<span xmlns:dct="http://purl.org/dc/terms/" property="dct:title"></span> The following notes written by <span xmlns:cc="http://creativecommons.org/ns#" property="cc:attributionName">Sergio Gutiérrez Rodrigo (sergut@unizar.es) </span>. Distributed under License Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional
Departamento de Física Aplicada
Universidad de Zaragoza
Instituto de Nanociencia y Materiales de Aragón (INMA)
C/ Pedro Cerbuna, 12, 50009, Zaragoza, España
import numpy as np
# Define the functions
def I_T(n,e,theta, lambda_vac, rho):
'''
Transmittance as a function of the wavelength of the light (lambda_vac),
refractive indes of the dielectric film (n), its thicknesses (e), the angle of
incidence of the light beam (theta) and the reflection coefficient (rho) from
light going from inside to outside the film
'''
theta_p=np.arcsin(np.sin(theta)/n) # Angle of refraction from incident angle
delta=4.0*np.pi*n*e*np.cos(theta_p)/lambda_vac
F=4.0*rho**2/(1-rho**2)**2
return 1.0/(1.0+F*np.sin(delta/2)**2)
import matplotlib.pyplot as plt
n=1.57
e=400.0#nm
theta=0.0*np.pi/180.0 # angle of incidence (rad)
rho=((1-n)/(n+1))**1 #0.9
print(rho)
lambda_vac=np.linspace(200.0,1200.0,300)
It=I_T(n,e,theta, lambda_vac, rho)
plt.plot(lambda_vac,It,color='red',linestyle='-',alpha=0.5,label='Fabry-Perot')
plt.xlabel(r'$\lambda (nm)$')
plt.ylabel(r'$I_T/I_i$')
plt.legend()
plt.show()
-0.22178988326848248