvml2LNnj3j99ddFQkKCmDNnTntX55Rh3rx5wmQyiblz54pt27aJ2267TaSmpoqKioq453/99ddCr9eLJ554Qmzfvl08/PDDwmg0iq1bt4bPeeyxx4TNZhMLFy4UmzdvFldddZXIz88Xbrf7RFXrlKOt29lut4tx48aJd955R+zcuVOsWbNGjBw5UowYMeJEVuuUoz2e5xALFiwQQ4cOFTk5OeKZZ55p55qc+kjhpgOzfft2AYhvv/02fOyTTz4RiqKIsrKyuNfY7XZhNBrFe++9Fz62Y8cOAYg1a9bEnPvCCy+IsWPHiqVLl/6ghZv2budo7rrrLnHRRRe1XeFPcUaOHCnuvvvu8PtgMChycnLEo48+Gvf8n/70p+KKK66IOTZq1Chxxx13CCGEUFVVdO7cWTz55JPhz+12uzCbzeLtt99uhxqcHrR1O8dj7dq1AhD79u1rm0KfhrRXOx88eFB07dpVFBYWiry8PCncCCGkWaoDs2bNGlJTUznrrLPCx8aNG4dOp6OgoCDuNevXr8fv9zNu3Ljwsf79+9O9e3fWrFkTPrZ9+3YeeeQRXnvtte/cwKyj057t3BSHw0F6enrbFf4UxufzsX79+pg20ul0jBs3rsU2WrNmTcz5AOPHjw+fX1JSQnl5ecw5NpuNUaNGtdruHZn2aOd4OBwOFEUhNTW1Tcp9utFe7ayqKjfeeCP3338/gwYNap/Cn4b8sGelDk55eTlZWVkxxwwGA+np6ZSXl7d4jclkajYAZWdnh6/xer1MnjyZJ598ku7du7dL2U8n2qudm7J69Wreeecdbr/99jYp96lOVVUVwWCQ7OzsmOOttVF5eXmr54f+Hss9Ozrt0c5N8Xg8/P73v2fy5Mk/2M0f26udH3/8cQwGA/fee2/bF/o0Rgo3pyEPPvggiqK0+tq5c2e7ff9DDz3EgAEDmDJlSrt9x6nAyW7naAoLC5k4cSLTp0/n0ksvPSHfKZG0BX6/n5/+9KcIIXjxxRdPdnE6FOvXr2f27Nm8+uqrKIpysotzSmE42QWQHDvTpk3j5ptvbvWcnj170rlzZyorK2OOBwIBampq6Ny5c9zrOnfujM/nw263x2gVKioqwtcsW7aMrVu3Mn/+fECLPgHIzMzkj3/8IzNmzDjOmp1anOx2DrF9+3YuueQSbr/9dh5++OHjqsvpSGZmJnq9vlmkXrw2CtG5c+dWzw/9raiooEuXLjHnDBs2rA1Lf/rQHu0cIiTY7Nu3j2XLlv1gtTbQPu28cuVKKisrYzTowWCQadOmMWvWLEpLS9u2EqcTJ9vpR9J+hBxd161bFz722WefHZWj6/z588PHdu7cGePounv3brF169bwa+7cuQIQq1evbtHrvyPTXu0shBCFhYUiKytL3H///e1XgVOYkSNHil//+tfh98FgUHTt2rVVB8wrr7wy5tjo0aObORQ/9dRT4c8dDod0KG7jdhZCCJ/PJyZNmiQGDRokKisr26fgpxlt3c5VVVUxY/HWrVtFTk6O+P3vfy927tzZfhU5DZDCTQfnsssuE8OHDxcFBQVi1apVok+fPjEhygcPHhT9+vUTBQUF4WN33nmn6N69u1i2bJlYt26dGD16tBg9enSL37F8+fIfdLSUEO3Tzlu3bhWdOnUSU6ZMEYcPHw6/fkgTxbx584TZbBavvvqq2L59u7j99ttFamqqKC8vF0IIceONN4oHH3wwfP7XX38tDAaDeOqpp8SOHTvE9OnT44aCp6amikWLFoktW7aIiRMnylDwNm5nn88nrrrqKpGbmys2bdoU8/x6vd6TUsdTgfZ4npsio6U0pHDTwamurhaTJ08WycnJwmq1iltuuUW4XK7w5yUlJQIQy5cvDx9zu93irrvuEmlpaSIxMVFcffXV4vDhwy1+hxRu2qedp0+fLoBmr7y8vBNYs5PPnDlzRPfu3YXJZBIjR44U33zzTfizsWPHiptuuinm/HfffVf07dtXmEwmMWjQILF48eKYz1VVFX/6059Edna2MJvN4pJLLhFFRUUnoiqnNG3ZzqHnPd4rug/8EGnr57kpUrjRUIRodJiQSCQSiUQi6QDIaCmJRCKRSCQdCincSCQSiUQi6VBI4UYikUgkEkmHQgo3EolEIpFIOhRSuJFIJBKJRNKhkMKNRCKRSCSSDoUUbiQSiUQikXQopHAjkUgkEomkQyGFG4lEIpFIJB0KKdxIJBKJRCLpUEjhRiKRnPJceOGFTJ069Ziuqa6uJisri9LS0pjjQgiefvpp8vPzSUxMZNKkSTgcDgBuuOEGZs6c2UallkgkJwu5t5REIjnlqampwWg0kpKSctTX3HfffbhcLv71r3/FHP/d737HokWL+M9//kNSUhKTJk3iuuuu45lnnqGwsJALLriAkpISbDZbW1dDIpGcIKRwI5FIOhwNDQ106dKFzz77jHPOOSd8vKCggNGjR7Nu3TrOPPNMAB555BHefPNNioqKADj77LO5+eabufvuu09K2SUSyfdHmqUkEskpwfz58xk8eDAJCQlkZGQwbtw46uvrgeZmqQsvvJB7772XBx54gPT0dDp37sxf/vKX8Ocff/wxZrM5RrABeOqpp7jkkkvCgg1AdnY2VVVV4fc//vGPmTdvXvtUUiKRnBCkcCORSE46hw8fZvLkyfzyl79kx44dfPnll1xzzTW0plj+73//S1JSEgUFBTzxxBM88sgjLFmyBICVK1cyYsSImPO9Xi+LFy/m6quvjjnu8XhiTFAjR45k7dq1eL3eNqyhRCI5kRhOdgEkEonk8OHDBAIBrrnmGvLy8gAYPHhwq9cMGTKE6dOnA9CnTx+ee+45li5dyo9+9CP27dtHTk5OzPkbNmzA7XYzbdo0HnjggfBxv9/PRRddFH6fk5ODz+ejvLw8XBaJRHJ6IYUbiURy0hk6dCiXXHIJgwcPZvz48Vx66aVcd911pKWltXjNkCFDYt536dKFyspKANxuNxaLJebzXbt2kZSUxKZNm2KOX3HFFZx77rnh9wkJCYDmtyORSE5PpFlKIpGcdPR6PUuWLOGTTz5h4MCBzJkzh379+lFSUtLiNUajMea9oiioqgpAZmYmtbW1MZ87nU4yMzPp3bt3+GU0GikuLubaa68Nn1dTUwNAp06d2qp6EonkBCOFG4lEckqgKArnnnsuM2bMYOPGjZhMJj744IPjutfw4cPZvn17zLHMzEwcDkeMH8/f//53JkyYwMCBA8PHCgsLyc3NJTMz8/gqIpFITjrSLCWRSE46BQUFLF26lEsvvZSsrCwKCgo4cuQIAwYMOK77jR8/noceeoja2tqwaeviiy/G4/Hw2GOPccMNN/Dmm2/y4Ycfsnbt2phrV65cyaWXXvq96ySRSE4eUnMjkUhOOlarla+++ooJEybQt29fHn74YWbOnMnll19+XPcbPHgwZ555Ju+++274WHZ2Nq+++iovvvgigwYN4ptvvmHVqlV069YtfI7H42HhwoXcdttt37tOEonk5CGT+Ekkkg7J4sWLuf/++yksLESnO7p13IsvvsgHH3zA559/3s6lk0gk7Yk0S0kkkg7JFVdcQXFxMWVlZTHamdYwGo3MmTOnnUsmkUjaG6m5kUgkEolE0qGQPjcSiUQikUg6FFK4kUgkEolE0qGQwo1EIpFIJJIOhRRuJBKJRCKRdCikcCORSCQSiaRDIYUbiUQikUgkHQop3EgkEolEIulQSOFGIpFIJBJJh0IKNxKJRCKRSDoU/w8kSwXCcYhoBQAAAABJRU5ErkJggg==\n"},"metadata":{}}]},{"cell_type":"markdown","source":["## Plot dynamic figure"],"metadata":{"id":"qGrtluxkT2Wf"}},{"cell_type":"code","source":["import matplotlib.pyplot as plt\n","import numpy as np\n","import ipywidgets as widgets\n","from ipywidgets import interactive\n","from ipywidgets import SelectionSlider\n","\n","def plot_function_with_sliders(f, labels, x_min, y_min,ref_x,max_y,value_scale):\n"," # Extract the parameter names from the function signature, excluding 'x'\n"," parameters = list(f.__code__.co_varnames)[1:f.__code__.co_argcount]\n","\n"," # Create sliders for each parameter\n"," # Define the base, min exponent, and max exponent for the slider\n"," sliders = {}\n"," i=0\n"," for param in parameters:\n"," #print(\"parameter=\",param)\n"," #print(\"[initial value, min, max, step]=\",value_scale[i])\n"," sliders[param] = widgets.FloatSlider(value=value_scale[i][0],\n"," min=value_scale[i][1],\n"," max=value_scale[i][2],\n"," step=value_scale[i][3],\n"," description=param,\n"," readout_format='.3f')\n"," i+=1\n","\n"," # Create sliders for x_max and y_max\n"," #print(\"xmax\")\n"," #print(\"[initial value, min, max, step]=\",value_scale[i])\n"," x_max_slider = widgets.FloatSlider(value=value_scale[i][0],\n"," min=value_scale[i][1],\n"," max=value_scale[i][2],\n"," step=value_scale[i][3],\n"," description='x scale',\n"," readout_format='.3f')\n"," #print(\"ymax\")\n"," #print(\"[initial value, min, max, step]=\",value_scale[i+1])\n"," y_max_slider = widgets.FloatSlider(value=value_scale[i+1][0],\n"," min=value_scale[i+1][1],\n"," max=value_scale[i+1][2],\n"," step=value_scale[i+1][3],\n"," description='y scale',\n"," readout_format='.3f')\n","\n"," # Define a function to update the plot\n"," def update_plot(**kwargs):\n"," plt.figure(figsize=(8, 6))\n"," plt.xlabel(labels[0])\n"," plt.ylabel(labels[1])\n"," x = np.linspace(x_min-x_max_slider.value, abs(x_min)+x_max_slider.value, 5000)\n","\n"," # Pass slider values as keyword arguments to the input function\n"," params = {param: slider.value for param, slider in sliders.items()}\n"," print(params)\n"," y = f(x, **params)\n","\n"," alfa_p=x/np.sqrt(x**2+params['P']**2)\n"," x_=(x_min-x_max_slider.value)/ref_x\n"," alfa_p_min=x_/np.sqrt(x_**2+params['P']**2)\n"," x_=(abs(x_min)+x_max_slider.value)/ref_x\n"," alfa_p_max=x_/np.sqrt(x_**2+params['P']**2)\n","\n"," alfa_min_D=params['lambda_nm']*1e-9/(2.0*params['a']) # First minimum of D as a function of sen(theta)\n"," alfa_max_I=params['lambda_nm']*1e-9/(2.0*params['d']) # First maximum of I as a function of sen(theta)\n","\n"," print('1st Min. Difraction at lambda/2a=',alfa_min_D)\n"," print('1st Máx. Interference at lambda/2d=',alfa_max_I)\n"," print('gamma (width)=',params['lambda_nm']*1e-9/(params['N']*params['d']))\n"," plt.axvline(alfa_max_I,linewidth=0.5,color='red',linestyle='--')\n"," plt.axvline(-alfa_max_I,linewidth=0.5,color='red',linestyle='--')\n"," plt.plot(alfa_p, y/max_y)\n"," plt.plot(alfa_p, y/max_y,linewidth=0.1,marker='o',markersize=1.0)\n"," plt.grid(True)\n"," plt.xlim(alfa_p_min, alfa_p_max)\n"," plt.ylim(y_min, y_max_slider.value)\n"," plt.show()\n","\n"," # Create an interactive plot with the sliders\n"," interactive_plot = interactive(update_plot, **sliders, x_max=x_max_slider, y_max=y_max_slider)\n"," return interactive_plot"],"metadata":{"id":"HXhPvAk_T2cu"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["# Example of an input function\n","function=diffraction_slits #(xp, yp, P, a,d,N,lambda_nm)\n","\n","lambda_nm=600.0 #nm\n","m=1\n","alfa_min_D=lambda_nm*1e-9/(2.0*a) # First minimum of D as a function of sen(theta)\n","alfa_max_I=lambda_nm*1e-9/(2.0*d) # First maximum of I as a function of sen(theta)\n","xpm = m*P*alfa_min_D\n","\n","\n","\n","# Define labels, axis limits, and initial parameter values\n","labels = [r'$\\sin(\\theta)$', \"Intensity (norm.)\"]\n","x_min =-xpm\n","y_min = 0.0\n","max_y = 1.0\n","ref_x = 1.0\n","# value_scale (each): [initial value, min,max,step]\n","value_scale=[[1e-9,1e-9,1e-9,0.0], # yp\n"," [P,0.1*P,10*P,0.1*P], # P\n"," [a,0.1*a,10*a,0.1*a], # a\n"," [d,0.1*a,10*a,0.1*a], # d\n"," [3,1,15,1], # N\n"," [lambda_nm,0.5*lambda_nm,3.0*lambda_nm,0.1*lambda_nm], # lambda (wavelength) in nm\n"," [0.0,0.0,10*np.abs(x_min),0.1*np.abs(x_min)], # x scale\n"," [1.0,0.01,5.0,0.5], # y scale\n"," ]\n","\n","# Create the interactive plot\n","interactive_plot = plot_function_with_sliders(function,\n"," labels,\n"," x_min, y_min,\n"," ref_x,max_y,\n"," value_scale)\n","\n","# Display the interactive plot\n","interactive_plot"],"metadata":{"id":"-yGvE2xSXuHI","colab":{"base_uri":"https://localhost:8080/","height":879,"referenced_widgets":["c51731aedf554344a4a459c70fc9919b","805876fe8cea484da63154b27c5087a1","2823bf1a78564208b517871dc3c46835","ba8ebe06151a4031a710388bf358d282","baca085711f542168968114fa642ba9e","2dfa71874dec43949c852ee6b2c82731","49a6d5bef049473eba66a8f4e77ac63a","8f3d4939637b4d6da58f09fac2630fc2","e2436f6649574ccc9882af327032f829","dc0bda8d629c4e02a6db4e2620000f37","663402ce22894caabfd4bb0692032b43","ce602f26c89740d18f02f74901ff0174","50a9631cc8af41acb9eefa76dd323a00","ebbce7ace3e646ee919d435722506319","5705a299262347d2b147eacd16078641","22a44308751f403dbb2e5b1cdb4c4340","246a0349dc5a41dba6810bc5aa892da7","ad71fbd1c0d84e29ad89bedfe8cf06d9","8665cd93eda94e9f94e0d8db446e38a2","64d395e3366d477c87426d2af543dce4","f0f6814a19f945f1984606291cba6c3e","9e3a3f13ccea4989813c67f8972fd99c","428ce04ec5224496a90025c8dda9df9f","5a211ecbbba44ca09d06db97efac8f5c","02ba8ede78d8409a9f8220c5082423c1","f83f4b8a33e64bb1a413872e6a463391","930779ea26d9482babc2875ba14b6e5a","74d2c8a324664807a60f25460b269b68"]},"executionInfo":{"status":"ok","timestamp":1701809492706,"user_tz":-60,"elapsed":503,"user":{"displayName":"SERGIO GUTIERREZ RODRIGO","userId":"07959720391705098820"}},"outputId":"1a22ad4a-1b8b-4d13-e2c5-7839ddfe3d8a"},"execution_count":null,"outputs":[{"output_type":"display_data","data":{"text/plain":["interactive(children=(FloatSlider(value=1e-09, description='yp', max=1e-09, min=1e-09, readout_format='.3f', s…"],"application/vnd.jupyter.widget-view+json":{"version_major":2,"version_minor":0,"model_id":"c51731aedf554344a4a459c70fc9919b"}},"metadata":{}}]}]}